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Enhancement of Angular Resolution of a Flat-Base Luneburg Lens
Antenna by Using Correlation Method

Xiang Gu1, 2, *, Sidharath Jain3, Raj Mittra1, and Yunhua Zhang2

Abstract—We propose a technique for enhancing the angular resolution of a flat-base Luneburg lens
antenna to enable it to detect multiple targets with arbitrary scattering cross-sections that are located
in angular proximity. The technique involves measuring the electric field distribution on the flat plane
of the Luneburg lens antenna, operating in the receive mode, at a specified number of positions, and
correlating these distributions with the known distributions derived from the field distributions in the
measurement plane generated by single target at different look angles. We show that the proposed
approach can achieve enhanced resolution than the basis of the beam-width of the Luneburg lens
antenna, and it is capable of distinguishing between two targets with different scattering cross-sections
that have an angular separation as small as 1◦ for a Luneburg lens with 6.35λ aperture size, for Signal-
to-Noise Ratio (SNR) better than 20 dB.

1. INTRODUCTION

Wide-angle scanning and high angular resolution are often concerned and desired in many modern radar
applications, e.g., wireless communication, air navigation, automotive radar, etc., and mechanically
steerable antennas and phased arrays are traditionally used for such applications [1]. However, such
antennas are usually operated by a mechanical rotation device that cannot meet the requirements of
rapid beam-scanning and flexible control. On the other hand, the phased arrays are more sophisticated
and can serve multiple functions for different applications. However, they can be bulky, expensive to
fabricate and often require signal processing hardware.

There has been considerable interest in the design of antennas capable of significantly increasing the
directivity, lowering the sidelobe levels, increasing the angular scanning range, by combining the features
of lenses [2, 3]. The lens proposed by Luneburg [4], which has the capability of all-angle-scan regardless
of the frequency of operation, as well as excellent focusing characteristics, is an attractive candidate
for many applications such as multi-beam antennas, multi-frequency scanning, and spatial scanning.
The characteristics of the Luneburg lens have been studied in many papers [5, 6]. They show that the
Luneburg lens has superior performance compared with conventional lenses made of uniform materials
because it can perfectly focus the incoming electromagnetic waves on its opposite spherical surface.
However, its spherically symmetric gradient-index dielectric configuration is not only incompatible with
the planar feeding and receiving devices, but it also poses some difficulties in fabrication. In the past few
years, many researches have focused on the manufacture and realization of the Luneburg lens, as well as
its applications, which include the design and implementation of a 2D and 3D Luneburg lens antenna
by using printed circuit board [7], an array of size-varying circular patches on a dielectric substrate
inside a Parallel-Plate Waveguide (PPW) structure [8], a Sievenpiper “mushroom” array [9], loaded wire
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grids [10], quasi-continuous slices [11], a liquid medium approach and a 3D-printing process [12, 13], non-
resonant metamaterials [14], embedding a Vivaldi antenna source inside a parallel-plate waveguide [15],
air-filled parallel plates [16], and 3D inhomogeneous and nearly isotropic gradient-index materials [17].
There are also many papers which concentrate on the applications of the Luneburg lens. In [18], an array
of Luneburg lens antennas have been proposed for the Square Kilometer Array (SKA) radio telescope
because of its multiple advantages of optical beam forming, inherent wide bandwidth, and very wide
field of view.

In addition, Liang et al. [19] have reported an approach for Direction-Of-Arrival (DOA) estimation
by using five conformal detectors located on the curved surface of a single Luneburg lens antenna to
receive the signal from −20◦ to 20◦, the operating frequency is 5.6 GHz, and the initial direction finding
results using a correlation algorithm show that the estimated error is smaller than 2◦ within −15◦ to 15◦
incident angles. However, the range of incident angle is still limited, and the number of detectors is not
enough. Recently, the present authors have proposed the design of a flat-base Luneburg lens antenna,
and have investigated its scan performance and compared its performance with conventional lenses [20].
In this paper, we propose the use of such a flat-base Luneburg lens antenna for DOA estimation by
using Correlation Method (CM) [21] applied to the field distribution in the receive aperture, which can
not only achieve both wide-angle scanning and high angular resolution, but can also operate over a
broad frequency range, as well as for different polarizations. Although we focus on the two-target case
in this paper, the proposed technique can be applied in a general scenario when multiple targets are
present.

2. DESIGN OF FLAT-BASE LUNEBURG LENS ANTENNA

The Luneburg lens is designed to focus a plane wave, arriving from an arbitrary direction, at a point
which is located diametrically opposite to that of the incident side. Luneburg has shown that the
problem of finding εr of the lens can be formulated in terms of an integral equation [4], whose solution
provides us the required material parameters of the lens. They are given by:

εr = 2 − (r/R)2 (1)
where r is the distance from the center of the lens, and R is its radius. It is evident that if we place
a feed whose phase center is located on the surface of the lens, it would transform the spherical front
wave, emanating from its phase center, into a planar one. Obviously, if one wishes to scan the beam,
one would have to rotate the feed around the surface of the lens, which is not the most convenient thing
to do; instead, it would be considerably more desirable to place the feed array on a flat surface. With
this in mind, we have proposed a design, shown in Figure 1, of a lens with a spherical profile, which
preserves the salutary features of the conventional Luneburg lens but is much more convenient to feed
in the transmit mode since it has a flat-base design. More details about the design can be found in [20]
and are omitted here.

As shown in Figure 1, the Luneburg lens consists of 11 layers and has a diameter of 63.5 mm.
The first ten layers from the center have a thickness of 3 mm each and the last layer is 1.75 mm thick.
The dielectric parameters of the layers vary depending on their distance from the center, in accordance
with (1). The feed is a 6 × 6 waveguide array with Perfect Electric Conductor (PEC) walls that are
1mm thick. The waveguide has a square cross-section with a side length of 9 mm. This paper focuses on
the receive mode; therefore, we set an array of observers in the measurement plane, i.e., the truncation
plane of the waveguides.

Figure 2 shows three possible distributions of targets which radar may be required to detect. In
case 1, the two targets obviously have different time delays and they can be distinguished in time
domain. In case 2, the two targets have an angular separation that is greater than the half-power
beam-width; it is possible to detect them by using conventional techniques. However, in case 3, the
angular separation is less than the half-power beam-width, a traditional antenna would only see a single
target, located somewhere in-between the two targets. In this paper, we concentrate on the third case,
which is the most difficult case in practice.

It is well known that the angular resolution of an antenna is determined by its half-power beam-
width, which is inversely proportional to the aperture size of the antenna. In this paper, we calculate
the half-power beam-width of the Luneburg lens as λ/D by assuming the aperture efficiency is unity,
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Figure 1. lat-base Luneburg lens antenna. Figure 2. Multiple targets scenarios.

where λ is the free space wavelength and D is the diameter of the Luneburg lens. This is slightly
larger than 9◦ for a diameter of D = 63.5 mm at 30 GHz. Therefore, the limit of angular resolution
for this antenna is nearly 9◦ by utilizing conventional techniques to process the received signal in the
measurement plane by tracking the location of the maximum position.

For the case of single target located within the scan range of the lens, the field distribution in the
measurement plane would be unique for each angle. Of course, the distribution would be corrupted
by noise which would distort the resolution. For the case of multiple targets with unknown Radar
Cross-Section (RCS) levels, the field distribution in the measurement plane is a vector sum of the field
distributions generated by each target. To handle this case, we firstly create a database by superimposing
the contributions with steps for the amplitude scales and phase differences, which is a valid assumption
in most practical scenarios. As one might expect, the smaller the steps for the amplitude scale and
the phase difference, the better is the resolution one can obtain, at the cost of increasing the time for
processing.

To enhance the resolution of the above Luneburg lens, we propose to employ the correlation method,
which is widely used in the areas of image and signal processing. In the following section we describe
the case based on correlation method to detect multiple targets with different incident angles and
different RCS levels. The scattered field from a target received by the lens can be considered to be
a plane wave with initial amplitude and phase, which depends on several factors such as scattering
cross-section, the distance from the target to the lens, the properties of the atmosphere, etc.. We
develop the measurement database, comprising of the electric fields in the measurement plane that is
induced by single and multiple targets that have different combinations of orientations, distances and
scattering cross-sections. Thus, the measurement database is derived by doing a vector addition of the
field distributions due to the individual targets located at different angles.

The CM is based on correlating the measured field distribution in the measurement plane due to
an unknown distribution of targets with all the entries in the measurement database. The correlation
coefficient (ρn) for the nth entry in the database is defined as:

ρn =
1

(MiMj − 1) σMσD
n

Mi∑
i=1

Mj∑
j=1

[(
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) (
ED
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n

)∗]
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where the superscript ‘M ’ denotes the field distribution in the measurement plane induced by the
targets; the superscript ‘D’ denotes the known field distribution in the measurement plane, which is
stored in the database; and μ and σ refer to the mean and standard deviation of the field distribution,
respectively. Mi and Mj are the number of sample points in the measurement plane along x- and
y-directions, respectively. The value of n that maximizes ρ determines the angular locations of the
targets, as well as their relative RCSs.

To detect multiple targets we apply an adaptive two-step correlation process. First, we correlate
the field distribution in the measurement plane with the field distribution due to single target in the
measurement database. This would give us an exact angular location of the target if there is only one
target, and an approximate location if there are multiple targets. Next, we correlate the measured field
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distribution with that due to multiple targets also stored in the database. The advantage of carrying
out the first step is that it greatly reduces the number of correlations, once we have determined the
approximate location of the targets. This is because we just need to search within the beam-width of
the antenna to see if there is a single or multiple targets located within that particular beam-width
where the first step detects the presence of single or multiple targets. It is possible to employ some
adaptive techniques to further reduce the search complexity. However, the discussion of above issues is
beyond the scope of this paper.

To demonstrate the application of the method described, we now consider the above case of one
or two targets, though the approach can be extended to detect more than two targets located in close
proximity. The CM can achieve a very high resolution if one can accurately locate the maximum
correlation coefficient. But, the presence of noise can seriously impair the ability to do so if the number
of field sampling points in the measurement plane is small. Thus, not unexpectedly, noise is an important
factor that limits the resolution.

We also note that there is a cost involved in terms of higher computational complexity, which arises
because we need to compute the correlation for a large number of combinations. For example, if there
are two targets within a beam-width and they are randomly located in one of the N1 possible angles,
the possible scales of the amplitudes from the two targets is N2, the possible initial phase difference
between the scattering waves from the two targets is N3 then the number of combinations which need
to considered equals N1 × N1 × N2 × N3, which can be rather large. However, the computational
burden could be reduced by recognizing the fact that that each correlation operation is independent
and, therefore, the entire process is highly parallelizable. Moreover, the scaling efficiency in parallel
or distributed computations would approach unity because the correlation operations with different
combinations are totally independent and the communication between the processes is rarely required.

3. NUMERICAL RESULTS

The scattered field from a target which is being interrogated by the antenna operating in the receive
mode can be treated as a plane wave incident up on the antenna from the direction of the target,
and we use a commercial Finite Difference Time Domain (FDTD) [22] code to simulate the antenna
geometry, shown in Figure 1, to obtain the field distribution in the measurement plane. We do this for
a y-polarized unit amplitude plane wave for 16 different incident angles, given by ϕ = 0◦ and θ varying
from 30◦ to 45◦ with an interval of 1◦, and we set the observation frequency to 30 GHz. Figure 3 shows

(a)

(b)

Figure 3. Ex, Ey and Ez field distributions in
the measurement plane for different incident angles:
(a) θ = 30◦; and (b) θ = 40◦, with ϕ = 0◦.

(a) (b)

(c) (d)

Figure 4. Correlation coefficients for (a) Ex,
(b) Ey, (c) Ez, and (d) product of the three
components, for ϕ = 0◦ and θ varying from 30◦
to 45◦.
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the Ex, Ey, Ez field distributions at the measurement plane for a few selected incident angles. We note
that Ey is always higher than Ex and Ez because of the incident wave is y-polarized. Moreover, these
field distributions vary slightly with the gradual change in the angle of incidence. The maximum of the
field distribution shifts along the negative x-direction as θ varies from 30◦ to 45◦.

The simulated measured field provides us the positions of the samplings at arbitrarily locations
in the measurement plane, depending upon the mesh used in the simulation. For plane waves with
different incident angles, the meshes used are different and non-uniform. Therefore, we use a linear
interpolation algorithm to map the field to uniform grids for the purpose of generating the database
that would be used for correlation at a later stage.

In Figure 4, the correlation coefficients for each individual electric field component, as well as a
product of the correlation coefficients of all the three components are presented. The diagonal elements
represent the self-correlation coefficients which would be 1 for the ideal case when there is no noise. By
comparing Figures 4(a), (b), (c) with (d), it is observed that taking the product of the three correlation
coefficients further improves the resolution as compared to the case when just a single electric field
component is used. But this comes at the cost of measuring all the three components of the electric
field, which requires three separate sensors in a practical implementation.

Figure 5 shows the correlation coefficients for a single target located at an angle of θ = 37◦, ϕ = 0◦
with different noise levels, e.g., SNR = 35 dB, SNR = 25 dB, SNR = 15 dB, and SNR = 5 dB. Here,
we consider the additive Gaussian white noise that has a constant spectral density and a Gaussian
distribution of amplitude for convenience. We can find that the correlation coefficients decrease with
the increasing of the noise level. It means that the results of the correlation method are affected by
noise.

We next investigate the case of two targets with very small angular separation, i.e., less than half-
power beam-width. The two angles were randomly chosen from 30◦ to 45◦ in θ with ϕ = 0◦, and their
combined electric field distributions in the measurement plane were derived by using random amplitude
scaling factor in the range of [0.4, 2.5] and random initial phases in the range of [0◦, 359◦]. We consider
50 random pairs of incident plane waves. If there is only one target it would correspond to the case
when 1st and 2nd angles are the same. The total fields measured in the measurement plane can be
expressed as:

Etotal = a1e
jφ1E1 + a2e

jφ2E2 = a1e
jφ1

(
E1 +

a2

a1
ej(φ2−φ1)E2

)
(3)

where E1 and E2 are the known electrical fields measured in the measurement plane when uniform

(a) (b)

(c) (d)

Figure 5. Correlation coefficients for a single target located at an angle of θ = 37◦, ϕ = 0◦, with:
(a) SNR = 35 dB; (b) SNR = 25 dB; (c) SNR = 15 dB; and (d) SNR = 5dB.
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plane waves with unit amplitudes are incident on the lens from two different directions. Also, (a1, φ1)
and (a2, φ2) are the amplitude scales and initial phases of the fields scattered by the first and second
randomly chosen scatterers, respectively.

In the CM, the field distributions in the measurement plane are then correlated with those in the
measurement database. The highest value of correlation coefficient estimates the angular location of
the targets and their characteristics. In this paper we consider the step of the amplitude scaling factor
(a2/a1) as: 1, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 1/1.25, 1/1.5, 1/1.75, 1/2.0, 1/2.25 and 1/2.5; we also
consider the step of the difference of phase (φ2-φ1) as: 0◦, 9◦, 18◦, . . ., 351◦. We note that, for a pair of
incident angles, with an amplitude step of 0.25 and phase step of 9◦, it is necessary to consider a total
of 16 × 16 × 10 × 40 different combinations that are obtained if we take a combination of 10 cases for
the amplitude scaling factor (a2/a1), and 40 for the initial phase difference (φ2-φ1).

Next, we determine the optimal combination of the amplitude scale step (δa) and the phase
difference step (δφ) to achieve a high resolution. Three different δa and δφ combinations are considered:
(i) δφ = 9◦ and δa = 0.25; (ii) δφ = 18◦ and δa = 0.25; and (iii) δφ = 9◦ and δa = 0.5. Figure 6
shows the percentage accuracy for these three cases, computed by using the 50 random pairs of targets
in the absence of noise. As expected, the smaller the amplitude scale and phase difference steps, the
higher the accuracy we can achieve. In all cases, the angular error in the detection is less than 2◦. Also,
we note that: (i) results in more accurate estimation at the cost of higher computational complexity.
Hence, we choose δφ = 9◦ and δa = 0.25 to construct the measurement database.

(a) First angle (b) Second angle

Figure 6. Accuracy ratios for (a) first and (b) second incident angle with different search steps:
(i) δφ = 9◦ and δa =0.25, (ii) δφ = 18◦ and δa = 0.25, and (iii) δφ = 9◦ and δa = 0.5.

(c) First angle (d) Second angle

(a) Different case (First angle)

(b) Different case (Second angle)

Figure 7. Error distributions and accuracy ratios in the estimation results for (a), (c) the first and
(b), (d) second incident angle for different SNR with 18 samplings at each waveguide truncation plane.



Progress In Electromagnetics Research M, Vol. 37, 2014 209

(c) First angle (d) Second angle

(a) Different case (First angle)

(b) Different case (Second angle)

Figure 8. Error distributions and accuracy ratios in the estimation results for (a), (c) the first and
(b), (d) second incident angle for different SNR with 9 samplings at each waveguide truncation plane.

(c) First angle (d) Second angle

(a) Different case (First angle)

(b) Different case (Second angle)

Figure 9. Error distributions and accuracy ratios in the estimation results for the (a), (c) first and
(b), (d) second incident angle for different SNR with 4 samplings at each waveguide truncation plane.

Figures 7–10 show the target detection error distributions for the 50 random locations of a pair of
targets and their percentage target estimation accuracy, for different SNRs and for 18, 9, 4 and 1 field
sampling points, respectively, in the x- and y-directions for each waveguide in the measurement plane,
using search steps of δφ = 9◦ and δa = 0.25. It is evident that the target estimation accuracy is more
susceptible to noise when the number of field sampling points is lower. However, since it is difficult to
measure the fields at a large number of points in a waveguide in practical scenarios, we must resort
to a compromise between the target detection accuracy and the number of sampling points. Also, as
the SNR decreases to 10 dB, percentage target estimation accuracies achieved are 100%, 50%, 40% and
30%, for 18, 9, 4 and 1 sample, respectively. But, the SNR of a typical radar system can be kept well
above 20 dB. Therefore, for a SNR above 20 dB, we are able to achieve percentage target estimation
accuracies of 100%, 92%, 91% and 65%, respectively, by using 18, 9, 4 and 1 sample, respectively. The
error in the detection in the absence of noise is due to the error introduced by interpolation. Also, it
is observed from Figures 7–10 that the maximum error, the mean error and the variance of the error
increase as SNR decreases and the number of field sampling point decreases. But these values are within
reasonable limits for more than 4 field sampling points in the x- and y-directions in the measurement
plane for each waveguide with SNR greater than 20 dB.
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(c) First angle (d) Second angle

(a) Different case (First angle)

(b) Different case (Second angle)

Figure 10. Error distributions and accuracy ratios in the estimation results for (a), (c) the first and
(b), (d) second incident angle for different SNR with 1 samplings at each waveguide truncation plane.

4. CONCLUSIONS

In this paper, we have presented an adaptive correlation technique to achieve better than half-power
beam-width resolution in detecting multiple targets by using the flat-base Luneburg lens antenna. We
have shown that it is possible to detect two targets with nearly 90% accuracy for an angular separation
as small as 1◦ and an SNR of 20 dB. Also, it has been shown that the effect of noise could be further
reduced by measuring the fields at a larger number of locations on the measurement plane, albeit at an
increased computational cost.
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