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Orbital Angular Momentum Density of a Hollow
Vortex Gaussian Beam

Yimin Zhou and Guoquan Zhou*

Abstract—Here the hollow vortex Gaussian beam is described by the exact solution of the Maxwell
equations. By means of the method of the vectorial angular spectrum, analytical expressions of the
electromagnetic fields of a hollow vortex Gaussian beam propagating in free space are derived. By using
the electromagnetic fields of a hollow vortex Gaussian beam beyond the paraxial approximation, one can
calculate the orbital angular momentum density distribution of a hollow vortex Gaussian beam in free
space. The overall transverse components of the orbital angular momentum of a hollow vortex Gaussian
beam are equal to zero. Therefore, the influences of the topological charge, beam order, Gaussian waist
size, and linearly polarized angle on the distribution of longitudinal component of the orbital angular
momentum density of a hollow vortex Gaussian beam are numerically demonstrated in the reference
plane. The outcome is useful to optical trapping, optical guiding, and optical manipulation using the
hollow vortex Gaussian beams.

1. INTRODUCTION

Dark hollow beams have important application prospect in atom optics for their specific performance.
Therefore, dark hollow beams become one of the most interesting topics in optics and lasers [1–3].
Many beam models have been constructed to mathematically describe dark hollow laser beams [4–7].
Also, dark hollow beams can be experimentally realized by means of differently ingenious methods [8–
11]. The properties of dark hollow beams have been extensively investigated [12–16]. Focusing of dark
hollow Gaussian electromagnetic beams has been studied in a plasma with relativistic–ponderomotive
regime [17]. Upon propagation, the previous beam models are unstable. In other words, the dark region
in the previous beam models will disappear upon propagation. This phenomenon can be interpreted
as follows. These beam models are described by the superposition of different laser modes. Upon
propagation, the dark region will turn into the bright region, which is caused by the interference of
these differently propagating laser modes. To overcome this defect, a kind of hollow vortex Gaussian
beams has been recently introduced [18], and the dark region in the hollow vortex Gaussian beam still
exists during propagation.

Carrying the orbital angular momentum, the hollow vortex Gaussian beam has many potential
applications in optical trapping, optical micro-manipulation, nonlinear optics, and quantum information
processing [19–22]. When the hollow vortex Gaussian beam interacts with microscopic particles, the
orbital angular momentum in the hollow vortex Gaussian beam can be exchanged to microscopic
particles. Therefore, here we investigate the distribution of the orbital angular momentum density
of a hollow vortex Gaussian beam. Moreover, the starting point to describe a hollow vortex Gaussian
beam is the Maxwell equations in free space. To obtain the exact solution of the Maxwell equations,
we use the method of vectorial angular spectrum. By using the electromagnetic field of a hollow vortex
Gaussian beam beyond the paraxial approximation, the expression of the orbital angular momentum
density of a hollow vortex Gaussian beam propagating in free space is derived. The effects of the beam
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parameters on the distribution of the orbital angular momentum density of a hollow vortex Gaussian
beam are discussed by numerical simulations.

2. ORBITAL ANGULAR MOMENTUM DENSITY OF A HOLLOW VORTEX
GAUSSIAN BEAM

In the cylindrical coordinate system, z-axis is the propagation axis, and plane z = 0 is the source plane.
The hollow vortex Gaussian beam in the source plane is described by [17][
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linearly polarized state, and α is the linearly polarized angle. Here the description of a hollow vortex
Gaussian beam is started from the Maxwell equations [23, 24]:

∇× E(ρ, z) − ikH(ρ, z) = 0, (2)
∇× H(ρ, z) + ikE(ρ, z) = 0, (3)
∇ · E(ρ, z) = ∇ ·H(ρ, z) = 0, (4)

where ρ = (x2 + y2)1/2 and k = 2π/λ is the wave number with λ being the optical wavelength. E(ρ, z)
and H(ρ, z) are electric and magnetic fields, respectively. In frequency domain, the Maxwell equations
can be rewritten as

L × Ẽ(b, z) − ikH̃(b, z) = 0 (5)

L × H̃(b, z) + ikẼ(b, z) = 0, (6)

L · Ē(b, z) = L · H̃(b, z) = 0 (7)

where L = ikpex + ikqey + ∂
∂zez and b = (p2 + q2)1/2. ex, ey, and ez are three unit vectors of the

rectangular coordinate system. p/λ and q/λ are the transverse frequencies. E(ρ, z) and H(ρ, z) can be
obtained by the Fourier transform of Ẽ(b, z) and H̃(b, z):
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Eqs. (5)–(7) have the following solutions:

Ẽ(b, z) = A(p, q) exp(ikγz), (10)

H̃(b, z) = [s× A(p, q)] exp(ikγz), (11)

where s = pex + qey + γez and γ = (1 − b2)1/2. A(p, q) = Ax(p, q)ex + Ay(p, q)ey + Az(p, q)ez is the
vectorial angular spectrum. Ax(p, q) and Ay(p, q) are given by[
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where ϕ = arctan(q/p). We recall the following mathematical formulae [25]:
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where Jm is the m-th order Bessel function of the first kind, Γ(·) a Gamma function, and 1F1(·; ·; ·) a
Kummer function and defined by [25]
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The transversal components of the vectorial angular spectrum are found to be[
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where f = 1/(kw0). The longitudinal component Az(p, q) is given by the orthogonal relation
s · A(p, q) = 0 and turns out to be

Az(p, q) = −b[Ax(p, q) cos ϕ + Ay(p, q) sin ϕ]/γ. (17)

The propagating optical field of a hollow vortex Gaussian beam in the z-plane can be expressed in the
form of the vectorial angular spectrum:
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where θ = arctan(y/x). Also, the propagating optical field of a hollow vortex Gaussian beam can be
expressed as

E(ρ, z) = Ex(ρ, z)ex + Ey(ρ, z)ey + Ez(ρ, z)ez. (19)

The x-component of the optical field of a hollow vortex Gaussian beam reads as
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Normally, the reference plane where the hollow vortex Gaussian beam is practically used is z > λ. In
the case of z > λ, the effect of the evanescent waves can be ignored. When z > λ, therefore, the upper
integral limit in Eq. (20) can be replaced by 1. In this case, exp(ikγz) can be expanded as [25]
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optical field of a hollow vortex Gaussian beam is found to be
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When b > 1, the integrands decay exponentially. Therefore, the second integral can be negligible. The
x-component of the optical field of a hollow vortex Gaussian beam analytically yields
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where Lm
l+s(·) is the associated Laguerre polynomial. Similarly, the y-component of the optical field of

a hollow vortex Gaussian beam is given by
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The longitudinal component of the optical field of a hollow vortex Gaussian beam turns out to be
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When b < 1, the following expansion is valid [25]
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The longitudinal component of the optical field of a hollow vortex Gaussian beam can be analytically
expressed as
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Upon propagation, the longitudinal component of the optical field of the hollow vortex Gaussian beam
is a mixed mode of the (m + 1)-order topological charge and the (m − 1)-order topological charge.

One can obtain the magnetic field of a hollow vortex Gaussian beam by
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where μ0 is the magnetic permeability of vacuum. The Poyting vector of a hollow vortex Gaussian
beam reads as
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where the angle brackets denote an average to the time, and the asterisk indicates the complex
conjugation. Therefore, the orbital angular momentum density of a hollow vortex Gaussian beam
turns out to be [26, 27]

J(ρ, z) = ε0μ0[r× S(ρ, z)] = Jx(ρ, z)ex + Jy(ρ, z)ey + Jz(ρ, z)ez, (33)

with Jx(ρ, z), Jy(ρ, z), and Jz(ρ, z) being given by

Jx(ρ, z) = ε0μ0[ySz(ρ, z) − zSy(ρ, z)], (34)
Jy(ρ, z) = ε0μ0[zSx(ρ, z) − xSz(ρ, z)], (35)
Jz(ρ, z) = ε0μ0[xSy(ρ, z) − ySx(ρ, z)], (36)

where r = xex + yey + zez and ε0 is the electric permittivity of vacuum. Inserting Eqs. (23), (24), and
(27) into Eqs. (34)–(36), one can calculate the orbital angular momentum density of a hollow vortex
Gaussian beam.

3. NUMERICAL CALCULATIONS AND ANALYSES

The x- and the y-components of the orbital angular momentum density of a hollow vortex Gaussian
beam in the reference plan z = 25λ are shown in Figs. 1 and 2 where w0 = 5λ, n = 2, and m = 1. In
subfigures (a)–(d), α = 0, π/4, π/3, and π/2, respectively. The x-component of the angular momentum
density is composed of two lobes, which is closely located in the vertical direction. The areas of the
two lobes are equivalent. However, the signs of the angular momentum density in the two lobes are
opposite. Accordingly, the overall x-component of the angular momentum in the reference plane is
zero. The y-component of the angular momentum density is composed of two lobes too, which are
closely located in the horizontal direction. Also, the overall y-component of the angular momentum
in the reference plane is zero. The overall traversal components of the orbital angular momentum are
confirmed to be zero. Therefore, hereafter we only consider the longitudinal component of the orbital
angular momentum density.

(a) (b)

(c) (d)

Figure 1. The x-component of the orbital angular momentum density of a hollow vortex Gaussian
beam in the reference plan z = 25λ. w0 = 5λ, n = 2, and m = 1. (a) α = 0. (b) α = π/4. (c) α = π/3.
(d) α = π/2.
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(a) (b)

(c) (d)

Figure 2. The y-component of the orbital angular momentum density of a hollow vortex Gaussian
beam in the reference plan z = 25λ. w0 = 5λ, n = 2, and m = 1. (a) α = 0. (b) α = π/4. (c) α = π/3.
(d) α = π/2.

(a) (b)

(c) (d)

Figure 3. The longitudinal component of the orbital angular momentum density of a hollow vortex
Gaussian beam in the reference plan z = 25λ. w0 = 5λ, n = 2, and α = π/4. (a) m = 1. (b) m = 2.
(c) m = 3. (d) m = 4.
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The orbital angular momentum density of a hollow vortex Gaussian beam in a reference plane
depends on the topological charge, beam order, Gaussian waist size, and linearly polarized angle. Now,
we examine the effects of these four parameters on the distribution of the orbital angular momentum
density. The reference plane is fixed to be z = 25λ. First, the influence of the topological charge on
the distribution of the orbital angular momentum density is considered, which is shown in Fig. 3 where
w0 = 5λ, n = 2, and α = π/4. The longitudinal component of the angular momentum density is always
negative. The negative angular momentum density indicates that the corresponding spiral direction is
opposite to that of the positive angular momentum density. With increasing the topological charge, the
magnitude of the longitudinal component of the angular momentum density augments, which results in
the overall orbital angular momentum also augmenting. With altering the topological charge, the profile
of the longitudinal component of the angular momentum density also changes slightly. Fig. 4 shows the
effect of the beam order on the distribution of the orbital angular momentum density with w0 = 5λ,
m = 3, and α = π/4. With increasing the beam order, the magnitude of the longitudinal component
of the angular momentum density increases. When the beam order is larger than 2, the increasing
speed of the magnitude of the longitudinal component of the angular momentum density is dramatic.
The profile of the longitudinal component of the angular momentum density is also slightly varied with
changing the beam order. The influence of the Gaussian waist size on the distribution of the longitudinal
component of the orbital angular momentum density is shown in Fig. 5 where n = m = 3 and α = π/4.
With increasing the Gaussian waist size, the magnitude and profile size of the longitudinal component
of the orbital angular momentum density increase. However, the increasing speed of the magnitude
of the longitudinal component of the orbital angular momentum density is slow with increasing the
Gaussian waist size. In this case, therefore, the increase of the overall orbital angular momentum
mainly stems from the expansion of profile size of the orbital angular momentum density. Finally, the
effect of the linearly polarized angle on the distribution of the longitudinal component of the orbital
angular momentum density is investigated, which is shown in Fig. 6. w0 = 5λ and n = m = 3 in
Fig. 6. The linearly polarized angle only plays a role in the orientation of the longitudinal component
of the orbital angular momentum density. With increasing the linearly polarized angle, the profile of

(a) (b)

(c) (d)

Figure 4. The longitudinal component of the orbital angular momentum density of a hollow vortex
Gaussian beam in the reference plan z = 25λ. w0 = 5λ, m = 3, and α = π/4. (a) n = 1. (b) n = 2.
(c) n = 3. (d) n = 4.
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(a) (b)

(c) (d)

Figure 5. The longitudinal component of the orbital angular momentum density of a hollow vortex
Gaussian beam in the reference plan z = 25λ. n = m = 3 and α = π/4. (a) w0 = 4λ. (b) w0 = 5λ.
(c) w0 = 6λ. (d) w0 = 7λ.

(a) (b)

(c) (d)

Figure 6. The longitudinal component of the orbital angular momentum density of a hollow vortex
Gaussian beam in the reference plan z = 25λ. w0 = 5λ and n = m = 3. (a) α = 0. (b) α = π/4.
(c) α = π/3. (d) α = π/2.
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the longitudinal component of the orbital angular momentum density rotates a certain degrees counter
clock wisely.

4. CONCLUSIONS

The starting point to describe the hollow vortex Gaussian beam is the Maxwell equations in free space.
To obtain the exact solution of the Maxwell equations, the method of vectorial angular spectrum is
employed. Based on the method of vectorial angular spectrum, analytical expressions of the electric
and magnetic fields of a hollow vortex Gaussian beam propagating in free space are derived. By using
the electromagnetic field of a hollow vortex Gaussian beam beyond the paraxial approximation, one can
calculate and demonstrate the distribution of the orbital angular momentum density of a hollow vortex
Gaussian beam in free space. As the overall transverse components of the orbital angular momentum
are equal to zero, the effects of the topological charge, the beam order, the Gaussian waist size, and the
linearly polarized angle on the distribution of longitudinal component of the orbital angular momentum
density of a hollow vortex Gaussian beam are investigated. The linearly polarized angle only takes effect
in the orientation of the longitudinal component of the orbital angular momentum density. Among the
three parameters of the topological charge, beam order, and Gaussian waist size, longitudinal component
of the orbital angular momentum density is most sensitive to the beam order and is least sensitive to
the Gaussian waist size. With increasing the arbitrary one of the topological charge, beam order, and
Gaussian waist size, the magnitude of the longitudinal component of the orbital angular momentum
density increases. The above research is beneficial to the practical application of the hollow vortex
Gaussian beam.
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