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Integration of Leaky and Surface Waves in a 2D Gaussian Beam
Formalism for Antenna-Structure Coupling

Olivier Balosso1, 2, 3, *, Jerome Sokoloff 3, and Sylvain Bolioli1

Abstract—Gaussian beam techniques are efficient asymptotic methods for field radiation computation.
In these techniques, the initial field is first expanded on a chosen surface in elementary Gaussian beams
which can propagate and/or interact with surrounding structures. However, the expansion cannot
take into account surface and leaky waves propagation. In this paper, we propose an appropriate
hybridization method using surface equivalent currents to overcome this limitation. The equivalent
current formulation is written on grounded dielectric slab in spectral domain and can model surface
and leaky waves which propagate from the surface expansion. The hybridization is carried out on the
expansion surface, on which the distribution of elementary Gaussian beams and equivalent currents
must be chosen in a relevant way. We study the influence of hybridization parameters and define a set
of them leading to good results for general cases.

1. INTRODUCTION

High-frequency techniques are successfully applied to describe electromagnetic wave radiation. However,
as objects under consideration become large compared to the wavelength, rigorous approaches such as
the finite-element method or the method of moments become computer time and resource prohibitive.
By contrast, the efficiency of asymptotic methods such as geometrical optics and physical optics increases
with frequency. However they become ill-suited for complex cases because of the increasing number of
iterations. In these cases Gaussian Beam (GB) techniques could be efficient alternatives [1–10]. During
the last decade our team has worked on these techniques leading to original GB expansion [7, 8], closed
form expressions for GB reflection/refraction by curved multilayer dielectrics such as radomes [7, 8],
diffraction by metallic plate [9] or, more recently, GB interaction with dichroic surfaces [10]. However,
with our current GB decomposition method, we cannot close the decomposition domain near the
interface which holds the antenna. In this area, the field strongly interacts with the interface and
hence could excite Surface Waves (SW) and Leaky Waves (LW). Our GB method cannot model these
types of phenomena. Besides, in the context of microwave device miniaturization as well as the study of
the antenna-structure coupling, it becomes essential to model SW and LW excitation, as they take part
in coupling phenomena [11, 12]. Furthermore, the excitation of SW and LW by elementary current line
sources has been studied extensively [13–15] using the surface equivalent current theorem [16]. Therefore,
in this paper, we propose a method to hybridize the GB expansion and the surface equivalent current
expansion in order to model the excitation of SW and LW on a Grounded Dielectric Slab (GDS).

This paper is organized as follows. In Section 2, after a short presentation of the main
existing formulations leading to GB, we present the GB method and illustrate its use on a complex
electromagnetic problem. In Section 3, we study the Transverse Magnetic (TM) excitation of a GDS by
magnetic and electric current sources by extending the theory presented in [13, 14]. Then, we present
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in Section 4 the hybridization method we developed in order to extend the GB expansion to take into
account SW and LW on GDS. We present the method principle with its performances and define a
default parameter setting able to treat general cases. Finally, in Section 5, we discuss in which extent
finer settings can lead to further improved results.

An exp(+jωt) time dependence for electromagnetic fields is assumed and suppressed throughout
this paper. All this work is carried out in 2D (in the xOz plane) and all fields used are TM polarized.
However the transposition of this study to Transverse Electric (TE) cases is trivial [14]. Structures
studied here are GDS only; however the hybridization principle is the same for dielectric slabs or
multilayer structures [14, 17, 18].

2. GAUSSIAN BEAM METHOD

In this part, we present the GB method we use. We start by a short presentation of existing formulations
leading to GB. Then we describe the GB expansion method used. Finally we illustrate how we use this
method to solve a complex electromagnetic problem.

2.1. Gaussian Beam

A Gaussian Beam (GB) is a beam of electromagnetic radiation which transverse electromagnetic field
distribution is well approximated by gaussian functions. It was first defined for laser sources in optics
using the paraxial approximation [19]. This approximation allows to obtain a closed form expression on
the GB, but requires that the field is only weakly divergent (i.e., less than 20◦) along its main propagation
direction. Moreover, in the far field region, the paraxial approximation produces an important phase
error [1, 7]. To overcome these limitations, other expressions were found to define the GB. When
representing the GB’s field at its waist in terms of angular plane wave spectrum and then propagating
this spectrum, another closed form expression is found using the far field approximation [7]. The GB
can also be defined as a complex source point [1]. This latter expression results exactly from Maxwell’s
equations and thus does not require any approximation; however it can only describe circular GB. Lately
our team has developed a GB, called “conformal GB” [8]. It is defined by the currents at its waist,
allowing this GB to be launched by highly curved surfaces.

Figure 1 shows the field amplitude of a 2D GB propagating along the z axis. W0 is the GB’s
waist(width at z = 0) and θx, defines the divergence angle as follows:

θx =
2

k ·W0
(1)

with k the wave number in the propagating medium. The field amplitude at x = W0 is 8.7 dB under
the amplitude at x = 0. We define the parameter α which allows us to describe the so-called useful
width of the GB. This parameter will be used in Section 4.

(a) (b)

Figure 1. Field amplitude of a GB propagating along the z axis: (a) transverse cut in its waist plane
(z = 0); (b) longitudinal cut in the xOz plane, in dB.
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Besides, closed form expressions exist for the interaction of paraxial GBs with complex structures [7–
10]. Thus, in this article, all GBs used are purposely chosen in order to respect the paraxial
approximation (θx < 20◦). However, as the aim of this paper is to study the accuracy of our hybridization
technique, we use complex source point GBs in order to obtain results free from any error linked to
paraxial approximation.

2.2. Gaussian Beam Expansion

An electromagnetic field can be expressed in terms of a set of GBs shifted both in position and in
propagation direction [7]. Figure 2 illustrates this decomposition for a TM field. We assume that the
initial field Hi on the expansion surface is known and regular. Moreover, the size and the curvature
radius of the expansion surface must be large compared to the wavelength. Each elementary beam
has its own reference (On, ezn), where On stands for the nth-beam center and ezn for the nth-beam
propagation axis. The characteristics of each elementary beam have to be determined. The beam
centers On are regularly distributed on the expansion surface from a mesh of step dGB . Contrary to the
Gabor expansion, only one beam is defined on each beam center. In order to suit the local properties
of the electromagnetic fields well, each elementary beam propagation axis is oriented along the local
Poynting vector (ezn = Pn/|Pn|).

The expansion coefficients are computed by a point matching technique: on the mesh points, we
project the equality between the initial magnetic field and the beam expansion. The solution of this
linear system gives the GB coefficients.

The characteristics of the elementary beam set only depend on the choice of two related parameters:
the waist W0 and the mesh step dGB . It has been shown in [7] that a good compromise between accuracy
and computation time can be obtained with dGB varying between λ and 2λ and W0 = dGB/0.9.

2.3. Gaussian Beam Method Applied to a Complex Electromagnetic Problem

GBs expansion, propagation, interaction and recombination are jointly used to solve complex
electromagnetic problems [7–10]. Figure 3 presents an antenna placed on a Grounded Dielectric
Slab (GDS) of thickness d and surrounded by air. It radiates an electromagnetic field in a complex
environment. In order to solve the total field with the GB method we proceed as follows: the radiated
field is expanded on surface Sexp in terms of a few elementary GBs (red lines), each one of them
propagates through free space (grey arrows) until it meets an object. Then we solve analytically the
reflected, transmitted or diffracted field, depending on the object met [7–10]. When the object is
met under moderate incidence angle and presents a smooth and regular surface, we can assume that
an incident GB gives a reflected GB and a transmitted GB which can, in their turn, propagate and
interact. Otherwise, reflected and transmitted fields are analytically computed on the object’s interface
and expanded again in GB. When all interactions are treated, the total resulting field is obtained by
combining the fields of all final GBs. However a non null field near the interface cannot be expanded
in terms of GBs. To close the decomposition domain, the GB expansion must be hybridized with an

Figure 2. Beam expansion principle. Figure 3. Operating principle for electromagnetic
computation using GB field expansion.
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appropriate method. In this paper, we chose to use the Surface Equivalent Current (SEC) technique [16]
to do so.

3. COMPLEX WAVE EXCITATION ON A GROUNDED DIELECTRIC SLAB BY A
CURRENT LINE SOURCE

We aim at expanding the 2D TM electromagnetic field close to the interface in the media 1 and 2 in
terms of Surface Equivalent Currents (SEC). The configuration, which can be seen in the zoom area
in Figure 3, is depicted in detail on Figure 4. In this area, the total field is a combination of, on the
one hand, the field directly radiated by the currents and, on the other hand, its interactions with the
Grounded Dielectric Slab (GDS) in terms of reflected field, Surface Wave and Leaky Wave. Thus, in this
part, we study excitation of a GDS structure by magnetic and electric elementary currents respectively.

Figure 4 presents a 2D GDS infinite along ez and invariant along the y direction. This structure is
excited by an elementary current line source s placed at z = 0 and x = xs. We are willing to compute
the magnetic field H at any point M located in medium 1 or 2.

Figure 4. Excitation of a grounded dielectric slab by a current line source. Medium 1 is air, medium 2
is a dielectric (ε2) and the slab thickness is d.

3.1. Ground Dielectric Slab’s Excitation by a Magnetic Current Source

In this part, the source s in Figure 4 is a magnetic current line source oriented along ey. The field
can therefore only be TM with the magnetic field H oriented along ey. This case has been studied
extensively by Tamir in [13, 14] and Collins in [15]. H is derived from the Helmholtz equation in
presence of a magnetic source M located at z = 0 and x = xs.(∇2 + k2

)
H(x, z) = j · ωε ·Mδ(x− xS)δ(z) (2)

with k and ε the wave number and the permittivity, respectively, in the considered medium; j defined
by j2 = −1 and δ denoting the Dirac delta function.

The spectral representation of H is calculated by applying the boundary conditions at x = −d,
x = 0, x = xs and x → ∞. The spectral integration takes place on the real kz axis, with kz the
z component of the wave vector k. The initial integration contour is then deformed in the Steepest
Decent Path (SDP). A pole p of the spectral reflection or transmission coefficient may be captured
during the spectral integration along the SDP, giving rise to a residue contribution HP. The total field
is then given by H = HS + ΣHP, with HS resulting from the spectral integration along the SDP and
ΣHP being the contribution of the captured poles. The spectral integration is achieved numerically or
analytically, respectively, depending on whether M is near or far (k1 · r À 1, [13]) from the source s.
Resulting expressions for HS and HP can be found in [14].

3.2. Ground Dielectric Slab’s Excitation by an Electric Current Source

In order to excite a TM field with an electric current line source, the associated current J must belong
to the xOz plan. The Helmholtz equation then writes:(∇2 + k2

)
H(x, z) = −∇× Jδ(x− xS)δ(z) (3)
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When writing (3) in terms of plane wave angular spectrum, we obtain Equation (4) representing the
problem’s source dependency.

∂Ĥ
∂x

∣∣∣∣∣
x=xS+

=
∂Ĥ
∂x

∣∣∣∣∣
x=xS−

+ j · (kzJx − kxJz) · ey (at x = xS) (4)

Ĥ being the Fourier transform of H and Jx and Jz being respectively x and z components of J. xS+

and xS− refer respectively to points placed just above and just under the line source. The rest of the
problem’s resolution depends exclusively on the boundary conditions. These latter are the same as
in Section 3.1. Thus, expressions of the magnetic field H excited by J are obtained by replacing, in
expressions of H excited by M (see Section 3.1), the term “ωεM” by the term “(kzJx − kxJz) · ey”.

It is worth noting that, at any point, the electric field E is deduced from the magnetic field H.

4. HYBRIDIZATION METHOD

In this part, we present the hybrid expansion method we have developed. We first explain the general
principle. Next, we deal with the choice of the optimum GB’s waist and the limits of the two expansion
domains. We then present the way we calculate expansion coefficients. In Section 4.4, we introduce the
test case to assess our method. Finally we present our hybrid expansion method’s performances and
propose a default parameter setting giving good results for general cases.

4.1. Method Principle

Figure 5 presents an antenna radiating a TM field Hrad in media 1 and 2. We suppose that this
antenna excites Surface Waves (SW) and/or Leaky Waves (LW) on the interface between media 1 and
2 [11, 12]. We assume that the initial field Hi on the expansion surface Sexp is known. We want to
expand Hi in terms of Gaussian Beams (GB). However, near the interface, the field due to SW and LW
strongly interacts with the interface. We cannot model this interaction with GB. Thus, in this area, we
expand Hi in Surface Equivalent Currents (SEC) instead. Figure 5 presents the two resulting expansion
domains. In our method we start by defining the limits of these two expansion domains (Section 4.2).
Then we calculate the expansion coefficients for GBs (red) and SECs (blue dots) (Section 4.3). Finally
we compute the recombined field at any point M by adding the contributions of both the expansion
GBs and the expansion SECs.

Figure 5. Field expansion, around an antenna, using both Surface Equivalent Currents (blue dots)
and Gaussian Beams (red lines).
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4.2. Expansion Domains Limits

The method used in order to choose the limits between the two expansion domains is the same on both
sides of Ox axis. In the present case, we therefore limit our study to the area corresponding to z > 0.
The initial field Hi is expanded on Sexp in term of N GBs of center On (n running from 1 to N) and
M SECs placed at Qm (m running from 1 to M), as shown on Figure 6(a). In first approach we choose
to set Q1 = ON . We will discuss later the benefit of freeing this constraint.

The choice of the expansion domain limits results from the following constraint: no elementary
GB must interact with the Grounded Dielectric Slab (GDS). Actually this constraint applies only to
GBN , the last GB. Hence, we have to determine, on the one hand, ON the center of GBN located on
the expansion surface Sexp and, on the other hand, W0 the waist of the elementary GBs. The problem
comes down to simple geometrical considerations, when assuming Sexp circular with a radius rexp greater
than the far field distance of the antenna. By this way, ON is expressed by its cylindrical coordinates
(rexp, θN ), and PN, the Poynting’s vector of the initial field at ON , can be assumed normal to Sexp

(Figure 6(b)).

(b)(a)

Figure 6. (a) Field expansion, around a current-line excited interface, using both SECs and GBs;
(b) zoom on the positioning of ON , last GB center, according to α ·W0, θN , rexp and θx.

The above-mentioned constraint leads ON and W0 to satisfy two criteria:

- At Sexp level, the amplitude of GBN must be minimal on the GDS (Figure 6(b)). This amplitude
can be adjusted by the parameter α (see Section 2.1). We will discuss later how the expansion
accuracy depends on this parameter. This criterion is written as follows:

tan θN =
rexp

αW0
(5)

- The far field of GBN must not illuminate the GDS. As PN is oriented according to θN , the
asymptotic spot limit of GBN is oriented according to θN +θx. We remind that θx is the divergence
angle of the elementary GBs. Finally, as the GDS matches an angle of π/2, θN satisfies the following
requirement:

θN =
π

2
− θx (6)

which leads to
tan θN = 1/ tan θx (7)

In order to satisfy the paraxial approximation, we need θx < 20◦, leading to tan(θx) ≈ θx. Introducing
this simplification and (1) in Equation (5), and applying to (7), we find:

W 2
0 =

2 · rexp

α · k (8)
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From (8), we can derive On coordinates. We observe that W0 and ON depend on rexp, radius of Sexp, and
the parameter α. The main impact of the latter on the method will be studied in detail in Section 4.5.
In order to assess the influence of rexp, we set in the following figures α = 1.5 which stands for a suitable
value.

On Figure 7(a), we plot W0 as a function of rexp. As expected, W0 grows with rexp. However this
growth is not homothetic according to rexp: W0/λ0 grows only from 1.1 to 2.1 when rexp/λ0 grows from
5 to 20. From W0 we can deduce the number of expansion GBs used, which is plotted on Figure 7(b).
This number increases with rexp due to the not homothetic growth of W0 according to rexp. This
leads the proportion of expansion surface covered by expansion GBs to increase with rexp. We show on
Figure 7(c) this fill rate which represents the surface covered by expansion GBs compared to the whole
surface of expansion Sexp. In fact the maximization of this fill rate is one of our objectives as it leads
to favor GB expansion over SEC expansion.

(a) (b) (c)

Figure 7. (a) W0; (b) number of expansion GBs; (c) proportion of Sexp covered by the GB expansion,
as a function of rexp, for α = 1.5 and dGB = 0.9 ·W0.

4.3. Expansion Coefficients Calculation

Expansion limits chosen in Section 4.2, leads to the position of ON and the value of W0 (Figure 6(b)).
We then deduce the position of points On, where the GB expansion will be carried out. The mesh step
dGB is chosen equal to 0.9 ·W0 as defined in [7]. We also deduce the positions of points Qm, where the
SEC expansion will be carried out. Here we choose a classical mesh step of λ/8, with λ the free space
wave length in the considered medium.

We start by expanding in N GBs the initial field on points On. We then have to expand the rest of
the field in M SECs. However, this latest step requires some precautions. Indeed, the abrupt truncation
of the GB expansion leads to an error on the SEC expansion. On Qm points, the magnetic and electric
field error caused by GB expansion can be written respectively:

HErrGB(Qm) =
N∑

n=1
HGBn(Qm)

EErrGB(Qm) =
N∑

n=1
EGBn(Qm)

(9)

This error involves a wrong radiated field which can be canceled by subtracting HErrGB and EErrGB to
the initial field on each point Qm. When applying this correction, the electric and magnetic elementary
currents, J and M respectively, corresponding to the SEC expansion, are defined as follows:

J(Qm) = n×
(
Hi(Qm)−

N∑
n=1

HGBn(Qm)
)

M(Qm) = −n×
(
Ei(Qm)−

N∑
n=1

EGBn(Qm)
) (10)

n being the unity vector normal to Sexp at Qm.
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4.4. Test Configuration

For convenience, we choose to use as reference, a field calculated by our SEC radiating code. This field
results from the excitation of a GDS by a SEC and must be representative of any radiated field. The
GDS is chosen in order to obtain a radiated field Hrad combination of a free space radiation and a SW
radiation (Figure 8(a)). The free space radiation is given by 2 Leaky Waves radiating at 45◦ and 80◦.
The SW radiation is given by 6 surface modes. This behavior is obtained at 10 GHz for a slab of height
d = 6 cm [20]. The excitation is a magnetic current line source (red point) oriented and infinite along
ey and placed at x = −d as in [13]. Medium 1 is air and the structure is infinite along ez and invariant
along the y direction. With this excitation, only TM modes (with the magnetic field oriented along
ey) can propagate and the resulting field is symmetric according to ex axis [13]. Figure 8(a) shows a
cartography, in the xOz plane, of the field radiated by this structure. Maximums of radiation are not
for θ = 0 as they correspond to LW radiation. The SW field presents some ripples along the interface.
This is due to positive and destructive interactions between all 6 surface modes which do not have the
same phase speeds along ez [13, 20]. Figure 8(b) shows a radiation pattern at r = 40 ·λ0. We can notice
that the maximum far field is caused by the SW at 90◦.

(a) (b)

Figure 8. (a) Test configuration and radiated field in the xOz plane; (b) radiation pattern at r = 40·λ0

(plain circle in Figure (a)); the field’s amplitude is normalized by the maximum of |Hrad| on the circle
r = r0, which defines the expansion surface used in Section 4.5.

Here the far field distance r0 is approximately obtained from the half power beamwidth (θHP = 32.5◦
according to Figure 8(b)) and confirmed by the circular shape of the front phase of the radiated field.
By this means we find r0 ≈ 7 · λ0 = 21 cm.

4.5. Hybrid Expansion Method Performances and Parameter Setting

Here we present the performances of our hybrid expansion method as a function of rexp, α and robs

(observation distance).
In order to evaluate the recombination error on the observation points, we define two error criteria

computed on Sobs, a circular surface of radius robs:

σall =

∑
sobs

‖Hrad −Hrec‖2

∑
sobs

‖Hrad‖2 , σCSZ =

∑
sobsCSZ

‖Hrad −Hrec‖2

∑
sobsCSZ

‖Hrad‖2 (11)

with Hrad being the reference field, and Hrec being the recombined field. σall characterizes the
recombination error on Sobs. σCSZ characterizes the recombination error on the portion of Sobs close to
the interface (i.e., containing 99% of the SWs energy, see Figure 6(b)). In our study we consider results
good enough when σ is below −30 dB.
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(b) (c)

Figure 9. Amplitude (in dB) of (a) reference field and (b) recombined field, normalized by max(|Hi|),
the maximum field amplitude on the expansion surface; (c) recombination relative error. rexp = r0 =
7 · λ0, α = 1.5 and dGB = 0.9 ·W0.

(a) (b)

Figure 10. (a) Expansion error in GB; (b) initial and recombined fields at robs = 100 · r0. Amplitude
normalization by max(|Hi|). rexp = r0, α = 1.5 and dGB = 0.9 ·W0.

We first study the case where rexp = r0 = 7 · λ0 (see Section 4.4), α = 1.5 and dGB = 0.9 · W0.
With this set of parameters W0 = 1.14 · λ and so θN , the angle of the last GB center, values 77◦. The
expanding surface Sexp is the dashed circle drawn in Figure 8(a) and Figure 9(a). Figures 9(a) and 9(b)
show the amplitude of initial and recombined fields respectively, in the xOz plane. We can see that the
recombined field well matches the initial field. The recombination relative error plotted in Figure 9(c)
corroborates this observation. This relative error is normalized by |Hrad| at each point. Thus large
errors obtained at angles near θ = 89◦ are not of significant importance as they are related to very
low values of |Hrad|. On Figure 9(b) are drawn the real Poynting vectors of the expansion GBs (blue
arrows). In this case 19 GBs are needed for the GB expansion on Sexp.

Figure 10(a) shows the GB expansion error (red line). This expansion error is only considered for
angles θ < θN = 77◦ on Sexp. In fact, for angles θ ≥ θN on Sexp, all errors linked to expansion GBs are
cancelled by the SEC expansion (see Section 4.3). Here the GB expansion error gives the error criteria
σall (rexp) = −36.1 dB. Figure 10(b) presents results at very far distance (robs = 100 · r0): the reference
field (blue), the recombined field using only GBs (red) and the recombined field using both GBs and
SECs radiation (green). We observe that the recombined field using only expanded GBs radiation gives
acceptable errors for angles between 0 and 50◦. In contrast, the recombine field using both GBs and
SECs radiation give acceptable errors for all angles θ on Sobs. The corresponding error criteria is σall

(100 · r0) = −30.5 dB.
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(a) (b)

Figure 11. (a) Initial and recombined fields at robs = 2 · r0; (b) zoom for grazing angles. Amplitude
normalization by max(|Hi|). rexp = r0, α = 1.5 and dGB = 0.9 ·W0.

(a) (b)

Figure 12. σall as a function (a) of rexp (for α = 1.5) or (b) of α (for rexp = r0). robs = rexp, 2 · r0 or
100 · r0 and dGB = 0.9 ·W0.

Figure 11(a) presents results near from Sexp (robs = 2 · r0). The Close Surface Zone (CSZ) is
highlighted in light blue and magnified in Figure 11(b). Here this zone is of height λ0. The recombined
field using only expanded GBs radiation gives acceptable errors for angles between 0 and 60◦. When
using both GBs and SECs radiation acceptable errors are obtained for all angles θ on Sobs. The
corresponding error criteria is σall (2 · r0) = −34.2 dB. Close to the surface we observe that the SW is
well approximated, leading to an error σCSZ (2 · r0) = −32.4 dB. In this area one also notes that the
field due to expansion GBs is very weak.

The results presented above were obtained for rexp = r0, α = 1.5 and dGB = 0.9 ·W0. We are now
going to study the influence of parameters rexp and α.

On Figure 12(a), we set α = 1.5 and plot the evolution of the error criteria σall as a function of rexp,
the expansion surface radius, for the three observation distances used previously: robs = rexp (green),
2 · r0 (blue) and 100 · r0 (dashed red). We do not plot σCSZ , as it always shows acceptable errors (i.e.,
σCSZ < −30 dB). We see that the recombining errors decrease with increasing rexp. When rexp ≥ r0

all errors are acceptable (i.e., less than −30 dB). Hence for Figure 12(b), we set rexp = r0 which stands
for the worst acceptable case. In Figure 12(b), we show the influence of α on the recombining error for
the 3 same observation distances. It is worth noting that we seek to favor the GB expansion over the
SEC one. According to Equation (8) this leads to minimize α. From this figure, we first see that the
GB expansion is accurate enough for any α. We also observe that σall (2 · r0) and σall (100 · r0) tend
to decrease when α increases. In fact, for large values of α, the amplitude of the GBN on the GDS is
weak at the expansion surface’s level. This leads to less expansion errors, particularly on the expansion
of SW and LW. For α = 1.5 all recombining errors are acceptable. The setting α = 1.5 then stands for
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a good compromise.
Precedent results show that good performances can be obtained for rexp = r0, α = 1.5 and

dGB = 0.9 ·W0. Moreover, applying this parameter setting to other structures also gives good results.

5. DISCUSSION

Precedent results show that good performances can be obtained for rexp = r0, α = 1.5 and dGB = 0.9·W0.
Therefore we can consider that it is a good default parameter setting. Moreover, finer settings enable
us to further improve results:

1. We saw that further increasing rexp leads both to favor the GB expansion over the SEC one
(Section 4.2) and to better recombining accuracy (Section 4.5). However increasing rexp leads to
an increase of the mesh volume needed to compute the electromagnetic field on Sexp, which is not
suitable. Therefore, the choice of rexp results from a compromise.

2. The GB waist W0 obtained from (8) is often overestimated. In fact, due to the radiation of LW
out of the surface [13], the angle (ex, PN) is smaller than θN . For better results we can modify (8)
to take into account the real orientation on the Poynting vector PN.

3. In this study, we set dGB = 0.9 ·W0. However using dGB < 0.9 ·W0 improves the quality of the GB
expansion thus leading to better overall results.

4. As a first approach we used Q1 = ON in this study. By extending the area of the SEC expansion
(i.e., angle (ex, OQ1) becomes smaller than θN ) a part of the GB expansion error will be cancelled
by the SEC expansion. This will lead to less recombining errors. However this solution gives rise
to a lot more SECs to compute, which expands the computing time.

6. CONCLUSION

In this paper, we proposed a method for extending the conventional Gaussian Beam (GB) expansion
in order to take into account surface wave and leaky wave excitation and propagation on Grounded
Dielectric Slab (GDS), by hybridizing both the GB and the Surface Equivalent Current (SEC)
expansions. To do so, we first extended the theory presented in [13, 14] in order to apply, in TM,
the SEC theorem to a GDS structure. Then, using geometric criteria, we obtained a closed form
formula to determine W0, the waist of the expansion GBs. We subsequently deduced directly the limits
of the two expansion domains. We showed that increasing the expansion surface radius leads to favor
GB expansion over SEC expansion. Good performances were obtained for our hybrid expansion method
when applied to a representative radiated field, composed of both free space radiation and surface wave
radiation. We found a generic set of parameters which gives good results for all tested cases. Finally
we discussed the influence of additional parameters enabling further performance improvements.

Interestingly, this work can easily be transposed to more complex configurations such as multilayer
and metamaterial structures [17, 18]. Furthermore, as the GDS is never infinite, the SW diffraction by
the truncated GDS must also be taken into account [21]. Finally, we can also consider the extension of
this method to 3D cases and to curved surfaces.
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