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Three-Dimensional Analytical Model for an Axial-Field
Magnetic Coupling

Bastien Dolisy*, Thierry Lubin, Smail Mezani, and Jean Lévêque

Abstract—In this paper, we propose an analytical method for modeling a permanent magnets axial
field magnetic coupling. The three-dimensional model takes into account the radial fringing effects
of the coupler. The analytical solution requires resolving the Laplace equation in low permeability
subdomains. The magnetic field calculation allows the determination of global quantities like axial
force and torque. 3D finite element computations as well as measurements validate the proposed model.

1. INTRODUCTION

Magnetic couplings are used to transmit torque from a prime mover to its load without mechanical
contact. This is useful in applications requiring hermetic isolation between two rotary parts. In
addition, the absence of mechanical contact eliminates matter’s wear. This synchronous type coupling
also provides intrinsic protection against overloads.
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Figure 1. Structure of a magnetic coupling (p = 6).

The studied magnetic coupling (Figure 1) is composed of two identical rotors equipped with axially
magnetized permanent magnets (PMs). The PMs are glued on an iron yoke to form a north-south
alternating polarity. The two rotors are separated by an air gap. The torque is created when the
magnetic fields due to the two rotors are shifted by an angle ϕ, called the load angle.

The aim of this paper is to develop an exact 3D analytical model which allows the computation of
the magnetic field distribution, the axial force and the torque.

In the literature, there are two types of analytical modeling for magnetic actuator:
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- 3D Modeling is based on Amperien model using Biot-Savart law or on Coulombian model using
charge surfaces [1–16]. These methods can be used only in free space without ferromagnetic
material. To take into account the magnetic yoke, the method of images is used.

- Fourier analysis based on the resolution of Maxwell’s equations by the method of separation of
variables [17–24]. This method assumes an infinite permeability of the ferromagnetic materials
so iron faces appear as homogeneous boundary conditions. Periodicities can also be taken into
account. Analytical modeling based on Fourier method is widely used. Most of the computations
are done in 2D so neglecting edge effects [19, 20]. To consider 3D effects in a 2D model, a multi-slice
approach can be used so better results can be obtained [21, 22]. Three-dimensional models [23, 24]
are also developed for electrical machines analysis but the slotting effects are taken into account
using the Carter coefficient.

In this paper, we present a 3D analytical approach based on the resolution of Maxwell’s equations.
The 3D model takes into account the edges effects. The analytical model is validated through 3D FE
computations and experiments.

2. PROBLEM DESCRIPTION AND ASSUMPTIONS

The magnetic coupling is only composed of permanent magnets, ferromagnetic yokes and air. Hence, a
magnetic scalar formulation is used. The magnetic field ~H and the scalar potential V are related by

~H = −−−→grad(V ) (1)

In the different media, the flux density is

In the air: ~B = µ0 · ~H (2)

In the magnet: ~B = µ0 · µr ·
(

~H + ~M
)

(3)

where µ0 and µr are the vacuum permeability and the relative permeability of the magnets and ~M is
the magnetization.

When cylindrical coordinates are use, the solutions arising from the resolution of the PDE contain
Bessel’s functions. This leads to some numerical difficulties and a lack of accuracy since only few
harmonics can be used. These problems decrease the reliability of the design tool. A linearization
assumption at the mean radius (Figure 2) is used here to overcome the problems encountered using
cylindrical coordinates. This assumption is valid if the curvature effects are ignored. Of course, this is
true for most electromechanical devices because the air gap thickness is usually much lower than the
other dimensions of the system. This issue will be discussed in Section 4.2.
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Figure 2. Linearization at the mean radius.
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Figure 3. Anti-periodic conditions in the system.
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Figure 4. Resolution domain in the (x, z) plan.

Figure 3 shows the studied domain in the xy plan together with the adopted periodicity conditions.
Only one pole is considered with anti-periodic boundary conditions along x. The anti-periodicity along
the y axis is a fictitious one adopted to facilitate the computation. By setting Dy À lay, this condition
is equivalent to a more physical condition which is By = 0 at y = ±Dy.

The permeability of ferromagnetic parts (yokes) is considered infinite (µr À 1). Hence, at the
interface between the iron and the air, we impose the orthogonality of the flux lines by

~n ∧ ~H = 0 (4)

where n is the outward normal to the considered surface.
The permeability of the permanent magnets (NdFeB) is considered equal to that of air (µr = 1).
The smooth geometry of the coupling (no slotting effects) allows us to calculate only the field

created by one rotor (the magnets on the other rotor are switched off). The field due to the second
rotor is then deduced from the computed solution which is shifted by the angle ϕ. The total field is
obtained by superposing the two solutions.

Figure 4 shows the whole domain of resolution taking into account all the assumptions and the
equations to solve.

Domain I (0 ≤ z ≤ h) corresponds to the first rotor magnet region whose magnetization is noted
~M .

Domain II (h ≤ z ≤ ht) is an air region composed of the airgap and the second rotor magnet whose
magnetization is set to zero.

The geometrical parameters gathered from Figure 2 and Figure 4, are:

2 ·Dx: Length along the x-axis,
2 ·Dy: Length along the y-axis,
2 · lax: Length of the magnet along the x-axis,
2 · lay: Length of the magnet along the y-axis,
h: Height of the magnet,
ht: Total height of the system.

3. MAGNETIC FIELD CALCULATION

The method of separation of variables is used to solve the PDEs in the two studied subdomains.

3.1. Domain I (0 ≤ z ≤ h)

In the domain I, we have to solve the following equation

∂2VI

∂x2
+

∂2VI

∂y2
+

∂2VI

∂z2
= div

(
~M

)
for

{−Dx ≤ x ≤ Dx

−Dy ≤ y ≤ Dy
(5)
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The magnetization vector ~M has only a component in the z-direction ( ~M = Mz(x, y) ·~uz). In this case,
the divergence term is zero so (5) reduces to a Laplace equation

∂2VI

∂x2
+

∂2VI

∂y2
+

∂2VI

∂z2
= 0 (6)

The anti-periodic boundary conditions at x = ±Dx and y = ±Dy lead to

VI (x = Dx) = −V I(x = −Dx)
VI (y = Dy) = −V I(y = −Dy)

(7)

By using the method of separation of variables, the solution of (6) is

VI (x, y, z) =
∞∑

n=1

∞∑

m=1

[
AI · ek·z + BI · e−k·z

]
× (CI · cos (wn · x) + DI · sin (wn · x))

× (EI · cos (wm · y) + FI · sin (wm · y))

with wn =
n · π
Dx

; wm =
m · π
Dy

; k =
√

w2
n + w2

m

(8)

where the coefficients AI , BI , CI , DI , EI and FI are the constants to be determined for each harmonic
orders (n and m).

Because of the symmetries along x and y, the axial component of the flux density Bz is zero at
x = ±Dx and y = ±Dy.

Bz

∣∣
x=±Dx&y=±Dy = 0 (9)

Then, the solution given by (8) simplifies to

VI (x, y, z) =
∞∑

n=1

∞∑

m=1

[
AI · ek·z + BI · e−k·z

]
× cos (wn · x) · cos (wm · y) (10)

3.2. Domain II (h ≤ z ≤ ht)

The Laplace equation has to be solved in this air domain

∂2VII

∂x2
+

∂2VII

∂y2
+

∂2VII

∂z2
= 0 for

{−Dx ≤ x ≤ Dx

−Dy ≤ y ≤ Dy
(11)

Because of the symmetries described above, the solution of (11) reduces to

VII (x, y, z) =
∞∑

n=1

∞∑

m=1

[
AII · ek·z + BII · e−k·z

]
× cos (wn · x) · cos (wm · y) (12)

where the coefficients AII and BII are constants to be determined for each harmonic orders n and m.

3.3. Determination of AI , BI , AII and BII

These coefficients are obtained using the interface and boundary conditions. The solutions given by (10)
and (12) require the determination of 4×N×M unknowns, where N and M are the number of harmonics
used to solve this problem. For this purpose, the following conditions are used:

3.3.1. Boundary Condition in Domain I at z = 0

We replace (1) into (4) to obtain:

Hx = − ∂VI

∂x

∣∣∣∣
z=0

= 0

Hy = − ∂VI

∂y

∣∣∣∣
z=0

= 0
(13)
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These conditions state that the tangential magnetic field components are zero at z = 0.
The development of these equations gives us N×M equations linking the coefficients in the domain I.

AI + BI = 0 (14)

3.3.2. Boundary Conditions in Domain II at z = ht

The conditions are the same as in (13), so we can deduce N ×M equations linking the coefficients of
the domain II.

AII e
k·ht + BII e

−k·ht = 0 (15)

3.3.3. Interface Conditions between Domains I and II (z = h)

Domains I and II have the same magnetic permeability (µr = 1), so the normal induction (Bz) and the
tangential magnetic field (Hx and Hy) of the domain I and II will be equal at z = h.

BIz |z=h = BIIz |z=h

HIx |z=h = HIIx |z=h

HIy |z=h = HIIy |z=h

(16)

Substituting (1), (2) and (3) into (16), yields to the following equations:

−∂VI

∂x
= −∂VII

∂x

−∂VI

∂y
= −∂VII

∂y

−∂VI

∂z
+ Mz = −∂VII

∂z

(17)

Mz is obtained by expanding the magnetization into a double Fourier series along the x and y-directions
in the domain I (Figure 5). The magnetization is expressed as

Mz (x, y) =
∞∑

n=1

∞∑

m=1

M · cos (wn · x) · cos (wm · y)

with M =
16 ·Br

µ0 · n ·m · π2
× sin (wn · lax) · sin(wm · lay)

(18)

Br is the remanent flux density of the permanent magnets.
Finally, by replacing (10), (12) and (18) in (16), we obtain the 2×N ×M missing equations.

AI · ek·ha + BI · e−k·ha −AII · ek·ha −BII · e−k·ha = 0

k ·AI · ek·ha − k ·BI · e−k·ha − k ·AII · ek·ha + k ·BII · e−k·ha = M
(19)
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Figure 5. Magnetization Mz as a function of x and y.
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The coefficients AI , BI , AII and BII are calculated by solving, for each pair of harmonics n and m, an
algebraic system of linear equations arising from (14), (15) and (19).

The presented methodology concerns the determination of the solution due to a magnet in one rotor
(the magnetization of the magnets on the second rotor is set to zero). The solution due to the second
rotor magnets is obtained in the same way. Finally, the complete solution is obtained by superposing the
two results. If one notes ~B1 the flux density due to the magnets on the first rotor, the flux density ~B2 due
to the magnets on the second rotor with the spatial offset Xi = Rmean × ϕ, is ~B2(x, y, z) = ~B1(x′, y, z′)
with x′ = x−Xi; z′ = −(z − ht).

Then, the overall solution is obtained by superposition as

~B (x, y, z) = ~B1 (x, y, z) + ~B2 (x, y, z) (20)

4. RESULTS AND DISCUSSIONS

In this section, we compare the results issued from the 3D analytical model to those obtained from a finite
element analysis using COMSOL Multiphysics R©. The results are also compared to some measurements.

4.1. Validation of the Linearized Model

The geometrical parameters of the linearized coupling are given in Table 1. Figure 6 shows the magnetic
flux densities Bx, By and Bz along the x-direction in the middle of the air gap (z = ht/2) and y = 0
with a magnet offset Xi = Dx. The analytical and the numerical results are in very good agreement.

Figure 7 shows the electromagnetic static forces vs. Xi applied to one rotor pole. These forces
are derived from the integration of the Maxwell stress tensor on a surface in the middle of the air gap.
Unlike the Fx force, the axial force (Fz) has an non nil average value due to the attraction of the iron
yokes.

It is important to note that the computation time of the analytical model for one position of the
magnet is about 1 millisecond whereas the numerical calculation (3D mesh and resolution) takes several
minutes.

4.2. Curvature Effects

As stated in the introduction of this paper, the linearized model ignores the curvature effects. Hence,
we have to analyze the error introduced by the linearized model when evaluating the performances of
a cylindrical axial coupling, for a given air gap, this error depends on the radial excursion (Rout −Rin)
defined in Figure 1 and on the mean pole pitch which is equal to (Rout + Rin)π/2p.

Table 1. Dimension of the linearized magnetic coupling.

Parameter Description Unit Value
2 ·Dx Length of the domain along x mm 100

2 ·Dy = 8 ·Dx Length of the domain along y mm 400
2 · lax Length of the magnet along the x-axis mm 80
2 · lay Length of the magnet along the y-axis mm 80

h Height of the magnet mm 15
e Thickness of the air gap mm 5

ht = 2h + e Total height of the domain along z-axis mm 35
Br Remanent flux density of permanent magnets T 1.2
N Number of harmonics along the x-axis - 30
M Number of harmonics along the y-axis - 30
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Figure 6. Flux density distribution under 1 pole in the middle of the air-gap (z = ht/2) at y = lx/2:
(a) z component, (b) x component and (c) y component.
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Figure 7. (a) Static forces Fx and (b) axial force Fz.

To analyze the influence of these parameters, we introduce a dimensionless number λ which allows
comparing the pole pitch and the radial extrusion

λ = p · 1− β

1 + β
with β =

Rin

Rout
(21)

Two computations are performed: the first one evaluates, by 3D FEM, the torque of the cylindrical
coupling and the second one uses the analytical model to calculate the torque of the linearized cylindrical
coupling. For a magnet height h = 10 mm, we vary Rout, Rin and p for two values of air gap (e = 5 mm
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and 10 mm) in the following intervals:

Rout = [0.1 m to 0.3 m] with a step of 0.1 m (three values);
Rin = [0.2×Rout to 0.8×Rout] with a step of 0.1×Rout(seven values);

p = [2 to 8] with a step of 1 (seven values);

This corresponds to 294 combinations.
Figure 8 shows the relative difference between the torque evaluations for different values of λ. It

can be seen that the error is less than 4% for an airgap of 5 mm. As expected, this error rises to 6%
when the airgap value is 10 mm. This demonstrates the ability of the analytical model to accurately
evaluate the torque. Hence, the developed model can be used as an efficient tool for quickly sizing
cylindrical magnetic couplings.

4.3. Experimental Checking

In this section, we compare the analytical results and some measurements carried out on a constructed
magnetic coupling [19]. The dimensions of the magnetic coupling are given in Table 2. A photograph
of the prototype is shown Figure 9. This coupling has a value λ = 2.

Figured 10 and 11 compare the measured and the computed axial flux densities in the middle of
the air gap. The measurements have been taken at no load (ϕ = 0) using a Hall effect probe driven by
a XY displacement table. The air gap thickness is set to e = 9.5mm.

The calculated and the measured axial flux densities Bz are almost identical. The small difference
when evaluating Bz along the radial coordinate is due to the curvature effects.

Figure 12 shows the static torque vs. load angle for air gap values e = 9.5mm and e = 4 mm.
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Table 2. Dimension of the magnetic coupling.

Parameter Description Unit Value
Rout Outer radius mm 60
Rin Inner radius mm 30
h Magnet thickness mm 7
e Thickness of the air gap mm variable
α Magnet opening to pole-pitch ratio - 0.9
p Number of pole pairs - 6

Br Remanence of permanent magnets T 1.25
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Figure 12. Static torque vs. load angle for two values of the air gap: (a) e = 9.6mm and (b) e = 4 mm.

The relative difference between the analytical results and the measurements is lower than 3% for
both air gap values. The model slightly overestimates the torque.

5. CONCLUSIONS

In this article, we have presented an analytical model that can quickly predict the flux density
distribution, the forces and the torque of PMs axial magnetic couplings. It has been shown that
linearizing the actual cylindrical topology doesn’t affect the accuracy of the model. In fact, several
numerical and experimental checking show the ability of the developed analytical model to accurately
evaluate the magnetic field distribution and the torque.

This powerful tool can then be used for fast and accurate design of PMs magnetic couplings or to
be integrated within evolutionary optimization procedures.
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