
Progress In Electromagnetics Research M, Vol. 36, 57–66, 2014

A Fast and Robust Scene Matching Method for Navigation

Sanhai Ren1, * and Wenge Chang2

Abstract—The selection of matching method is critical to the scene matching navigation system,
as it determines the accuracy of navigation. A coarse-to-fine matching method, which combines the
area-based and feature-based matching method, is presented to meet the requirements of navigation,
including the real-time performance, the sub-pixel accuracy and the robustness. In the coarse matching
stage, the real-time performance is achieved by a pyramid multi-resolution technique, and the robustness
is improved by multi-scale circular template fusion. In the precise matching stage, an improved SIFT
method is introduced to calculate the matching position and the rotation angle. To validate the method,
some experiments are completed. The results show that the proposed method can achieve the sub-pixel
matching accuracy and improve the angle accuracy to 0.1◦.

1. INTRODUCTION

The INS/SAR navigation system, which makes use of synthetic aperture radar (SAR) technology,
not only has all-weather and all-day capabilities, but also increases the capabilities of interference
suppression. The navigation system matches a real-time image and a geo-referenced image (i.e., reference
image) to obtain the position update information, and corrects the cumulated error of Inertial Navigation
System (INS) by fusing the updated information with current INS estimates [1]. As one of the key
components of the system, scene matching method must satisfy three requirements: the real-time
performance, the sub-pixel accuracy and the robustness.

Based on the gray-scale of each pixel, conventional matching methods focus on the correlation
between reference image and real-time image. The major steps of these methods are sliding one image
over another, and calculating the degree of similarity at each pixel. The computation time of these
methods is too long to navigation, since the methods demand searching over a whole image. Moreover,
they are sensitive to image rotation and scaling change, and can only achieve pixel-level accuracy.

Tremendous research attentions have been attracted to overcome the drawbacks of traditional
methods. Some of these methods are aiming at speeding up the matching process [2–4], while some
others are aiming at improving the robustness [5, 6]. Most existing drawbacks have been extensively
solved subjected to given backgrounds, however, these methods have not reached a point that can be
easily adopted into a practical system and expected to perform reliably well on various backgrounds.

More recently, the methods underpinned by local descriptors, i.e., Scale Invariant Feature Transform
(SIFT), have been employed in image matching widely [7–9]. This approach is regarded as one of
the robust feature-based matching methods against the rotation, scaling, and illumination change.
Mikolajczyk and Schmid [10] evaluated the performances of various local descriptors, and found that
SIFT outperforms other descriptors for feature matching. However, the computation time will sharply
increase when it is applied in images of large size. Moreover, this method is proposed for optical
image matching, and issues may arise when it is used in SAR image matching. For instance, the SIFT
keypoints extracted from SAR image pairs might be too sparse to calculate transformation parameters
and the ratio of false matches will increase greatly.
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In the SAR scene matching navigation system, enough features must be covered by a real-time
image to ensure a correct matching, which results in a large size of both the real-time image and the
reference image. Furthermore, the real-time image and the reference image may be acquired from
different incidence angles, at different times and with different resolutions. Therefore, it is impossible
for traditional methods to fulfill the real-time performance and robustness simultaneously. In this
article, we present a fast and robust matching method for navigation. It combines the techniques of
pyramid multi-resolution decomposition and multi-scale circular template fusion to achieve the real-
time performance and the robustness. Following that, a set of accurate tie-points are detected by an
improved SIFT method and used to calculate the position error and the yawing error, which achieves
the sub-pixel accuracy.

This article is organized as follows. An overview of the proposed matching method is presented
in Section 2. The coarse matching method is described in Section 3, which mainly deals with the fast
matching scheme, the matching template selection, and the construction of multi-scale template. The
problems and solutions when SIFT matching method is used in SAR image are discussed in Section 4.
In order to validate the method, plentiful experiments are completed in Section 5. Finally, the related
conclusions are given in Section 6.

2. THE OVERVIEW

An overview of the proposed method is demonstrated in Figure 1, where the arrowhead of solid line
represents the flow of coarse matching, and the arrowhead of dashed line represents the flow of precise
matching.

At the start of the method, the real-time image and reference image are both decomposed into
N − 1 levels. At each level, the matching position is acquired via the technique of multi-scale circular
template fusion. The matching position in the original image is called the coarse matching position,
based on which a sub-reference image with the same size of the real-time image can be intercepted from
the reference image.

Then, SIFT features in the real-time image and sub-reference image are extracted via an improved
SIFT method. The best candidate match for each key-point in the real-time image is found by identifying
its nearest neighbor in the database of key-points from the sub-reference image, where the nearest
neighbor is defined as the key-point with minimum Euclidean distance for the descriptor vectors [8].
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Figure 1. The flow chart of the proposed method, where R-T image is the real-time image, R-F image
is the reference image.
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In the end, a set of accurate tie-points are acquired from an improved SIFT method, and used for
calculating the position error and the yawing error.

3. THE COARSE MATCHING METHOD

3.1. The Fast Matching Scheme

In order to speed up the matching method, a wavelet-based pyramid multi-resolution technique and a
coarse-to-fine search strategy is employed, which improves the search efficiency greatly.

The constructed pyramid is demonstrated in Figure 2. L0-A and L0-B are the primal reference
image and real-time image, while L1-A, L1-B and L2-A, L2-B are the corresponding 1-level and 2-level
wavelet transform. After wavelet transform, a high resolution image can be decomposed into four parts:
one low frequency sub-band (LL) and three high frequency sub-bands (LH, HL, HH). The low frequency
part will be decomposed further, and iteratively as required. The translation sensitivity of wavelet-based
image matching was investigated in [11]. The results show that the low frequency sub-band image of
wavelet decomposition is better than the high frequency sub-band in the insensitivity to translation.
Hence, a better matching effect based on low frequency sub-band can be obtained.

The match starts from the LL sub-band (i.e., LL2 in the L2-A and the L2-B of Figure 2) of the
top level Discrete Wavelet Transform (DWT), and then iteratively for sub-bands on each level going
down, till the best match position in the corresponding search spaces is found. At the top level of
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DWT, the search is performed exhaustively over the whole search space. At the next level of DWT,
only [2Tm − R, 2Tm + R] is selected as the search space, where Tm is the search result of translation
offset in the previous step, and R is a positive constant representing the search range.

3.2. The Robust Matching Scheme

In the practical application, we find that the matching method based on gray-scale and correlation is
not only sensitive to image rotation, but also sensitive to scaling change. Therefore, some methods
based on invariant moments are introduced to overcome it [12]. However, these moment-based methods
lose their functions here, since the wavelet transform used in our method will change the distribution
of gray-level.

Some matching methods decrease the sensitivity to scaling change by extracting features in the
scale space, and achieve satisfactory results [7–9]. Therefore, a new method is presented to decrease
the sensitivity to rotation and scaling change in this article, using the fusion of multi-scale circular
template. For the fusion strategy, the Dempster-Shafer (D-S) evidence theory is employed [13].

3.2.1. The Fusion Strategy Based on D-S Evidence Theory

D-S evidence theory, a statistical data fusion classification method, has the advantage of presenting
and dealing with uncertain information. Knowledge from multiple information sources about events
(called propositions) is combined by Dempster’s rule to reduce the interval of uncertainty, and find the
intersection or conjunction of the propositions, as well as the associated probability.

The detailed definitions of the basic concepts of D-S evidence, such as the frame of discernment,
Basic Probability Assignment (BPA), Basic Probability Number (BPN), focal element, Belief Function
(Bel) and Plausibility Function (Pl) can be found in [14]. Suppose Bel1 and Bel2 are two Bels of
the same frame of discernment X, m1 and m2 are the corresponding probability assignment function,
A1, A2, . . . , Ak and B1, B2, . . . , Bl are focal elements. Then the BPA (m(A)) of focal element A can
be calculated by (1).

m (A) =





∑
Ai∩Bj=A

m1 (Ai) m2 (Bj)

1− ∑
Ai∩Bj=∅

m1 (Ai) m2 (Bj)
, ∀A ⊆ X,A 6= ∅

0, A = ∅

(1)

where ∅ is empty set.
In the scene matching, there are only two elements in the frame of discernment: the matching

element (M) and the mismatching element (N). Therefore, the frame of discernment is X = {M,N}.
For each element in the output sequence, if the Bel based on proposition 1 is m1(M), then its Pl can be
calculated by m1(X) = 1−m1(M). Similarly, the m2(M) and m2(X) can be got. Thus, the associated
probability based on both of the proposition 1 and the proposition 2 is

m (M) = m1 (M) m2 (M) + m1 (M) m2 (X) + m1 (X) m2 (M) (2)

According to the D-S evidence theory, the Bel of each element should be known in order to fulfill the
fusion. The correlation coefficient, which denotes the degree of similarity between the real-time image
and the corresponding sub-reference image, can be considered as the Bel. If the correlation coefficient is
ρ1(i, j) based on one template, and ρ2(i, j) based on another template, then the associated correlation
coefficient ρ(i, j) can be calculated as

ρ (i, j) = 1− (1− ρ1 (i, j)) (1− ρ2 (i, j)) (3)

3.2.2. Construction of Multi-Scale Circular Template

The key of the method is to construct the multi-scale circular templates. Generally, the matching
accuracy will be higher if the scaling ratio of multi-scale template is more similar to that of the image
pair. However, the ratio is always unknown in the practical application. If too many multi-scale
templates are constructed to approach the real value, the storage and computation loads will rise



Progress In Electromagnetics Research M, Vol. 36, 2014 61

0.7 0.8 0.9 1 1.1 1.2 1.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the scaling

 

 

multi-scale template

fixed template

th
e 

co
rr

el
at

io
n 

co
ef

fic
ie

nt

Figure 3. The relationship between scaling and
correlation coefficient.
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sharply. Luckily, the resolutions of image pairs are known, hence the ratio of resolutions is taken as the
approximate ratio of scaling in this article.

Suppose the size of the primal real-time image is Mr ×Nr, and the scaling ratio is sca . If sca < 1,
the real-time image at each level of the pyramid is up-sampled, which results in an enlarged image with
size of fix (Mr/sca) × fix (Nr/sca), where fix(·) represents rounding the elements toward zero. Then, a
new real-time image with size of Mr ×Nr is constructed by selecting the medial parts of the enlarged
image, and the corresponding circular template can be constructed. In this situation, the size of the
constructed template is the same as the fixed template.

Otherwise, if sca > 1, the real-time image at each level of the pyramid is down-sampled, and a
zoomed-out image with size of fix (Mr/sca)× fix(Nr/sca) is acquired. For each sub-reference image, a
new sub-reference image with the size of fix (Mr/sca)×fix (Nr/sca) is constructed by selecting its medial
parts, and the corresponding circular template can be constructed. Thus, the size of the constructed
template is smaller than that of the fixed template.

In the end, the correlation coefficient of the fixed template and the multi-scale template are
calculated respectively, and then combined based on (3).

An experiment is completed to demonstrate the insensitivity to scaling change of multi-scale circular
template, as in Section 3.2. The results are shown in Figure 3, from which we can get that the matching
method can decrease the sensitivity to scaling change after the fusion of multi-scale circular template.
In other words, the method increases its adaptability to geometric distortions.

4. THE PRECISE MATCHING METHOD

Based on the coarse matching position, we can get a sub-reference image which has the same size as
the real-time image, as illustrated in Figure 4. In order to estimate the rotation angle and matching
position accurately, a set of tie-points between real-time image and sub-reference image are needed. In
this article, a kind of SIFT-based detector is selected as the point detector. The speediness methods of
SIFT, such as integral image [14] and Principal Component Analysis (PCA) methods [15] are not taken
into account, since the size of sub-reference image is much smaller than that of the original reference
image. The stress is just laid on the problems and solutions when SIFT is used in SAR images.

4.1. Limitations of SIFT Used in SAR Images

SIFT detects local extrema in DOG scale space, making it robust against additive noise. However,
noise in SAR image follows multiplicative noise model, and cannot be mitigated by DOG processing.
For instance, for the given image pair in Figure 5(a) and Figure 5(b), the original SIFT achieves only
4 matches, which are not sufficient for parameter calculation, because at least 3–4 times of the least
matches (2 matches) are needed for reliability.

SIFT assigns a 128-element feature vector to each key-point as its descriptor. For each key-point
in the real-time image, the Euclidean distance between it and all key-points in the reference image is
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Figure 5. Example image pairs. (a) The SAR image of Ku band. (b) The SAR image of L band.
(c) The transformed image from (a), where the scale factor is 0.7 and rotation angle is 4◦.

calculated firstly, and then the tie-point is selected by judging whether the Euclidean distance of the
closest neighbor to that of the second-closest neighbor is less than a threshold [8]. This is very effective
for optical image, but not for SAR image. For example, there are 40 false matches out of 110 matches in
Figure 5(b) and Figure 5(c), where 12 of these false matches have a scale ratio (defined in Formula (5))
less than 0.59 or greater than 0.805, and 35 of these false matches have a rotation difference (defined
in Formula (6)) less than 2◦ or lager than 6◦, which are beyond the ranges for scale ratio and rotation
differences as defined in the step 4 of Section 4.3.

Therefore, when SIFT is used in SAR image, it might be not able to detect enough tie-points, or
the ratio of false matches to total matches is too high.

4.2. Previously Proposed Solutions

The methods to eliminate false matches are exploited in two independent studies [16, 17]. Both of these
methods use an eliminate-after-matching approach, hence they intend to reduce false matches in the
SIFT output. Yi et al. [16] form a histogram of scale difference and define a window around the peak
of this histogram. The matches with scale difference outside this window are rejected. A limitation in
the method is that only images pairs with approximately the same scale are considered. Bastanlar et
al. [17] make an improvement on the method proposed in [16]. They preprocess image pairs using scale
ratio to adjust their scales, and then eliminate false matches as [16] does. Compared with the method
proposed in [16], the method in [17] can not only eliminate false matches, but also increase the number
of correct matches. However, the computation time is too long to be adopted in the navigation system.
Moreover, both of them are proposed for optical image, and the performance will decrease when used
in SAR image.

4.3. The Proposed Solution

According to the characters of SIFT, the SAR image pairs are preprocessed to transform the noise
model, and matched by SIFT. Then, the false matches are eliminated by using the dominate scale ratio
and rotation difference, from which a significant improvement on SIFT matching can be achieved.

If we use Y to denote the SAR image amplitude, and X is the speckle-free value of the magnitude
of the electric field of the backscattered signal, then Y is related to X by the multiplicative model
Y = F · X. For a single-look image, the normalized fading random variable F obeys a Rayleigh
distribution [18].

In optical image, Y is related to X by an additive model Y = F + X, and F follows the Gaussian
distribution. In order to make SIFT more suitable for SAR images, logarithmic transformation is
employed to convert the multiplicative noise model to an additive noise model.

After a natural logarithmic transformation, SAR images can be converted into

ln (Y ) = ln (F ) + ln (X) = F̂ + X̂ (4)

where F̂ follows the double exponential or Fisher-Tipper distribution.
It has been established that as the number of SAR looks increase, the speckle random variable

approaches a Gaussian distribution. In [18], a distance between cumulative distributions is computed
to measure the deviation of the log-transformed speckle from Gaussianity. It is clearly demonstrated
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that for amplitude image, the log-transformed speckle noise is already statistically very close to the
Gaussian distribution. A conclusion was drawn that the Gaussian approximation is relatively good
when L ≥ 3.

Consequently, the noise in the log-transformed SAR image can be considered as additive noise,
and its Probability Density Function (PDF) will be more similar to Gaussian distribution with the
increasing number of SAR looks. One issue related to the logarithmic transformation arises from the
fact that the mean of the log-transformed speckle noise is not zero, whereas a significant set of techniques
assume Gaussian white noise with zero mean. Therefore, we should subtract the mean value from the
log-transformed image to make the noise with zero mean.

Each key-point detected by SIFT is described by a vector (xi, yi, σi, θi). Elements of the vector
denote location (xi, yi), scale σi and orientation θi. The definition of scale ratio (SR) and rotation
difference (RD) of key-point pair P1(x1i, y1i, σ1i, θ1i) and P2(x2i, y2i, σ2i, θ2i) are:

SRi (P1, P2) = σ1i/σ2i i = 1, 2, . . . , k (5)
RDi (P1, P2) = θ1i − θ2i i = 1, 2, . . . , k (6)

where k is the number of correct matches.
For correct matches, SR and RD should be similar or equal to the real values, as the SIFT scale

space ratio and rotation difference reveal the scale ratio and rotation difference of the features between
the images. Therefore, the matches with large SR and RD deviation from the real value should be
eliminated.

In order to get the approximate scale ratio and rotation difference, histograms of SR and RD are
formed respectively. Then the peak and two values closest to it of each histogram are gotten. Finally,
a parabola is fit to the three histogram values to interpolate the peak position for better accuracy.

The improved SIFT-based matching method contains five steps, summarized as follows:

Step 1: Preprocess the image pairs using a logarithmic transformation to convert the noise model
from a multiplicative model to an additive model.
Step 2: Perform SIFT matching on the preprocessed image pairs, and plot histograms of SR and
RD of tie-points.
Step 3: Extract the peaks of each histogram, and take them as the approximate scale ratio Ps and
rotation difference Pr of the images to be matched. Then, take the Ps and Pr as the real value of
the scale ratio and rotation difference of the matches.
Step 4: Eliminate the false matches whose SR are beyond the scope [0.8×Ps, 1.2×Ps], or RD are
beyond the scope [Pr−2◦, Pr +2◦], where the scopes are acquired from statistical experiments [16].
Step 5: Calculate the translation and rotation angle between the real-time image and the reference
image through the least-squares solution.

5. EXPERIMENTAL ANALYSIS

5.1. Create Image Pairs and Solve Transformation Parameters

A large number of image pairs are required to perform simulation experiments on computer. If image
pairs already exist, serial segments of real-time images could be produced directly from them. However,
sometimes there are not enough image pairs available but only a single image. Thus segments of real-
time images can be created by cutting casually from the reference image with some artificial distortions.
An example of such simulation is shown in Figure 6.

An affine transformation is adopted to form distortions of the sub-images intercepted from reference
image. The affine transformation from a reference image point [xi, yi] to a real-time image point [xo, yo]
can be expressed as: [

xo

yo

]
= S

[
cos θ − sin θ
sin θ cos θ

] [
xi

yi

]
+

[
tx
ty

]
(7)

where the model translation is [tx, ty] and the affine rotation and scaling are represented by θ and S.
Then, the values of pixels can be calculated by bilinear interpolation.
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Figure 6. Example of created image pairs. (a) The reference image. (b)∼(e) The 128×128 pixel images
cut from (a), from which the real-time image will be simulated with some distortions. (f)∼(i) The
simulation segments of real-time image from (d), where (f) is the image zoomed out by 10%, (g) is the
image zoomed in by 20%, (h) is the image rotated by 8◦, (i) is the image zoom out by 10%, rotated by
5◦, and added noise with variance 2.

Suppose there are k tie-points, then (7) can be rewritten to gather the unknown variables into a
column vector: 



xo1

yo1
...

xok

yok




=




1 0 xi1 −yi1

0 1 yi1 xi1
...

...
...

...
1 0 xik −yik

0 1 yik xik







tx
ty

s cos θ
s sin θ


 (8)

where k is the number of correct matches. At least 2 matches are needed to provide a solution. Generally,
in order to improve the accuracy, at least 3–4 times of the least matches (6–8 matches) are needed.

Let A =




xo1

yo1
...

xok

yok




, H =




1 0 xi1 −yi1

0 1 yi1 xi1
...

...
...

...
1 0 xik −yik

0 1 yik xik




, P =




tx
ty

s cos θ
s sin θ


, then we can rewrite (8) as

A = H ·P (9)

Then, the unknown variables can be determined by the least-squares solution.

P =
[
HTH

]−1
HTA (10)

The translation [tx, ty] can be obtained directly, and the rotation angle can be calculated by solving
the following equation.

θ = tan−1 (P (4)/P (3)) (11)

5.2. Experimental Analysis

In the statistical experiments, the results are shown by experimental indices. The matching probability,
matching error and matching time are taken as capability indices in this article [19].
1) Matching probability (Pa): the ratio of correct matching times (Nc) and total matching times (Na)

Pa = Nc/Na (12)
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2) Matching error (σ): the mean average of distance between calculated value and theoretic value.

σ =
Nc∑

i=1

εi

/
Nc (13)

3) Matching time (T ): the median time of a matching algorithm completing once account.

T =
Nc∑

i=1

ti

/
Nc (14)

Figure 6(a) (512× 512 pixels) is a selected reference image. In order to simulate real-time images,
blocks of sub-images with 128×128 pixels are intercepted casually from it, as shown in Figures 6(b)–(e).
Then, distortions and speckle noise are added. Figures 6(f)–(i) show some examples of simulative real-
time images. The statistical results of the method and other matching methods are shown in Table 1,
where the matching with error less than 3 pixels is considered as a correct match. The angle accuracy
is the mean angle error between the calculated value and the real one.

All the methods are implemented in MATLAB on a PC with Intel Pentium 4/2.4 GHz processor
and 1 GB memory. From the data in Table 1, we can get that the performance of the proposed
method is perfect both in single distortion and combined distortion (zoom in by 10%, rotated by
5◦, and added noise with variance 2), and achieves a sub-pixel matching accuracy without increasing
the matching time. Compared with the matching methods of fixed rectangular template [20] and the
original SIFT-based matching method [21], evaluation results show that the multi-resolution technique
shortens the computation time, the method of multi-scale circular template fusion improves the matching
performance, and the improved SIFT enables a sub-pixel matching accuracy.

Table 1. The statistical results.

Distortion Zoom out 
(20%) 

Zoom in 
(20%) 

Rotation 
(7 °)

Combined 
distortion  

SAR 
scene 

matching 
method 

Coarse 
matching 

Matching probability 0.98 0.99 1 0.98

Matching error (pixel) 1.9265 1.5335 1.825 2.125

Time (s) 0.754 0.821 0.524 0.339

Precise 
matching 

Matching 
error 

Position (pixel) 0.3785 0.1825 0.1985 0.4859
Angle (°) 0.101 0.127 0.021 0.152

Time (s) 0.279 0.288 0.271 0.261

Matching by 
rectangular template 

Matching probability 0.90 0.92 0.48 0.25

Matching error (pixel) 2.85 2.56 2.39 2.984

Time (s) 1.483 1.334 1.728 1.438

SIFT-based 
Matching method 

Matching probability 0.56 0.59 0.56 0.52
Matching

error 

Position (pixel) 2.92 2.85 2.64 2.862
Angle (°) 0.15 0.105 0.12 0.08

Time (s) 5.45 5.52 5.24 5.86

Result
Index 

o

o

o

6. CONCLUSION

A fast and robust method for SAR scene matching is presented in this article. Critical techniques
include the pyramid multi-resolution decomposition, the multi-scale circular template fusion, the two-
stage implementation of image matching, and the improved SIFT-based matching. The pyramid multi-
resolution technique and two-stage image matching strategy significantly improves the computational
efficiency. The multi-scale circular template fusion and the improved SIFT-based matching prevent
geometric distortions from diminishing the accuracy of image matching. The overall position accuracy
is achieved at about 0.5 pixels and angle accuracy is 0.1◦. This is appropriate for SAR scene matching
navigation system.
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