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A Fast EPILE+FBSA Method Combined with Adaptive Cross
Approximation for the Scattering from a Target

above a Large Ocean-Like Surface
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Abstract—The rigorous evaluation of the NRCS (Normalized Radar Cross Section) of an object above
a one-dimensional sea surface (2D case) needs to numerically solve a set of discretized integral equations
involving a large number of unknowns. Thus, the direct solution of the impedance matrix equation via
LU decomposition becomes the most expensive step in the MoM (Method of Moments) procedure.
So, in order to minimize the computation cost, the iterative domain decomposition method called
EPILE (Extended Propagation-Inside-Layer Expansion) was used and then was combined with the
FBSA (Forward-Backward with Spectral Acceleration) to calculate the local interactions on the rough
sea surface. The resulting fast method is called EPILE+FBSA. In this paper, we take advantage of
the rank-deficient nature of the coupling matrices, corresponding to the object-surface interactions, to
further reduce the complexity of the method by using the ACA (Adaptive Cross Approximation). Thus,
the coupling matrices are strongly compressed without a loss of accuracy and the memory requirement
is then strongly reduced. For a cylinder above a rough sea surface, the results show the efficiency of the
accelerated EPILE+FBSA+ACA method.

1. INTRODUCTION

The study of scattering from an object above a rough surface is a subject of great interest. The
applications of such research concern many areas such as remote sensing, radar surveillance, optics and
acoustics. Here, we focus on the scattering from an object above a random rough sea surface.

A way to solve rigorously this scattering problem is to use the well-known Method of Moments
(MoM) [1]. Nevertheless, since the number of unknowns is huge, a brute force MoM (direct LU inversion
of the impedance matrix) cannot be applied and then accelerations are needed to reduce the memory
requirement and the computing time. For a 2D scattering problem (problem geometry invariant with
respect to one direction), a review is presented in [2]. Then, the EPILE (Extended Propagation-Inside-
Layer Expansion) method based on a domain decomposition, is a good candidate for iteratively solving
the MoM impedance matrix equation. Initially, this method was developed to the scattering from a
stack of two one-dimensional interfaces (the upper surface is only illuminated) separating homogeneous
media [3] and, was generalized to the case of two illuminated scatterers [4, 5]. The main advantage of
EPILE is that it avoids the direct solution of the whole MoM matrix equation by using the partitioned
inverse matrix formulas and an iterative scheme. The two first steps are dedicated to handling the
initial current densities and two other steps, repeated in an iterative process, to account for the current
densities due to the coupling interactions between the two scatterers. Furthermore, the EPILE method
was accelerated by combining it with FBSA (Forward-Backward Spectral-Acceleration which is valid for
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a single surface) [6] for the computation of the local interactions (which evaluate the current density)
on the rough surface (sampled into N2 points), whereas the current density on the object (sampled into
N1 points) were computed from a direct LU inversion [4]. The complexity of the resulting method,
EPILE+FBSA, is then related to the calculations of the:

• Local interactions on the object (from a direct LU inversion): O(N3
1 ) multiplications and O(N2

1 )
terms for the memory requirements.

• Local interactions on the surface (from FBSA): O(PFBN2Ns) multiplications and O(N2Ns) terms
for the memory requirements, in which PFB is the order of the iterative scheme of the Forward-
Backward method and Ns is the integer part of xds/∆x2; xds being the strong interaction distance
for the Spectral Acceleration and ∆x2 the sampling step on the rough surface.

• Matrix-vector products for the coupling steps: O(N2N1) multiplications and O(N2N1) terms for
the memory requirements.

Since the number of unknowns on the rough surface is much greater than that on the object, the
acceleration was focused on the computation of the current density on the rough surface. Then, one of
the most expensive step (in computing time and memory requirements) is related to the matrix-vector
products in the coupling steps. One can notice that the coupling matrices are rank-deficient since only
well-separated MoM interactions are involved. Thus, in order to accelerate the matrix-vector products
involved in the coupling steps, a recent algebraic method called Adaptive Cross Approximation (ACA)
is applied to compress the coupling matrices. This method, developed in 2000 by Bebendorf [7, 8], was
then applied to electromagnetics [9–13] and can be seen as a truncated and partially pivoted Gaussian
elimination [7].

In this paper, the ACA method is hybridized with EPILE+FBSA, permitting to solve a problem
with a huge number of unknowns thanks to a much smaller storage requirement and computing time
than those from a direct LU inversion. The bistatic NRCS is computed for a wide frequency band
(from f = 2GHz to f = 20GHz). To describe the sea surface height (its distribution is assumed to
be Gaussian), the Elfouhaily et al. [14] roughness spectrum is applied. It was shown in [2] that to
include all the surface roughnesses, the minimum surface length must satisfy Lmin ≈ 1.6u2

10 where Lmin

is expressed in meters and u10 in m/s. Then, by considering a sampling step of λ0/10 and u10 = 10 m/s
at f = 15 GHz (λ0 = 2 cm), N2 = 80, 000 and N1 ≈ 1600 (cylinder of radius of 0.5 m). In addition,
since the incident Thorsos [15] tapered wave is used to reduce the edges effect, the surface length must
be multiplied approximately by 2 in order to take into account the whole statistics of the roughness,
and then N2 = 160, 000. This realistic maritime scenario can be simulated from EPILE+FBSA+ACA
on a standard personal computer.

The paper is organized as follows. The hybridization of EPILE+FBSA with ACA is presented in
Section 2. A brief summary of EPILE+FBSA is addressed, then the ACA is applied to compress the
coupling matrices for accelerating the coupling steps of EPILE. Section 3 presents results of the NRCS
and the last section gives concluding remarks.

2. HYBRIDIZATION OF ACA WITH EPILE+FBSA

2.1. EPILE Combined with FBSA

Let us consider two scatterers (with homogeneous media): for example an object (first scatterer) and a
rough surface (second scatterer), embedded in an homogeneous medium and illuminated by an incident
wave (see Figure 1). The use of the integral equations discretized by the MoM leads to the linear
system Z̄X = b, in which Z̄ is the impedance matrix of the scene made up of the two scatterers,
b is the incident field, and X is the current density on both scatterers (the field and/or its normal
derivative on the surfaces). The EPILE method was developed in order to solve such a linear system
efficiently and rigorously. Indeed, by inverting by block the impedance matrix, it can be shown after
some mathematical manipulations that the current X1 on the surface S1 of the scatterer 1 is [3–5]

X1 =
p=PEPILE∑

p=0

Y(p)
1 , (1)
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Figure 1. Illustration of the problem: scattering by an object above a rough surface. The
media {Ω0, Ω1,Ω2} of permittivities {εr0, εr1, εr2} are assumed to be homogeneous, and the scatterers
geometries are invariant along the direction normal to the figure.

in which {
Y(0)

1 = Z̄−1
1

(
b1 − Z̄21Z̄

−1
2 b2

)
for p = 0

Y(p)
1 = M̄c,1Y

(p−1)
1 for p > 0

. (2)

M̄c,1 being the characteristic matrix of the scene (the two scatterers) defined as M̄c,1 = Z̄−1
1 Z̄21Z̄

−1
2 Z̄12,

b1 the incident field illuminating the scatterer 1 (from the transmitter) and b2 the incident field
illuminating the scatterer 2 (from the transmitter). Z̄1 and Z̄2 are the local impedance sub-matrices
of scatterer 1 and scatterer 2, respectively, whereas Z̄12 and Z̄21 are the coupling sub-matrices between
the two scatterers. The mathematical expressions of these matrices can be found in [2]. In Eq. (1), the
sum is truncated at the order PEPILE obtained from a convergence criterion. By substituting subscripts
{1, 2, 12, 21} for subscripts {2, 1, 21, 12} in Equations (1) and (2), the unknowns X2 on the surface S2

can be found.
Z̄−1

1 accounts for the local interactions on the surface S1, so Y(0)
1 (zeroth order term) corresponds

to the current on the surface of scatterer 1 when it is illuminated by the direct incident field (b1) and
the direct scattered field by the surface S2 (−Z̄21Z̄

−1
2 b2). Indeed, Z̄−1

2 accounts for the local interactions
on the lower surface, and Z̄21 propagates the field on the surface S2 toward scatterer 1. For the first-
order term, Y(1)

1 = M̄c,1Y
(0)
1 , Z̄12 propagates the current on the surface S1, Y(0)

1 , toward scatterer
2, Z̄−1

2 accounts for the local interactions on S2, and Z̄21 re-propagates the resulting contribution
toward scatterer 1; finally, Z̄−1

1 updates the current values on S1. Thus the characteristic matrix M̄c,1

propagates the field between the two scatterers in a back and forth manner. In conclusion, the order
PEPILE of EPILE method, corresponds to the number of back and forths between the two scatterers.

Then, one of the advantages of EPILE is that the resolution of the linear system Z̄X = b is
reduced to an iterative scheme, which involves the inverse of the impedance matrix of each scatterer.
Consequently, if one of the scatterers is a rough surface, the computation of the local interactions
(inversion of Z̄2 and computation of the matrix-vector product Z̄−1

2 u, where u is a vector) can be done
by using fast numerical method that already exists for scattering from a single rough surface (without
the object). So, the FBSA method [6] was used to accelerate this step [4, 5].

2.2. EPILE+FBSA Combined with ACA

As stated in the introduction of the paper, one of the most expensive step remains the matrix-vector
products Z̄12u and Z̄21u of complexity O(N1N2) (also for the memory requirement). To reduce this
complexity and the memory requirement, the ACA algorithm is applied.

The outline of the ACA algorithm is to approximate a given dense matrix Ā of size M ×N by a
matrix Ã (of size M ×N too) obtained from a matrix product:

Ã = ŪV̄. (3)

where Ū and V̄ are two dense matrices of sizes M × k and k × N , respectively, k being the effective
rank of the matrix Ā. The two matrices Ū and V̄ are constructed by the help of an iterative scheme,
which can be seen as a rank-revealing LU decomposition [7, 10], which is stopped when the convergence
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is reached for a given tolerance threshold ε. It is very important to note that to construct Ū and V̄, it
is not necessary to calculate all the elements of the matrix Ā to be compressed (unlike a Singular Value
Decomposition, SVD). Then, the resulting memory requirement is (M + N)k instead of M × N . For
M = N , the compression is efficient if 2k ¿ N . In addition, the complexity of the matrix-vector product
Āu = Ū(V̄u) also requires (M + N)k multiplications instead of MN . We define the compression ratio
as

τ = 1− (M + N)k
MN

. (4)

If k ¿ (M, N), then τ is close to 1 (100% of compression), whereas if τ = 0 (case for which
M = N = 2k), the compression is not efficient, and if k = M or k = N then τ < 0 and ACA implies a
bigger storage requirement than that without ACA.

The resulting complexity of EPILE+FBSA+ACA, for a given iteration of EPILE, is O([2− τ12 −
τ21]N1N2) + O(PFBN2Ns) + O(N2

1 ), where τ12 and τ21 are the compression ratio of the coupling
matrices Z̄12 and Z̄21, respectively. As already discussed in the literature, the compression ratio of
a coupling matrix (off-diagonal block-block or region-region sub-matrix) increases as the interaction
distance increases: the farther the interactions are, the weaker the coupling is and the more efficient
the compression from ACA is [12]. Then, ACA is obviously not efficient for (self-) impedance matrices
(local interactions computation), like Z̄11 and Z̄22.

A way to solve this issue is to split each surface into sub-regions: the resulting self-impedance
matrix can be then expressed into diagonal block matrices (which contain the self-coupling terms) and
off-diagonal block-block matrices (which take into account the coupling between each sub-regions of
the surface) which can be compressible when the regions are spaced some distance apart [12]. Besides,
this can be done in a recursive scheme (each subregion can be split into many subregions to exhibit
smaller off-diagonal blocks to compress) with a Multi-Level ACA [13], or also with the formalism of
H-matrix theory [16, 17]. This is not applied here for the two impedance matrices Z̄11 and Z̄22 since
Z̄11 is quite small (for an object of small or moderate size) and applying MLACA or H-matrix theory
can be more expensive than a direct inversion; and for Z̄22, the FBSA is already used which provides a
low complexity: only O(PFBN2Ns) for the computation of the local interactions on S2 (inversion of Z̄2

and computation of the matrix-vector product Z̄−1
2 u, where u is a vector).

3. NUMERICAL RESULTS

Since the sea surface is highly conductive for microwave frequencies, the impedance (or Leontovich)
boundary condition (IBC) is applied. The object is assumed to be a perfectly-conducting circular
cylinder. The simulation parameters are listed in Table 1 (problem depicted in Figure 1). The origin of
the coordinate system is located at the mean surface level (vertical position) and at the center of the sea
surface (horizontal position). The choice for all the parameters (EPILE order PEPILE, FB order PFB,
strong interaction distance for SA) of EPILE-FBSA was already studied for an object above a rough
sea surface [5]: they are reported in Table 1.

Figures 2, 3 and 4 plot the CPU time, the compression ratios τ12 and τ21 and the memory
requirement versus the frequency f , respectively. The labels in the legends mean:

• “LU”: the NRCS is computed from a direct LU inversion of the impedance matrix.
• “EPILE+FBSA”: the NRCS is computed from EPILE+FBSA.
• “EPILE+FBSA+ACA”: the NRCS is computed from EPILE+FBSA+ACA.
• “No filling matrices” means that the CPU time for the matrix filling is not counted when using

EPILE+FBSA+ACA method.

The simulations ran on a workstation HPZ800 (dual processor 2.67GHz (12-core) with 32GB
RAM) and with the MatLab software. NRCS calculation from a direct LU inversion is stopped when
the memory requirement exceeds 12GB.

As the frequency increases, Figure 2 shows that the CPU time increases significantly with LU,
whereas with EPILE+FBSA and EPILE+FBSA+ACA it increases slower. In addition, as shown in
Figure 3, the compression ratio increases with f . ACA allows to reduce both the CPU time and the
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Table 1. Simulation parameters (problem depicted in Figure 1). The object is a perfectly-conducting
circular cylinder of radius 0.5 m and the sea surface obeys the IBC approximation. λ0 is the wavelength
and Lc is the correlation length of the sea surface (in meters).

Wind speed u10 [m/s] 5
Surface length L2 [m] 120
Frequency f [GHz] [2; 20]

Sampling step ∆x2 [λ0] 0.1
Incidence angle θi [o] 0

Object coordinates (x1, z1) [m] (0, 3)
Thorsos wave parameter g [m] L2/6 = 20

Polarization TE
EPILE order PEPILE 6

FB order PFB 5
Strong interaction distance for SA [m] 0.03Lc = 0.0046u2.04

10

ACA convergence threshold 0.001
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Figure 2. CPU time (in minutes) versus the
frequency f . The simulation parameters are listed
in Table 1.
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Figure 3. Compression ratios τ12 and τ21 versus
f . The simulation parameters are listed in
Table 1.

memory requirement as depicted in Figure 4. This figure clearly shows the difficulty to calculate the
NRCS with a direct LU inversion when the frequency increases.

It is important to note that the coupling matrix Z̄21 (propagation from the surface to the object)
is the sum of two matrices (linear combination of boundary conditions with IBC): one is related to the
Neumann boundary condition and the other one is related to Dirichlet boundary condition. Then, the
compression is applied on this sum of submatrices. As illustratred on Figure 3, the use of IBC does not
reduce the compression ratio since τ21 ≈ τ12 for any frequency.

Since the coupling matrices (and the impedance matrices too) are independent of the incident
wave, the compressed coupling matrices can be stored and then, it does not need to re-calculate them
for different incidence angles θi. Thus, the ACA compression is very interesting for a monostatic
configuration involving many incidence angles since the compression from ACA is made only one time,
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Figure 4. Memory requirement versus f . The simulation parameters are listed in Table 1.
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Figure 5. NRCS versus the scattering angles θs for f = 6 GHz. The simulations parameters are listed
in Table 1. PEPILE = −1 refers to the case when the coupling between the object and the surface is
ignored.

and the matrix-vector products are then accelerated (since compressed coupling matrices are involved)
for each incident angle. In Figure 2, for a frequency f = 14 GHz (57,466 unknowns), when the CPU
time for the matrix filling is not counted when using EPILE+FBSA+ACA method, the computing time
is of the order of 5 minutes.

Figure 5 plots the bistatic NRCS versus the scattering angles θs for f = 6 GHz (other parameters
are listed in Table 1). In the legend, the first number is the EPILE convergence order PEPILE = 3,
obtained when the RRE (Relative Residual Error) is smaller than 0.01. The RRE is defined as

ε =
normθs (NRCSMETHOD −NRCSLU)

normθs (NRCSLU)
, (5)

where norm stands for the norm two. It corresponds to the second number in the legend.
Figure 6 plots the bistatic NRCS versus the scattering angles θs for f = 6GHz. Other parameters

are listed in Table 1 except θi = 45o, TM polarization, PEPILE = 2 and PFB = 2.
Figures 5 and 6 show that the curves perfectly match in cases of both TE and TM polarization,

meaning that ε < 0.01 and εACA < 0.001 (ACA convergence threshold) are good values. The order
PEPILE = −1 corresponds to the case, for which the coupling is not included between the surface and
the object (both scatterers are considered as in free space). The comparisons show that the coupling
must be accounted for. Figure 7 illustrates this by plotting the NRCS ratio which corresponds to the
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Figure 6. NRCS versus the scattering angles θs for f = 6 GHz. The simulations parameters are listed
in Table 1 except θi = 45o, TM polarization, PEPILE = 2 and PFB = 2. PEPILE = −1 refers to the case
when the coupling between the object and the surface is ignored.
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Figure 7. NRCS ratio (with the reference method: direct LU inversion) versus the scattering angles
θs for f = 6 GHz. Same parameters as in Figure 6.

ratio between the NRCS under test (in linear scale) and the NRCS (in linear scale) of the reference
(direct LU inversion) given in dB. One can see that the local error is much stronger without coupling
(for PEPILE = −1) than with the coupling of EPILE. Moreover, the impact due to the use of ACA is
not very sensitive: the two curves EPILE2+FBSA and EPILE2+FBSA+ACA match well. One can
also notice that the ratio with EPILE (with and without ACA) is locally strong when the NRCS is very
low while the ratio is very low around the specular direction θs = 45o for which the NRCS is highest.

4. CONCLUSION

For an object above a rough surface, the domain decomposition EPILE method has already proven
its efficiency by allowing to apply the fast FBSA method to compute the local interactions on the
rough sea surface for a large problem, in which two coupled scatterers are involved. In this paper,
the EPILE+FBSA method is accelerated by using the ACA thanks to the rank-deficient nature of the
coupling matrices involved in EPILE. Indeed, the ACA method permits to strongly compress them
without a loss of accuracy and the memory requirement is then strongly reduced. Then, realistic
maritime scenario (with a huge number of unknowns) can be simulated from EPILE+FBSA+ACA on
a standard personal computer. Finally, the results show the efficiency and accuracy of the proposed
method EPILE+FBSA+ACA for a cylinder above an ocean-like surface.
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2. Bourlier, C., N. Pinel, and G. Kubické, Method of Moments for 2D Scattering Problems. Basic

Concepts and Applications, FOCUS SERIES in WAVES, Ed. WILEY-ISTE, 2013.
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