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Discharge Data by the Wavelet Transform

Carlo Petrarca* and Giovanni Lupò

Abstract—Partial Discharge (PD) measurements may be affected by external noise and disturbances
of various natures such as interference from broadcasting stations, stochastic noise, pulses from power
electronics, etc. Extracting PD pulses from such a noisy environment is therefore a crucial issue. This
paper presents a wavelet based technique for automatic noise rejection. The core of the paper is the use
of an improved methodological approach for the selection of a suitable wavelet, which aims at summing
up the benefits and overcoming some limitations of previous techniques. Firstly, a very wide set of
training signals is used for the identification of the decomposition level and for the calculation of suitable
performance parameters that identify each wavelet; then a Performance Fingerprint is introduced in
order to summarize the ability of a specific wavelet to reconstruct a partial discharge waveform, and a
distance criterion is used for the selection of the most suitable wavelet. Afterwards, useful information is
collected for the reconstruction of the PD signal, and finally, results on the application of the algorithm
for a set of numerical and experimental signals are presented.

1. INTRODUCTION

Partial discharge detection is a powerful non-destructive diagnostic tool, able to provide vital
information on the status of electrical equipment. In particular, it is able to identify the nature of those
defects in the insulation system which can lead to a premature failure of the electrical components [1].

PD detection involves the acquisition, storage and processing of a series of transient, irregular,
non-periodic electrical pulses, whose characteristics depend on the entity of the discharge phenomena,
on its site of origin and its detection point, on the frequency response of the detector, on the bandwidth
of the amplifier, etc. [2].

Generally, the measurements are carried out in shielded laboratories, with filtered power supplies
and under applied voltages which are generally higher than the normal operational voltage. In such
a controlled electromagnetic environment, for an expert operator, it is not difficult to ascertain the
presence of PD activity. When PD measurements are performed outside laboratories, noise and
interference can be severe under operating conditions: disturbances can derive from corona phenomena,
from communication systems, from power electronics, etc. In such cases PDs can be completely buried
in low Signal to Noise Ratio (SNR) signals.

In order to suppress such undesirable signals, some hardware solutions have been proposed, such
as detectors with limited bandwidth (< 500 kHz), but most noises still cannot be rejected; furthermore,
the use of narrower bandwidths is not recommended since the PD pulse resolution is strongly reduced
and misleading results can be obtained, especially when the repetition rate of the PD signals is high.
Balanced bridge arrangements have also been suggested in order to reject external noise, but they
require critical adjustments (i.e., the bridge balancing) or additional equipment.
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The rapid development of high-speed computers has made software-based rejection tools much
more attractive. They are post-processing tools which are mainly based on the knowledge about the
difference between the nature of PD signals and the nature of external noise. In particular, if rough
information is known about the characteristics of the signal to be extracted (i.e., bandwidth, waveform,
etc.), good results can be obtained. Traditionally, the unwanted signals have been suppressed using
filtering techniques based on the Fourier Transform (FT) or Short-Time Fourier Transform (STFT) [3, 4];
however, the non-periodical and transient nature of PD signals makes it more promising the use of a
filtering technique based on the Wavelet Transform (WT), which involves multiresolution decomposition
of measured data into wavelet coefficients, each having unique time and frequency information [5].

The authors already published results [6] on the application of a discrete version of the Wavelet
Transform, the so-called Discrete Wavelet Transform (DWT), for the analysis of UltraWide-Band
(UWB) PD current signals. They also published papers presenting the use of Wavelet Packet Transform
(WPT) [7], generalization of the DWT, for noise suppression and subsequent PD extraction [8–10]: their
analysis, however, was limited only to numerical signals. WPT has also been used recently for UWB
impulse radio signal denoising [11], although the authors do not comment on possible limitations and
drawback of the adopted technique. Satish and Nazneen [12] used the DWT for extracting PD pulses
buried in very high levels of noise and interferences and showed that the results obtained with the
proposed wavelet-based denoising technique were superior with respect to those obtained with different
digital filtering approaches, such as the FIR (Finite Impulse Response) method and the IIR (Infinite
Impulse Response)-notch filter method. In the paper they underlined the importance for best results of
an optimal choice of the mother wavelet and of the number of levels for decomposition-reconstruction
of the input signal, but they did not deal with such a topic.

In [13] three types of wavelet transform methods (i.e., Discrete Wavelet Transform, Wavelet Packet
Transform and Stationary Wavelet Transform) were compared when applied to simulated PD data, but
only the presence of white noise and of sinusoidal interference was taken into account. The authors
concluded their paper by asserting that the best trade-off between the denoising effect and the computing
time was DWT, thus explaining the great interest it had attracted. In [14] Ma et al. proposed a
methodology for comparing the performances of each wavelet. They used only two types of training
signals for testing the performance of each wavelet and the choice of the most suitable one was based
on an energy criterion and on the calculation of only one parameter, namely the correlation coefficient
between the original and the reconstructed pulse.

An improved methodology applied to narrow band PD detection was proposed by Zhou et al. [15];
it was founded on the knowledge of the frequency spectrum of the expected PD pulse, on the calculation
of the PD energy distribution after digital filtering and on hard thresholding for the choice of suitable
wavelet coefficients. In the paper the effectiveness of the filtering technique was evaluated only on one
type of simulated PD pulse corrupted by different levels of noise. Most of the reproduced noise signal
was unfortunately characterized by a significant frequency content outside the bandwidth of a typical
narrow band receiver, which means that the denoising performance of the method were not completely
clarified.

Good results were reported by Kyprianou et al. [16] by introducing the Wavelet Packet Transform
(WPT), but for a proper choice of the mother wavelet the authors considered PDs corrupted only by
different levels of white noise, thus not including the great variety of noise and disturbances affecting
partial discharge measurements. More recently Macedo et al. [18] used the cross correlation factor as a
unique performance parameter for the choice of an appropriate mother-wavelet, while in [17] Chang et
al. put in evidence that the possible reason for bad performances of the denoising techniques could be
ascribed to a limited set of training signals or to an inadequate selection of the performing parameters.

The aim of the present paper is to overcome some of the limitations of the methods illustrated
above by exploiting the main features of Discrete Wavelet Transform de-noising. In particular the
performance of each wavelet will be investigated with a set of a significant number of training signals,
representing typical PD pulses acquired with a conventional narrow band detector, having different
amplitudes, polarities, frequency contents, time-shift or time intervals between two successive pulses,
etc. Moreover, a much wider set of performance parameters will be considered for choosing the optimal
wavelet and afterwards a Performance Fingerprint will be defined as a compressed information on the
ability of a specific wavelet to reconstruct a partial discharge waveform. Finally a distance criterion will



Progress In Electromagnetics Research B, Vol. 58, 2014 207

be adopted for the choice of the most suitable wavelet for PD denoising.
The paper is organized as follows: after the present introduction, in Section 2 a brief description of

the Wavelet Transform is given; in the third section the improved methodology for wavelet selection is
presented; the fourth part is dedicated to the presentation of numerical and experimental results, while
in the last section the conclusions are given and further research directions are discussed.

2. A BRIEF INTRODUCTION TO WAVELET TRANSFORM

Wavelets (ondelettes in French, small waves in English) are a set of functions used to represent transient
phenomena that result from a dilation and shift of the original waveform [19]. The Wavelet Transform
(WT) is a mathematical tool, particularly designed to analyze transient, irregular and non-periodical
signals (i.e., partial discharge pulses). While the Fourier Transform (FT) decomposes the signal into
sine waves of various frequency, the Wavelet Transform breaks up the signal into shifted and scaled
versions of a mother wavelet. The Continuous Wavelet Transform (CWT) of a signal s(t) is linear
time-frequency transform expressed as:

CWT(a, b) =
1√
|a|

+∞∫

−∞
h

(
t− b

a

)
· s (t) · dt (1)

where h(t) is the mother wavelet, a the scale parameter, and b the shift operator. The scale parameter is
related to the reciprocal of frequency and the translation parameter stands for time. Many coefficients
are the result of such an operation; they are function of scale and position and depend on the waveshape
of the mother wavelet. The value of each wavelet coefficient represents the similarity between the
examined section of s(t) and the scaled and shifted mother wavelet. Thus, differently from the Fourier
Transform, which can give only frequency information, the Wavelet Transform can provide information
in time and frequency simultaneously.

However, calculating wavelet coefficients at every scale is a great amount of work and generates a
lot of data with consequent computational effort and redundancy. In order to overcome such drawbacks,
the Discrete Wavelet Transform (DWT) is introduced by choosing only a subset of scale and time shifts.
In particular, scales a and shifts b are evaluated as follows:

{
a = 2m

b = n2m (2)

with m, n integer values, which means that scales and positions are based on powers of two, thus
avoiding time consuming and eliminating redundancies and obtaining an efficient analysis with equal
accuracy [20].

Performing a DWT is equivalent to filtering the signal s(t) by two filters, a high pass filter HF (to
analyze the high frequency component Ds, called detail) and a low pass filter LF (to analyze the low
frequency component As, called approximation).

The two filters are quadrature mirror filters (QMF), which are half-band filters, whose spectrum is
symmetrical around the mid-point angular frequency π/2. Now, since the bandwidth of s(t) has been
reduced by a factor of two after filtering, the outcoming signal Ds and As can be sampled by a factor
of two without any aliasing, according to the Nyquist theorem.

The approximations and details may be extracted using a successive filtering scheme. In particular,
the original signal is passed through the two QMF to get two signals. The high-pass filter yields the first
level detail signal and the low-pass filter yields the first level approximation signal. In order to eliminate
redundancy, the two signals are downsampled by a factor of two. The filtering and downsampling can
be repeated on the first level approximation coefficients (the downsampled low-pass output) to yield the
second level approximation and detail coefficients (As2, Ds2 ). If one continues to filter and downsample
each successive approximation, the scale is increased by a factor of two at each level of analysis. A DWT
at level 1 yields the detail at the scale 21, a DWT at level 2 yields the detail at the scale 22, and so on
(Figure 1).

In the present paper, the Discrete Wavelet Transform is proposed as a tool for the processing of
signals acquired during on-site PD measurements. The idea underlying the de-noising technique is that,
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Figure 1. WT decomposition tree.

after the wavelet decomposition, the characteristics of the PD pulses and those of noise signals and
interferences can be easily distinguished, thus allowing the extraction of the signal of interest. In fact,
for a PD pulse coming from a conventional band detector, there is a specific frequency band in which the
PD waveform is located and such a characteristic could correspond to a specific node and to a specific
level in the decomposition tree, thus allowing the identification of the desired signal. In the following
section the criterion for the selection of the most suitable wavelet will be described.

3. WAVELET SELECTION

The choice of the mother wavelet is a crucial point. We started from a set of candidate wavelet families
already used by other authors [12, 13, 15, 17] such as Daubechies (db), Symlets (sym), Biorthogonal
(bio), Coiflets (coif); in particular, by taking into account wavelets of different orders, the performances
of a total number of 60 wavelets were compared.

In the present paper we propose a procedure summarized in five steps for the identification of the
Most Suitable Wavelet (MSW):

1) identification of the set T of training PD pulses;
2) selection of decomposition level Ld;
3) computation of performance parameters [p1, p2, p3, . . . , pi, . . .] of each wavelet;
4) implementation of distance criterion for selection of MSW;
5) thresholding of wavelet coefficients.

3.1. Set of Training PD Pulses

Partial Discharges are breakdown phenomena that do not completely bridge the distance between two
electrodes. Different types of PDs can be distinguished, such as internal discharges, surface discharges,
corona discharges etc. [21]. Every discharge type has its own development and behavior, depending
on the physical phenomenon that is taking place and on the surrounding boundary conditions. As a
consequence, the discharge impulses may have very different shapes and time behaviors [22].

Classical electrical detection of partial discharges makes use of RCL or RC pulse detectors of limited
bandwidth of about 100 to 500 kHz. In this case, discharges are displayed as short impulses whose shape
is independent of the physical process of the discharge and is determined only by the detection circuit
parameters [21]. As a consequence, we can define a “typical recorded PD signal” s(t) which appears as
a damped oscillatory narrow band pulse.

In the case of an RC detector with a limited bandwidth [40–400] kHz, as suggested by other
authors [12], it can be expressed as:

s (t) =
{

0 t < t0

A · e− t−t0
τ sin [2πf0 (t− t0)] t ≥ t0

(3)

where A is the amplitude of the pulse, f0 its frequency, τ the damping factor, and t0 the time instant of
pulse occurrence. Different PD pulse shapes were chosen as test-waveform in order to take into account
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the response of a great number of commercially available PD detectors: the damping factor τ was chosen
among 2, 5, and 10µs and the frequency f0 chosen among 150, 200 and 250 kHz, so creating a primary
test-set T1 of Nt1 = 9 different waveforms. Moreover, different sequences of such pulses were considered
(i.e., two or three pulses, pulses of different amplitudes, etc.) thus adding a secondary test-set T2 of
Nt2 = 36 cases to be used for the choice of the most suitable mother wavelet. The overall test-set
T = T1 ∪ T2 was thus composed of Nt = Nt1 + Nt2 = 45 waveforms.

A typical conventional waveform s(t), belonging to the primary test-set T1, is reported in Figure 2(a)
(f0 = 200 kHz, τ = 5µs, t0 = 30µs), while in Figure 2(b) an example of a signal belonging to test-set
T2 is shown (f0 = 150 kHz, τ = 10µs, t0 = 30µs). For a better readability of the figures, the time-scales
are different in Figure 2(a) and Figure 2(b), but we remark that in all examples the time-scale was set
at 1 ms and the sampling frequency fs was chosen equal to fs = 20 MHz.
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Figure 2. (a) PD waveform in test-set T1; (b) PD waveform in test-set T2.

3.2. Selection of the Decomposition Level

As a first step, for all the 60 candidate wavelets, each single PD pulse of test-set T = T1 ∪ T2 was
decomposed down to its maximum level, and the energy distribution of the signal was calculated in
each subsequence. Energy is allocated at different percentages in each approximation and detail node
of a specific level; the ideal condition is obtained when at the deepest decomposition level the energy is
contained in a unique node n∗: in such a case n∗ can be considered as peculiar of the PD pulse and only
such a node can be used for signal reconstruction by performing the Inverse Transform algorithm. Such
an ideal condition is never fulfilled, as in Figure 3, where the energy distribution in the approximation
node of 6th level as a function of the mother wavelets is shown; it is possible to notice that the percentage
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Figure 3. Energy content at approximation node of 6th level vs. mother wavelets.
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energy content (pec) is in many cases sensibly lower than 80%, which means that great part of energy
is lost as a consequence of filtering. Please, note that in Figure 3, for the sake of clarity, on the x-axis
only 30 wavelets have been selected.

Since level n. 5 is the lowest level in which, despite the previous successive filtering, almost all
energy of the signal is concentrated in a unique approximation node n∗, it was chosen as reference level
Ld for the decomposition, while the percentage energy content pec of the corresponding node was set
as the first performance parameter p1j associated to the j-th wavelet.

3.3. Computation of Performance Parameters

In order to assess the feature of the j-th wavelet, besides p1j , two further parameters were added:
a) the percentage cross correlation factor (pcc) between the original (S) and the signal (R)

reconstructed by using node n∗, which indicates the degree of similarity between S and R,

pcc =

N−1∑

i=0

(
R (i)− R̄

) (
S (i)− S̄

)

√√√√
N−1∑

i=0

(
R (i)− R̄

)2 (
S (i)− S̄

)2

∗ 100 (4)

where N is the length of the signal, R̄ the mean value of R, and S̄ the mean value of S. A value of pcc
= 100 means 100% shape similarity, while pcc = 0 means total asymmetry between the signals.

b) the percentage complementary error (pce) on the peak amplitude,

pce = 100−∆E% = 100−
∣∣∣∣
SM −RM

SM

∣∣∣∣ ∗ 100 (5)

where ∆E% is the percentage error on the maximum values, RM the maximum value of R, and SM the
maximum value of S. A value of pce = 100 means that the maximum value of the original signal has
been reproduced with no error. If a waveform contains k PD test-signals, the pce is calculated on each
of k peak amplitudes. We remark that the evaluation of pce is extremely important since in narrow
band detection systems the peak of the PD signal is an indirect measure of apparent charge [1].

Once fixed the j-th wavelet, the three performance parameters (pec, pcc, pce) defined above were
calculated for each of the 45 training waveforms in T , resulting in a set of M = 45× 3 = 135 variables
that describe the ability of the single wavelet to reproduce a partial discharge signal. Such a set of
parameters can be named as Performance Fingerprint (PF ), so recalling a term which is well known
in PD recognition and classification [23, 24]. In the next paragraph PF will be used as a discrimination
tool among the wavelets.

3.4. Distance Criterion

The Performance Fingerprint represents compressed information on the ability of a specific wavelet to
reconstruct a partial discharge waveform. We can define the Optimal Performance Fingerprint (OPF )
as a set of performance parameters op all equal to 100, which corresponds to a perfect reconstruction
for the original signal:

OPF : opi = 100 i = 1 : 135 (6)

OPF can be represented in a 135-dimensional parameter space.
The generic j-th PF, calculated by adopting the j-th wavelet, occupies a well-defined position in

such a multidimensional space; we can easily compare it to the information produced by other wavelets.
In fact, if we define the Euclidean distance dio between each PF and the optimal fingerprint OPF as:

dio =

√√√√
M=135∑

i=1

(pi − opi)
2 (7)



Progress In Electromagnetics Research B, Vol. 58, 2014 211

E
uc

lid
ea

n 
di

st
an

ce
 d

io
0

100

200

300

400

db
14

bi
6.

8
db

18
sy

12
db

07
co

03
sy

06
co

02
bi

2.
4

co
04

bi
4.

4
bi

5.
5

sy
17

db
04

db
03

db
13

co
05

bi
2.

2
sy

19
db

12
db

06
sy

11
bi

3.
9

db
09

bi
3.

3
bi

3.
1

db
02

co
01

bi
1.

5
sy

01

Figure 4. Euclidean distances di0 for different wavelets.
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Figure 5. The main steps of the adopted procedure.

the idea underlying the identification of the Most Suitable Wavelet (MSV ) is to evaluate and select
the wavelet whose Performance Fingerprint has the minimum distance from OPF. The results of the
calculation of the Euclidean distances are summarized in Figure 4 where, for better readability of the
image, only some of the wavelets are reported.

We can notice that the Performance Fingerprints of wavelets, such as sys01 and bior1.5, are
extremely far (di0 > 360) from the optimal OPF, while the Performance Fingerprint with the minimum
distance (di0 = 108) from OPF is obtained with the Daubechies wavelet db14, with a 5th level
decomposition. It means that the reconstruction of the original signal s(t) by db14 is the closest
to the perfect reconstruction. For such a reason, wavelet db14 was elected as Most Suitable Wavelet
(MSV ).

For the sake of clarity, in Figure 5 the main steps of the adopted procedure are summarized.
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3.5. Thresholding of Wavelet Coefficients

Among all the wavelet coefficients describing the PD waveform at approximation node n∗, only a few
of them carries significant information on the PD. Hard-thresholding can thus be employed, that is, if
a coefficient value is lower than a preset limit (defined by the thresholding rules), it is set to zero and
discarded in the Inverse Transform.

In order to select the threshold, all the coefficients calculated at node n∗ at level 5 were ordered in a
descending rule, from the highest to the lowest. Then, an Inverse Transform was performed by using the
first, and highest coefficient, and the signal Y1 was extracted; finally the parameters pcc and pce were
calculated, by comparing Y1 with the original signal S. The same steps were repeated by adding a new
coefficient each time: for example, at k -th step, k wavelet coefficients are used for the extraction of signal
Yk and the parameters are then calculated. It is possible to observe that by adding coefficients whose
value is lower than 0.05, improvements lower than 1% can be obtained in the performance parameters,
thus suggesting that a threshold σ = 0.05 can be set, without losing information on the waveform of
the PD signal.

An example of reconstruction by db14 and hard-thresholding is shown in Figure 6(a) and
Figure 6(b), in which the input PD test signals that were reconstructed are those depicted in Figure 2.

pcc  pce  pec  

94.1%  90.0%  88.7  

  pcc  pce (1st)  pce (2nd)  pce (3rd) pec  

99.4%  92.2%  97.5%  99.4%  85.3%  

(a) (b)

Figure 6. (a) Reconstruction of PD waveform in set T1; (b) in set T2 and corresponding performance
parameters.

Each figure is accompanied by a table reporting the calculated performance parameters. We
can notice that even in the case of a complex signal (Figure 6(b)), we can get a highly satisfactory
reconstruction.

The whole procedure of wavelet selection is completed in about 3 minutes by using a computer
equipped with a Core 2 Duo 2.8GHz processor and 2GB of RAM. It must be performed only once,
depending on the measurement setup. In particular, it can be easily adopted when using a narrow band
PD detection system which complies with IEC 60270 standard, since in this case the output signals have
predictable wave shape. We explicitly remark that the whole procedure must be repeated, by following
the same steps, if a PD detector with a different bandwidth has to be used, since a new suitable set T
of training pulse has to be considered.

4. PD PULSE EXTRACTION FROM NOISE

In order to prove the efficiency of the described method for wavelet selection, both numerical and
experimental tests were carried out, with one or more discharge pulses submerged by noise and external
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interferences.
In the numerical simulations the following steps were implemented: 1) the measured signal was

decomposed down to the 5th level by the wavelet db14 ; 2) the approximation node was selected; 3) only
the coefficients whose value is higher than the threshold σ = 0.05 were chosen; 4) Inverse Transform
was performed; 5) performance parameters were calculated.

4.1. Numerical Results

In the numerical simulations the external disturbances were all composed of white noise of zero mean,
and of typical interferences generated as amplitude modulated sine-waves of various frequency (162 kHz,
252 kHz, 548 kHz, 648 kHz, 765 kHz) with 40% modulation, and constant modulating frequency of
1 kHz [12]. All simulations refer to a typical time window of 1ms and a sampling frequency of 20 MHz.
In order to measure the extent of noiseness, the Signal to Noise Ratio SNR (dB) was used:

SNR (dB) = 10 ∗ log10

WS

Wn
(8)

where WS and Wn are the energy of PD signal and noise, respectively.
The following examples are a selection of test cases that try to put in evidence the efficiency of the

proposed method. For each case the calculated performance parameters are reported.

1) One PD
One normalized PD signal (τ = 10 µs, f0 = 150 kHz) (Figure 7(a)) submerged in external noise
(SNR −15 dB) (Figure 7(b)). The reconstructed PD signal (Figure 7(c)) is characterized by
pcc = 78.5% and pce = 94.5%.

(a)

(b)

(c)

Figure 7. (a) PD signal; (b) PD submerged by noise (SNR = −15 dB); (c) extracted PD.

It is possible to evaluate the efficiency of the denoising procedure by comparing the performance of
wavelet bior3.1 which, according to the sole energy criterion, can be selected as the most suitable
wavelet. In fact, at 5th level it has the highest percentage energy content pec = 97%. In this case,
the extraction of the PD signal from noise is characterized by pcc = 15.3% and pce = 59.4% which
certainly correspond to an unsatisfactory reconstruction of the original signal.

2) Two PDs of different amplitudes
Two PDs (τ = 10µs, f0 = 200 kHz) of different amplitudes (1 and 0.7, respectively), shifted in
time (∆t = 350 µs), (Figure 8(a)) are submerged in external noise (SNR −15 dB) (Figure 8(b)).
The reconstruction of the PD signals (Figure 8(c)) is characterized by pcc = 78.1% pce (1st pulse)
= 96.4%, pce (2nd pulse) = 95.2%.
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Figure 8. (a) Two PD signals; (b) PDs sub-
merged by noise (SNR = −15 dB); (c) extracted
PDs.
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Figure 9. (a) Three PD signals; (b) PDs sub-
merged by noise (SNR = −20 dB); (c) extracted
PDs.

3) Three PDs of different amplitudes
Three PDs (τ = 10µs, f0 = 250 kHz) of different amplitudes (1.0, 0.8, 0.6) and shifted in time
(Figure 9(a)) are hidden in external noise and interferences (SNR = −20 dB) (Figure 9(b)). The
restored pulses are characterized by pcc = 75%; pce (1st pulse) = 98%, pce (2nd pulse) = 89.6%,
pce (3rd pulse) = 66.7%, (Figure 9(c)).

By a careful analysis of all 45 test waveforms submerged by noise, it was found that the quality of
reconstruction was satisfactory concerning evaluation of the two first peaks, with an average value of
the performance parameters equal to pce (1st pulse) = 89.0% and pce (2nd pulse) = 87.2%. The worst
result was obtained with the evaluation of the peak of the third pulse, characterized by an average value
pce (3rd pulse) = 80.0%.

4.2. Experimental Results

Experimental tests were carried out in the High Voltage Laboratory “G. Savastano” of the University
of Naples Federico II by means of a Haefely TEAS 570 detector, using the direct method arrangement,
with a PD free coupling capacitor Cs = 100 pF and, as a test object, an HV bushing, with a capacitance
Cx ∼ 80 pF. The bandwidth of the detector was set at [40–400] kHz. Partial discharge signals detected
by TEAS 570 were acquired using a Tektronix TDS5032B digitizer at a sampling frequency fs = 20 MHz
in a time window of 1 ms. The whole procedure consisted of three successive steps.

As a first step, calibration pulses were injected at the terminals of the test object using an external
calibrator which gave the possibility to change the amplitude of the injected apparent charge and the
time interval between two consecutive pulses. Examples of the recorded calibration signals are shown
in Figure 10 in which, again, for better readability the time scales have been changed. Since the HV
laboratory is a controlled EM environment, the signal to noise ratio is sufficiently high (SNR > +15dB).

In the second step, the whole measuring setup was taken out from the laboratory and exposed to
external noise and interferences. Again, the calibration signals were injected at the test object terminals,
and the output from the detector was recorded.

In the third and last steps, PD pulses were extracted by wavelet transform using the db14. Typical
experimental results are shown in Figure 11(a) and Figure 11(b) in which, respectively, one pulse and
two consecutive pulses were reconstructed. The de-noising performances are quite satisfactory since after
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Figure 10. Experimental PD calibration signal waveforms.
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Figure 11. PD extraction in experimental tests. (a) One calibration pulse and (b) two calibration
pulses.

the de-noising process the PD magnitudes (that is the peak values of recorded signals) are characterized
by an average value pce = 80% while the correlation between the original and the extracted waveforms
is described by an average value pce = 42%.

Better performances can probably be obtained by selecting a deeper decomposition level with
respect to the 5th level reached in the present paper. In such a case, since the energy of the signal is
split in more than one node, a more suitable representation of PD waveforms could be given by the
Wavelet Packet Transform (WPT) which allows a more detailed analysis with respect to Discrete Wavelet
Transform (DWT), producing, for each generated node, an approximation and a detail subsequence.
In this sense, work is in progress towards a comparison between WT and WPT. Further activity is
directed towards the definition of the Performance Fingerprint, which could be improved by adding
new performance parameters, such as the Mean Square Error (mse), or by giving different weights
to those already defined. Last but not least, great effort will be dedicated to the exploitation of the
wide potentialities of wavelets in PD measurements as for in the case of Partial Discharges in winding
systems [25] which could be studied and identified with the help of a multiconductor transmission line
model [26, 27] in conjunction with the Wavelet Transform.
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5. CONCLUSIONS

An improved methodology was proposed for the selection of the best wavelet to be used for the extraction
of partial discharges from noise and disturbances that employ a traditional wide-band partial discharge
detector. It makes use of the Performance Fingerprint, a set mathematical operators that characterize
the ability of a specific wavelet to reconstruct a partial discharge waveform. A distance criterion is
then applied in order to select the most suitable wavelet. The performance of the applied technique
was evaluated both in numerical and experimental tests. Encouraging results have been obtained even
in extremely noisy environment. Work is in progress also to perform experimental tests on suitable
specimen, and in particular, on artificially created defects in a noisy environment. Results will be
compared with experimental data obtained in a screened laboratory in order to strictly verify the
effectiveness of the de-noising method.
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