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An Analysis of Near-field Scattering Characteristics of Rough
Target: From the Perspective of Bidirectional Reflectance

Distribution Function Based on LS-SVM
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Abstract—The near-field scattering characteristics of rough target are analyzed by using a revised
bidirectional reflectance distribution function (BRDF) of a rough surface based on least squares support
vector machine (LS-SVM). The revised BRDF is more reliable in a larger range of incident angles and
scattering angles that beyond the scope of experimental measurements. The basic principle of LS-SVM
and the modeling process are firstly introduced in detail. Then the comparison among LS-SVM, the
back propagation neural network (BPNN) and the measured data is carried out. The results show
that the LS-SVM model has better integrative performance, stronger generalization ability and higher
precision. On this basis, the calculation of the near-field radar cross section (RCS) of a complex target
is safely performed and analyzed. The method proposed is helpful to better investigate the near-field
scattering characteristics of rough target.

1. INTRODUCTION

Generally speaking, it is difficult to calculate the near-field scattering characteristics of rough surfaces.
But the bidirectional reflectance distribution function (BRDF) can reflect the optical scattering
properties of rough surfaces. It is a critical means to studying the complex laser and infrared light
scattering properties. Based on the direct functional relationship between BRDF and the laser radar
cross section (LRCS) per unit area, BRDF has been receiving great attention for its myriad applications
in research areas such as target detection and recognition, stealth technology and so on [1, 2]. If the
reliable BRDF can be obtained in various angle configurations, it will be applied to analyzing the near-
field scattering characteristics. Thus, how to get the reliable BRDF will be the primary issue that
should be solved.

There are two primary approaches to studying the BRDF, namely, theoretical calculation [3] and
experimental measurement [4, 5]. The former needs to obtain the roughness statistical parameters of
rough surfaces, and then carry out calculations based on light scattering theory of rough surfaces. Due to
the complexity of theoretical calculations and the difficulty to directly obtain the roughness parameters
of various materials, experimental measurement is more frequently used in engineering applications. In
the laboratory bright sources of light are used to measure the BRDF of sample surfaces, and laser beams
are used as sources because of their high brightness, convenience, and availability. But an experiment
can be carried out only in a limited range of incident angles and scattering angles, thus, the BRDF
model is developed by using the experimental data of different materials to acquire the corresponding
BRDF values of the incident angles and scattering angles that can not be easily measured in actual
experiment.

There are various ways to establish a BRDF calculation model, such as the geometrical optics
theory-based Cook-Torrance model [6], the modified Phong model [7], the Ward model [8] and the Oren-
Nayar model [9]. However, most of them are for irregular surfaces which are difficult to be simulated.
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Recently, in view of the automation of the fitting function’s selection, two methods have been proposed:
artificial neural network (ANN) [10] and support vector machine (SVM) [11]. ANN is for large-sampled
data and SVM for small-sampled data. They use kernel function to solve various problems, avoiding
selecting the fitting function, which enables the method to be more versatile. However, as a new machine
learning approach for small-sampled data developed based on statistics theory, SVM has many unique
advantages over ANN in some engineering fields [12].

Using the structural risk minimization principle instead of the empirical risk minimization principle,
SVM has the advantages of simple structure, global optimization and strong generalization ability, which
makes it a hot spot of the machine learning research. However, the major drawback of SVM is its high
computational burden and low training efficiency because of the required constrained optimization
programming. With regard to this problem, a new method to establish the BRDF model by Least
Squares Support Vector Machine (LS-SVM) is proposed in this paper. While keeping the main merits
of standard SVM, LS-SVM has the advantages of simple calculation, high calculation speed and little
memory requirement [13], which has a great potential for future application in the calculation of target
scattering properties.

The paper is organized as follows. The principle of LS-SVM is mainly introduced in Section 2.
On this basis, Section 3 presents the establishment of BRDF model for arbitrary incident angles and
scattering angles by appropriately choosing the kernel function and model parameters. The simulated
results are shown and analyzed successively in Section 4. Then, the near-field scattering properties of
complex target are calculated based on BRDF, and the results are provided in Section 5. Section 6
concludes this paper.

2. THE PRINCIPLE OF LS-SVM

The LS-SVM [14, 15] is a new type of SVM proposed by J. A. K. Suykens in 1999, which can be seen
as a development and improvement of standard SVM. The LS-SVM converts the inequality constraints
of standard SVM into equality ones, which leads to solving a linear system instead of a quadratic
programming problem. Moreover, the number of the unknown parameters of the LS-SVM model built
with Radical Basis Function (RBF) is only two, less than those of standard SVM, which greatly simplifies
the problem. As a result, the convergence performance is obviously enhanced and the solving process
is greatly accelerated. Thus the algorithm is described in detail as follows [16].

Considering a scattered dataset of N points {xk, yk}N
k=1, with n-dimensional input data xk ∈ Rn

and output data yk ∈ R, we can define linear equation of higher dimensional feature space:

y = ϕ(x)ωT + b (1)

where the nonlinear mapping ϕ(·): Rn → Rnk maps the input data into a so-called high-dimensional
feature space (which can be infinite-dimensional), ω ∈ Rnk is weighed value vector and b ∈ R is threshold
value. Consequently, the problem of fitting pluralistic nonlinear model can be transformed into linear
regressive problem. The optimization problem is replaced by the following equations [17]:⎧⎪⎨

⎪⎩
min
ω,b,e

J(ω, e) =
1
2
ωT ω +

1
2
γ

N∑
k=1

e2
k

s.t. yk = ωT ϕ(xk) + b + ek, k = 1, 2, . . . , N

(2)

where the first term stands for the minimization of the Vapnik Chervonenkis (VC) dimension, while the
second one minimizes the training errors (ek). The regularization constant γ > 0 is included to control
the bias-variance trade-off.

Note that in some cases, ω becomes infinite dimension, and the above formulation cannot be used
to solve the problem. Therefore, we need to perform the computations in another space, called the
dual space of Lagrangian multipliers after applying Mercer’s theorem [18]. Consider the Lagrangian of
Eq. (2) given by:

L = J(ω, e) −
N∑

k=1

αk

(
ωT ϕ(xk) + b + ek − yk

)
(3)
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Here α = (α1, α2, . . . , αl), αi ∈ R are Lagrangian multipliers. By Karush-Kuhn-Tucker (KKT) optimal
conditions [19], the first order conditions for optimality are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂ω
= 0 → ω =

N∑
k=1

αkϕ(xk)

∂L

∂b
= 0 →

N∑
k=1

αk = 0

∂L

∂ek
= 0 → αk = γek

∂L

∂αk
= 0 → ωT ϕ(xk) + b + ek − yk = 0

k = 1, 2, . . . , N (4)

Eq. (4) can be written successively as the solution to the following set of linear equations⎡
⎢⎣

I 0 0 −ϕ(xn)
0 0 0 −1n

0 0 γI −I
ϕ(xn)T 1n I 0
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0
0
0
y

⎤
⎥⎦ (5)

After eliminating ω, e from the equations, combining with Mercer conditions K(xk, xl) = ϕ(xk)T ϕ(xl),
we obtain: [

0 1T
n

1n Ω + γ−1I

] [
b
α

]
=

[
0
y

]
(6)

where y = [y1, . . . , yN ]T , 1n = [1, . . . , 1]T , α = [α1, . . . , αN ]T , Ω = K(xk, xl), k, l = 1, 2, . . . , N , I is an
identity matrix. From Eq. (6), the regression parameters b and α can be solved as

b =
1T

n (Ω + γ−1In)−1y

1T
n (Ω + γ−1In)−11n

(7)

α =
(
Ω + γ−1In

)−1 (y − 1nb) (8)

Thus, the regression function is expressed in dual form as

y(x) =
N∑

k=1

αkK(xk, x) + b (9)

3. THE ESTABLISHMENT OF BRDF MODEL

Given a training data set {xk, yk}N
k=1, here xk ∈ Rn are n influencing factors of the BRDF values and

yk ∈ R are measured values of BRDF, the modeling procedure is expressed as follows.

(a) Divide the samples into two parts: the training data that is used to build up the model and the
test data that is used to test the model generalization capability.

(b) Select appropriate kernel function and parameters and train the samples with the LS-SVM
regression algorithm. Calculate the support vector α and the corresponding threshold b using
Eq. (7) and Eq. (8), then establish the LS-SVM data processing model.

(c) Obtain the fitting and forecasting results by substituting the input data into the LS-SVM model.
If the results meet the actual needs, the process stops. Otherwise, go to step (b) to adjust the
corresponding parameters of the regression model and recalculate the results, until they could meet
the requirement.
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3.1. The Choice of Kernel Function

Kernel function is the core of SVM. The choice of kernel function will greatly influence the learning
ability and generalization ability of machine learning. Different kernels determine different nonlinear
transformations and characteristics spaces, thus selecting different kernels to train SVM will lead to
different results. Any function K(xi, xj) satisfying Mercer’s condition can be used as the kernel function.
Thus different kernel functions possess their respective traits, and exert varying degrees of influences
on recurrent LS-SVM performance. Among these functions, the RBF function can map the sample set
from the input space into a high-dimensional feature space effectively, which is helpful for representing
the complex nonlinear relationship between the output and input samples. Based on this, the RBF
function is used widely. In this paper, RBF function is also selected as the kernel function, which is
expressed as follows:

K (xi, xj) = e−||xi−xj ||2/σ2
(10)

3.2. The Choice of the Model Parameters

As a very important part in LS-SVM modeling, the choice of parameters directly affects the accuracy
of data fitting, generalization ability as well as the training speed. For a specific problem, inappropriate
parameters may lead to unexpected results of data fitting and forecasting.

Due to the selection of RBF as the kernel function, it can be seen that there are two free parameters,
regularization parameter γ and kernel width parameter σ, that have to be properly optimized. The first
parameter γ determines the trade-offs between the minimization of the fitting error and the minimization
of the model complexity. For the definite dataset, a small value of γ denotes a slight penalty on the
experience error, a low complexity of the learning machine and a high experience risk, which is called
“under-fitting”. The bigger of the γ value, the longer the training time will be. But too big a value
of γ will cause over-fitting and decline of the generalization ability. The second parameter σ mainly
affects the complexity of the distribution of samples in high-dimensional feature space. The fitting
error will decrease as the value of σ gets small, but too small a value of σ could also cause over-fitting.
In order to obtain a pair of superior parameters, we have to change the parameters and carry on the
training for many times. Finally the parameters of the learning machine are acquired according to all
the previous test results. There could be several parameter selection methods such as cross-validation
type method [20], leave-one-out method, grid-search method and three-step-search method [21]. In this
paper we use the three-step-search method.

4. MODELING RESULTS AND ANALYSIS

The material used for modeling and testing in this paper is a kind of paint and the wavelength of the
incident light is 0.905 µm. Here, the measured data of BRDF has four influencing factors (θi, ϕi, θs, ϕs),
these four angles are respectively denoted as incident angle, incident azimuth, scattering angle and
scattering azimuth. The sample data are obtained within the following angle range: θi ∈ [30◦, 90◦]
with a sampling interval of 5◦, ϕi is fixed to 20◦, θs ∈ [5◦, 175◦] with a sampling interval of 1◦ and
ϕs ∈ [10◦, 90◦] with a sampling interval of 10◦. The above data are divided into two categories: test
sample data and training sample data, and the test sample data are chosen in the angle range of θi = 45◦
and 75◦, ϕi = 20◦, θs ∈ [5◦, 90◦] and ϕs ∈ [10◦, 90◦].

After several adjustments, the optimal values of γ and σ2 are 1513.0 and 48.0 respectively for
the LS-SVM model and the following calculation results shown in Fig. 1 and Fig. 2. Moreover, the
back propagation neural network (BPNN) [22] fitting data are also provided to be compared with those
obtained by LS-SVM in Fig. 1 and Fig. 2. BPNN is a popular neural network algorithm with wide
applications, which has the main advantage that it can minimize the error sum of square between the
actual data and the desired data. The root mean square error (RMSE) is used to evaluate the effect.

ERMSE =

√√√√√√
N∑

i=1

∣∣yi − y′i
∣∣2

N
(11)
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Figure 1. Comparison between measured values and fitting values with θi = 40◦ (The values of θi

participate in the training). (a) 3D distribution of the measured BRDF data, LS-SVM fitting BRDF
data and BPNN fitting BRDF data (from left to right). (b) ϕs = 20◦. (c) ϕs = 40◦. (d) ϕs = 60◦.
(e) ϕs = 80◦.

N is the number of the sample, yi the forecasting data of each sample, and y′i the measured value.
From the comparisons shown in Fig. 1 and Fig. 2, we can see that both the LS-SVM model’s

fitting data and forecasting data agree with the measured data with smaller errors and higher precision.
Moreover, with regard to ERMSE , the LS-SVM forecasting sample has a value of 0.0578 and the BPNN
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Figure 2. Comparison between measured values and forecasting values with θi = 45◦. (The values of θi

don’t participate in the training). (a) 3D distribution of the measured BRDF data, LS-SVM forecasting
BRDF data and BPNN forecasting BRDF data (from left to right). (b) ϕs = 20◦. (c) ϕs = 40◦.
(d) ϕs = 60◦. (e) ϕs = 80◦.

forecasting sample has a value of 0.1704. Therefore LS-SVM has obvious improvement compared with
BPNN. This indicates that LS-SVM is more accurate and has higher generalization ability. Based on
the analysis above, the data obtained by LS-SVM method can be safely applied to the calculation of
near-field scattering properties of target.



Progress In Electromagnetics Research M, Vol. 39, 2014 7

z

x

y

sγΔ iγΔ
sγ

O
iγ

h

(a) 

(b) 

Figure 3. The schematic diagram of calculating
scattering characteristics of the target.
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Figure 4. RCS of the target changes with the
dip angle γi.

5. THE APPLICATION OF LS-SVM IN CALCULATING NEAR-FIELD
SCATTERING CHARACTERISTICS OF COMPLEX TARGET

Figure 3(a) shows the schematic diagram of calculating the near-field scattering characteristics of the
target. The whole target relative to the emitter is in the near-field region. The laser only illuminates
a small portion of the target at a time, and the surface of effective irradiated area can be dissected
into small triangle facets. These facets can be characterized by their node coordinates, area sizes and
normal vectors. Each surface facet relative to the emitter is in the far-field region and can be studied
by using far-field method [23]. The echo power of each facet can be expressed as

ΔPs =
PiΔsσ0

4π cos θi
lim

Rl→∞
Ar

R2
l

(12)

where Pi is the power of each facet intercepted, Δs the area of each facet, σ0 the average value of the
RCS per unit area, θi the incident angle, Rl the range between the detector and the facet, and Ar the
aperture area of the detector.

In the other formulation entailing the BRDF, the echo power is

ΔPs = frPiΔs cos θs lim
Rl→∞

Ar

R2
l

(13)

fr is the BRDF at incident angle θi and scattering angle θs. By comparing Eq. (12) and Eq. (13), we
get

σ0 = 4πfr cos θi cos θs (14)

Combining Eq. (14) and the effective irradiation area, the RCS of the whole target can be obtained.
In this paper, we use the Gaussian-beam wave model [24] for calculation. h denotes the distance

from the detector to the target, the width of the transmitting beam (denoted by Δγi) is 3◦ and the
angle between the beam and x-axis is denoted by γi. The distance that from the detector to the emitter
is 0.03 m. The width of the receiving beam (denoted by Δγs) is also 3◦, and the angle between it and
x-axis is γs. The target to be analyzed here is a simulated geometrical model of a plane with a length
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of about 12.5 m, a height of about 3m and a width of about 9 m, as is illustrated in Fig. 3(b), assuming
the surface of the plane is coated with the paint that used in the experiment in Section 4.

Here, the site of the target is fixed. The angle of γi changes gradually from 0◦ to 180◦, and the angle
of γs is always two degrees larger than γi. The variation of RCSs with the dip angle γi is simulated and
shown in Fig. 4, in which the emitter is supposed to be 10 m, 8 m and 6 m below the target respectively.
The results show that the RCS peaks appear on the wings and the empennages. This may be due to
the fact that the irradiation area is larger in these two parts. Moreover, the value of the peaks rises
with the increase of height h.

6. CONCLUSIONS

This paper presents a new attempt to evaluate the laser scattering properties of complex targets in the
near-field region based on the revised BRDF model of rough surface materials. It is worth noting that
the revised BRDF model is reliable in a relatively larger range of incident angles and scattering angles
by using the LS-SVM. The comparison of the measured data and the forecasting values just verifies
the LS-SVM model. On this basis, the calculation of the near-field RCS of a complex target is safely
performed and analyzed. Although the calculation of RCS presented in this work is only limited to a
plane-like target, the outline and corresponding conclusions will help to better investigate the near-field
scattering characteristics of rough targets from the perspective of BRDF. Future work will be carried
out to study the near-field scattering characteristics of much more complex targets by using the revised
BRDF based on LS-SVM.
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