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Abstract—This paper mathematically models the operation of Arrayed Waveguide Grating (AWG)
based multiplexer (mux) and demultiplexer (demux) used in optical networks. In WDM networks, the
optical mux and demux play a crucial role of managing the aggregation and segregation of wavelengths
for networking applications. A simple and intuitive model of AWG based mux design is discussed
in this work. This model assumes that the device is linear, in which the principle of superposition
is valid, and the primary emphasis is given to the optical power gain of the individual wavelengths.
By using this model, one can exactly estimate the individual and overall power associated with each
of the multiplexed wavelengths. The developed model was evaluated with experimental results using
AWG based multiplexers. The experiments were repeated for different test cases with various power
input levels and multiplexer configurations. It was found that the developed model provided a good
approximation to the actual AWG mux/demux.

1. INTRODUCTION

Wavelength Division Multiplexing (WDM) systems can simultaneously carry multiple high-speed data
channels over a conventional single-mode optical fibre. This increases the data transmission capacity of
the fibre manifold, without altering the modulation characteristics of the individual channels, or adding
significant hardware complexity. Further, WDM systems allow for more flexible network architectures,
which can make use of wavelength routers and/or add-drop multiplexers (ADM) [1]. The wavelength
multiplexers and demultiplexers, which combine and separate wavelengths along the link are key
components in WDM systems. In fact, many design constraints are specified by the WDM mux/demux
characteristics.

The Arrayed Waveguide Grating (AWG), also referred to as Phased Array Grating (PHASARS),
is commonly used as multiplexer/demultiplexer in WDM systems because of its low insertion loss, high
stability, flatter pass band, low cost and ease to implement in an integrated optic substrate [2]. AWG
mainly consists of a waveguide array, input and output waveguides and the two Free Propagation Regions
(FPRs). The input and output waveguides are arranged in a Rowland type where ends are uniformly
located in a circle. This paper brings out a simple and intuitive mathematical model of an AWG based
mux and demux which can be effectively used in the optical network design and applications.

Wavelength demultiplexers, since the early 1990s, have focused on grating-based and Phased Array
based devices, [PHASAR] [3] which are imaging devices that disperse the input into spatially separate
output foci. The main difference between the two is that grating-based devices use vertical gratings
(reflective/transitive) for dispersion and focusing, while the PHASARS uses an array of waveguides, with
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length chosen properly to provide required dispersion and imaging. The grating etching process can
thus be avoided in PHASARS, which makes the device more desirable in integrated optical applications.

Phased arrays were proposed by Smit in 1988 [4]. He succeeded in manufacturing a small 1 × 5
demultiplexer having channel spacing of 0.5% working in the He-Ne laser wavelength. It showed good
focusing and a channel separation of 20 dB. It used a concentric bend waveguides approach making
the wavelength resolution poor (several nm). Later Vellekoop and Smit modified this by adding a
coupler and an adapter section, which reduced the loss significantly. The developed device worked at
633-nm with a dimension of 0.6 × 2.5 mm2. They found the attenuation to be as low as 0.5 dB and
crosstalk of the order 17–21 dB [5]. Meanwhile, the longer wavelength version of AWG was developed by
Takahashi et al. [6]. They used arrayed waveguides of different length and same curvature radius. This
enabled use of longer waveguide path difference of AWG fibres and was thus able to obtain a higher
frequency resolution. Later Dragone et al. expanded 1×N AWG device to an N×N device, namely the
wavelength router, mainly used in multiwavelength network applications [7]. Zirngibl et al. developed
InP-based PHASAR-Demux, in 1992, which was suitable for photonic integrated circuits due to their
higher refractive index contrast [8].

The existing AWG mux/demux theory is based on diffraction and imaging properties. The output
is taken as an image of the input at each output waveguides, after going through a region of free space
propagation, which is to be analyzed based on basic electromagnetic theory and diffraction [3]. This
work focuses on developing an approximate but effective geometrical approach for AWG design based
on trigonometric principles. This model can be considered as a geometrical approximation of AWG
analysis using the classical ray and wave theories. The signal power is the sole parameter here, and
analysis is based on power division and superposition principles.

Although [3] provided a precise mathematical derivation of the phase matching condition, the
present approach stands out in making use of a simplistic geometrical analysis of the Rowland and
Grating circle construction based on scalene triangles in deriving the phase match condition.

2. AWG BASICS AND OPERATION

AWG Mux is a generalized form of the Mach-Zehnder Interferometer (MZI) [7]. MZI is a device in
which two copies of same signals are shifted by a certain phase and then added together. But, in AWG
several phase shifted copies of the same signal are added together.

The AWG consists of a waveguide array, an input and output waveguides and two Free Propagation
Regions (FPRs) as shown in Figure 1 [9]. The input and output waveguides are structured on the arc
of a “Rowland circle” and the arrayed waveguides are located on the arc of a circle called the “grating
circle”, as shown in Figure 2.

Let the number of input and output waveguides of AWG be denoted by ‘n’. The input and output
couplers are of n×m and m×n size, respectively. Thus there will be ‘m’ number of arrayed waveguides,
which interconnects the two couplers. The difference in length between the consecutive waveguides is a
constant denoted by ‘∆L’. The first coupler splits the input optical signal into ‘m’ parts. The relative
phases of these split signals depend on the distance travelled by the signal in the coupler from an input

Figure 1. Arrayed waveguide grating. Figure 2. Rowland circle and grating circle.
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waveguide to the arrayed waveguide.
Let ‘din

ik ’ represent the difference in distance travelled from an input waveguide ‘i’ to an arrayed
waveguide ‘k’. Similarly, ‘dout

kj ’ represents difference in distance travelled from an arrayed waveguide ‘k’
to an output waveguide ‘j’. The relative phase of signal from input ‘i’ to output ‘j’ traversing ‘kth’
arrayed waveguide between them, is given by,

φijk =
2π

λ

(
n1d

in
ik + n2k∆L + n1d

out
kj

)
where k = 1, 2, . . . ,m (1)

where ‘n1’ is the refractive index of input and output directional coupler regions, ‘n2’ the refractive index
of arrayed waveguide region, and ‘∆L’ the length difference between consecutive arrayed waveguides.
From the input waveguide ‘i’, those wavelengths ‘λ’, for which ‘φijk’ differ by multiple of 2π, will add
in phase at the output waveguide ‘j’ [2, 10].

The input and output couplers can be designed such that,

din
ik = din

i + k∂in
i and dout

kj = dout
j + k∂out

j (2)

where ‘∂in
i ’, ‘∂out

j ’ are the distances travelled in input and output coupler regions, respectively.
Therefore,

φijk =
2π

λ

(
n1d

in
i + n1d

out
j

)
+

2πk

λ

(
n1∂

in
i + n2∆L + n1∂

out
j

)
(3)

For the use as a mux and demux, the AWG should satisfy the following relation [11, 12]

n1∂
in
i + n2∆L + n1∂

out
j = pλj (4)

where ‘p’ is an integer.
In the above equation if a wavelength λj satisfies

n1∂
in
i + n2∆L + n1∂

out
j = (p + 1)λ′j (5)

Then both ‘λj ’ and λ′j are demultiplexed at output port ‘j’ from input port ‘i’.

3. PROPOSED MATHEMATICAL MODEL

3.1. AWG as Multiplexer

The coupler in AWG is a 3 dB coupler. Therefore, the same copy of the input wavelengths appears on
all the arrayed waveguides. Let ‘p(λi)’ be the power at each wavelength ‘λi,’ where i = 1, 2, . . . , n. As
we know, there are ‘m’ number of arrayed waveguides then the power ‘p(λi)’ is equally divided into ‘m’
parts. Each part can be denoted as p′(λi)

. An AWG configured as multiplexer is shown in Figure 3.
As per the theory of AWG, the waveguide lines that satisfy condition (4) will be added together to

get resultant power at output port ‘j’. Therefore, a finite number (depends on Rowland circle geometry)
of copies of power p′(λi)

will add in phase and that will be the average optical power at that particular
wavelength ‘λi’. Here, we assume that the device is linear, where the principle of superposition is valid.

Figure 3. Arrayed waveguide grating as
multiplexer.

Figure 4. Arrayed waveguide grating as
demultiplexer.
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The total output optical power from the output port of the AWG is equal to the algebraic sum of all
individual powers corresponding to each ‘λi’. Therefore,

Pout =
n∑

i=1

aip
′′
(λi)

(6)

where ‘ai’ is the signal attenuation, p′′(λi)
the total power corresponding to each ‘λi’ at the output

port, and p′′(λi)
the sum of all the copies of p′(λi)

in which the corresponding waveguide line satisfies the
condition given in Equation (4).

p′′(λi)
depends on the number of arrayed waveguide lines, the difference in length ‘∆L’ and radius

‘R’ of the Rowland circle. Then,

P ′′
(λi)

=
li∑

k=1

bkp
′
(λik) (7)

where ‘li’ is the number of waveguide lines satisfying the condition (4), ‘bk’ the attenuation of ‘kth’
waveguide, and p′(λik) the power corresponding to ‘kth’ copy of ‘λi’.

If there are ‘n’ number of wavelengths, then the input optical power corresponding to each
wavelength is denoted by p(λi). Therefore, the power ratio between output and input for each wavelength
can be denoted as,

Pout(λi)
Pin(λi)

=

li∑

k=1

bkp
′
(λik)

p(λi)
(8)

Total output power to each input wavelength is given by,

PMUX =

n∑

i=1

aip
′′
(λi)

p(λi)
=

n∑

i=1

ai

[
li∑

k=1

bkp
′
(λik)

]

p(λi)
(9)

Since the coupler is a 3 dB coupler, all the copies of p′(λi)
are the same. Then,

li∑

k=1

bkp
′
(λik) =

li∑

k=1

bklip
′
(λi)

= li

li∑

k=1

bkp
′
(λi)

∴ PMUX =

n∑

i=1

aili

[
li∑

k=1

bkp
′
(λi)

]

p(λi)
(10)

when ‘bk’ is negligible

PMUX =

n∑

i=1

ailip
′
(λi)

p(λi)
(11)

3.2. AWG as Demultiplexer

The condition for demultiplexing is according to Equation (4), which is the same as the operation
of multiplexer. There, the total input optical power is the sum of the optical powers of individual
wavelengths. An AWG configured as demultiplexer is shown in Figure 4.

Let ‘p(λi)’ be the power for the wavelength ‘λi’. Then the total input power is given by

P(λ) =
n∑

i=1

p(λi) (12)

In the input (1×m) coupler this signal power ‘P(λ)’ is split into ‘m’ parts, and each part is denoted as
P ′

(λ).
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Depending upon the condition (4), there are a finite number of copies of P ′
(λi)

, which will add
in-phase and will be the power corresponding to ‘λi’ at the output.

Let P(λi)out be the component power associated with wavelength ‘λi’, then

P(λi)out =
li∑

k=0

bkp
′
(λik) = li

li∑

k=0

bkp
′
(λi)

(13)

Therefore, the ratio of power between each output wavelength ‘λi’ and the total input power is given
by

PDEMUX(i) =
P(λi)out

P(λ)
=

li

li∑

k=0

bkp
′
(λi)

n∑

i=1

p(λi)

(14)

3.3. Geometric Analysis of AWG Model

The wavelength dependency of an AWG is an important factor that has to be considered during design.
It depends on the physical dimensions of AWG. For exact analysis, the geometric modeling of the FPR
and Arrayed Waveguide is required. The physical construction of FPR is based on the Rowland circle
as shown in Figure 5.

From (4) the value of ‘∆L’ is given by

∆L = m
λc

neff
(15)

where m is the order of the array, ‘λc’ the central wavelength of AWG, and ‘neff ’ the effective refractive
index of the guided mode. This length increment ‘∆L’ of the array gives rise to a phase difference
according to

∆φ1 = β∆L (16)

where, propagation constant, β = 2πυ
neff

c and υ = c
λ . So β = 2π c

λ
neff

c .
By removing ‘c’ we get,

β = 2π
neff

λ

∆φ1 = 2π∆L
(neff

λ

) (17)

The phase matching at the imaging plane of the AWG depends on the combined path length of
the arrayed waveguide and the distance between each input and output waveguides and the arrayed
waveguide in the two FPRs.

Figure 5. Grating circle
and Rowland circle.

Figure 6. Scalene trian-
gle inside Rowland circle.

Figure 7. Scalene triangle.
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The geometry for finding this FPR distance is obtained by considering the ‘scalene triangle’ formed
inside the FPR as shown in Figure 6.

Consider the triangle ABC, Figure 7.
According to law of cosines

a2 = b2 + c2 − 2bc cosα (18)
b2 = a2 + c2 − 2ac cosβ (19)
c2 = a2 + b2 − 2ab cos γ (20)

We can find the length ‘a’ by considering the Rowland circle inside the grating circle as shown
below.

Figure 8. Rowland circle.

Consider the triangle 4ABO inside Rowland circle (Figure 8) where ‘a’ is given by

a = 2
R

2
sin θ/2 (21)

Therefore
a = R sin θ/2 (22)

Consider (20) where b = R and a = R sin θ/2, substitute in Equation (20) then

c2 = R2 + R2 sin2 θ/2− 2R2 sin θ/2 cos γ (23)

c =
√

R2
(
1 + sin2 θ/2− 2 sin θ/2 cos γ

)
(24)

∴ c = R
[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2 (25)

Therefore, the total phase shift of the signal propagating through a distance ‘c’ is given by,

∆φ2 =
2π

λ
c (26)

∴ ∆φ2 =
2π

λ
R

[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2 (27)

If the total phase shift of the copies of optical signal after propagating through two FPRs and
Arrayed Waveguide is a multiple of 2π, then the constructive interference will occur at the imaging
plane of the second FPR. That is

∆φ1 + 2∆φ2 = n2π (28)

where ‘n’ is an integer. From (17) and (27),

2π∆L
(neff

λ

)
+

4π

λ
R

[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2 = n2π

Or ∆L
(neff

λ

)
+

2
λ

R
[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2 = n (29)

Taking
1
λ

outside
1
λ

[
∆Lneff + 2R

[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2
]

= n

∴ ∆Lneff + 2R
[
1 + sin2 θ/2− 2 sin θ/2 cos γ

]1/2 = nλ (30)
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The above condition is used for the constructive interference modeling of various wavelengths at the
output of the mux during AWG modeling. The first term corresponds to the array waveguide regions
and the second represents the effect of two FPRs.

The parameter ‘li’ (in Equation (11)) and the number of waveguide lines satisfying Equation (4)
can be obtained by using above derived Equation (30).

3.4. AWG Model Evaluation

After obtaining ‘li’ for each wavelength and using the descriptions mentioned under Section 3.1, the
total output power of AWG based multiplexer is modeled. Wavelength dependent power is computed
using Equation (7). The model is evaluated in a standard simulation environment. Further, these results
are evaluated against experimental results for different test cases, with various input power levels and
AWG configurations.

The attenuation values will depend on the spatial distribution of ports under consideration on the
circumference of Rowland and grating circles. The output power of Mux will vary with respect to these
attenuation values and number of arrayed waveguides, which in turn affects ‘li’. But these parameters
are usually not available with commercial AWGs. Therefore, during the evaluation process, an empirical
relation was derived from the experimental observations. Thus, the total mux output power is given by
the empirical formula, proved by mathematical induction is,

Pout(λi) =





|(λc − λi)| ×
(

n′

m

)
Pλi

|(λc − λi)| for λi 6= λc

1.5×
(

n′

m

)
Pλi

|(λc − λi + 1)| for λi = λc

(31)

Therefore,

Pout(λi) =





(
n′

m

)
Pλi for λi 6= λc

1.5×
(

n′

m

)
Pλi for λi = λc

(32)

where n′ is the number of copies of Pλi satisfying the phase match condition, ‘m’ the number of arrayed
waveguides, ‘λc’ AWG center wavelength, and ‘λi’ respresents each of the input wavelengths.

4. EXPERIMENTAL SETUP

The following section discusses the experimental set up used for the evaluation of AWG based multiplexer
models. It consists of laser sources, AWG based multiplexer and a power meter for the measurement of

Figure 9. Experimental setup.
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Figure 10. Comparative result (4 : 1 mux).

Figure 11. Comparative result (3 : 1 mux).

Figure 12. Comparative result (2 : 1 mux).

power output levels. The four independent laser sources are tuned for four different wavelengths 1510 nm,
1530 nm, 1550 nm and 1570 nm, respectively. Further, the experiments are repeated for various test cases
with different power levels using modulated laser outputs of around 1mW and 0.85mW, respectively.
A digital input of frequency of 2.4 MHz and 50% duty cycle is directly modulating the laser outputs.
The modeling of direct modulated lasers is not included within the scope of the present work. More
emphasis is given for the modeling of AWG based multiplexer. Similarly, experiments are repeated for
various multiplexer configurations such as 2 : 1, 3 : 1 and 4 : 1.

Figure 9 shows the experimental set up. The setup consists of sources which produces four different
wavelengths, a commercial AWG based mux and a power meter. Further, the output of mux is also
monitored on an Optical Spectral Analyzer (OSA) to obtain wavelength dependent power output.



Progress In Electromagnetics Research M, Vol. 35, 2014 95

5. RESULTS

Tables 1 and 2 show the results obtained during mathematical model analysis and corresponding
experimental results for similar test case input power levels. They also give results for various multiplexer
configurations. We can observe that the model results are comparable with experimental results.

Figures 10, 11 and 12 show the wavelength dependent power output plots at the output of the
multiplexer for various test cases. These power values are further used for the computation of total
power output.

Table 1. Test case results (1mW) I/P power for various mux configurations.

EXPERIMENTAL RESULTS MODEL RESULTS
TEST CASE 1 (4 : 1 MUX) TEST CASE 1 (4 : 1 MUX) TOLERENCE LEVEL 0.5

WAVELENGTH (nm) POWER (mW) WAVELENGTH (nm) POWER (mW)
1510 0.84 1510 0.89431
1530 0.8 1530 0.39683
1550 0.86 1550 0.875
1570 0.78 1570 0.4386

MUX OUTPUT 2.2 MUX OUTPUT 2.6047
TEST CASE 2 (3 : 1 MUX) TEST CASE 2 (3 : 1 MUX) 0.5

1510 0.84 1510 0.89431
1530 0.8 1530 0.87302
1550 0.86 1550 0.875

MUX OUTPUT 1.55 TOTAL POWER 2.6423
TEST CASE 3 (2 : 1 MUX) TEST CASE 3 (2 : 1 MUX)

1510 0.84 1510 0.89431
1530 0.8 1530 0.55556

MUX OUTPUT 1.09 TOTAL POWER 1.4499

Table 2. Test case results (2.45MHz modulated and 0.85 mW) I/P power for mux configurations.

EXPERIMENTAL RESULT (MOD WITH 2.45MHz) MODEL OUTPUT
WAVELENGTH (nm) POWER (mW)

1510 0.4 1510 0.35772
1530 0.4 1530 0.15873
1550 0.42 1550 0.3675
1570 0.38 1570 0.16667

MUX OUTPUT 1.09 MUX OUTPUT 1.0506
EXPERIMENTAL RESULT WITH 85% POWER MODEL OUTPUT

1510 0.64 1510 0.57236
1530 0.54 1530 0.21429
1550 0.67 1550 0.58625
1570 0.56 1570 0.24561

MUX OUTPUT 1.6 MUX OUTPUT 1.6185
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In the comparison of model and experimental results, it is observed that Equation (31) is comparable
to Equation (11) with n′ equal to ‘li’, and ‘ai’ is equal to ‘1/m’ for computing wavelength dependent
output power of wavelength ‘λi’ not equal to ‘λc’, where tolerance limits were taken as 0.5 dBm. For
wavelength λi = λc, ‘ai’ is equal to ‘1.5/m’. These power outputs were added together to get the net
multiplexer output.

6. CONCLUSION

This paper discusses a mathematical model developed for AWG based multiplexer and demultiplexer
based on trigonometric principles. The models are based on the assumption that these devices are
linear, and hence the principle of superposition is applied. During the evaluation process of the models,
the limitations of the geometrical model have been identified, and an empirical relation obtained from
the experimental observations. The empirical relation, which is an approximation to the geometrical
model, could compute the AWG power output with a tolerance of 0.5 dBm. Further, these results were
validated for various test cases with different input power levels and multiplexer configurations. Since
multiplexers play an important role in WDM networks, this proposed model can act as an aid in the
construction of optical network model. Thus, it can be used as a basic model for simplifying the analysis
of a complex optical WDM network having large number of passive optical components in series.
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