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Abstract—A novel hybrid simulation based on the coupled Maxwell-Schrödinger equations has been
utilized to investigate, accurately, the dynamics of electron confined in a one-dimensional potential
and subjected to time-dependent electromagnetic fields. A detailed comparison has been made for the
computational results between the Maxwell-Schrödinger and conventional Maxwell-Newton approaches,
for two distinct cases, namely, characterized by harmonic and anharmonic electrostatic confining
potentials. The results obtained by the two approaches agree very well for the harmonic potential
while disagree quantitatively for the anharmonic potential. This clearly indicates that the Maxwell-
Schrödinger scheme is indispensable to multi-physics simulation particularly when the anharmonicity
effect plays an essential role.

1. INTRODUCTION

Hybrid simulation is an essential approach to study multi-physics phenomena ruled by more than one
governing equations. One of typical multi-physics examples is the light-matter interaction in which
an incident laser field excites electrons in the matter and then the excited electrons in turn modify
the electromagnetic field as a polarization current source. In the last decade this cooperative light-
matter interaction has been actively studied with growing interests particularly in designing innovative
photonic devices such as plasmonic antennas, quantum dot laser, and so on [1–3]. Currently, the
multi-physics phenomena in such devices have been studied by two distinct hybrid schemes, namely,
based on the Maxwell-Schrödinger and Maxwell-Newton theories [4–9]. The Maxwell-Schrödinger hybrid
scheme [4–8] is computationally demanding but physically precise, where the laser field is governed by
Maxwell’s equations and the electrons by Schrödinger’s equation. This scheme has been successfully
used recently in pioneering numerical simulations such as for a carbon nanotube transistor [4], H+

2 gas
interacting with ultrashort laser pulses [7, 8], and so on. The other approach, namely, the well-known
Maxwell-Newton hybrid scheme [9], where the laser field and electrons are described by solving Maxwell’s
equations and Newton’s equation of motion, respectively, requires much less computational resources,
and thus has been very often employed to perform multi-physics simulations [1–9] without, however,
paying much attention to its physical reliability. Very recently, we have examined a reliability of the
conventional Maxwell-Newton hybrid scheme for an electron confined in one-dimensional potential wells.
A comparison of computational results with those obtained by the corresponding Maxwell-Schrödinger
scheme [6] has revealed that both results agree very well for a harmonic single-well potential while
disagree qualitatively for a triple-well potential where a harmonic potential is artificially supplemented
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by two small humps allowing bifurcation of the electron wave packet. Although this study clearly
demonstrates necessity of use of the Maxwell-Schrödinger scheme over the conventional Maxwell-Newton
one particularly when quantum-mechanical tunnelling takes place, an effect of anharmoicity in a single-
well confining potential on computational results has not been fully explored.

In this paper we have studied a system of a nano-scale thin film interacting with pulsed laser
fields whose electrostatic confining potential for electron is modelled by a single-well potential. Since
tunnelling effects can be safely neglected for a single-well potential, we can make unambiguous
manifestation of an effect of anharmonicity in the confining potential on differences between
computational results obtained from the two distinct hybrid schemes. This allows us to clarify further
the extent of applicability of the conventional Maxwell-Newton scheme from physical viewpoints.

2. THEORETICAL MODEL AND FORMULATIONS

Figure 1 illustrates our theoretical model used in the present study. The thin film is uniform in the y-z
plane and its optical properties are assumed to be calculated from the responses of one representative
electron among a larger number of electrons comparable to the order of Avogadro’s number. The
incident electromagnetic fields consisting of only Ey and Hz components are given by a plane wave,
which excite all electrons in the film to the polarization direction y. This one-dimensional model enables
us to solve both of Maxwell-Schrödinger and Maxwell-Newton equations very accurately, allowing us a
detailed comparison of their computational results.
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Figure 1. Geometry and coordinate systems. A thin film and incident current sources, illustrated by
a grey box and blue arrows, respectively, are uniform in the y-z plane. All electrons in the film are
confined in the electrostatic potential V , and can move along the y axis which is parallel to the direction
of the electric field.

2.1. Maxwell-Schrödinger Hybrid Scheme

The computational procedure to solve the Maxwell-Schrödinger scheme is described in Figure 2(a).
Maxwell’s equations for dielectric objects are given by

∇×E = µ0
∂H
∂t

, (1)

∇×H = ε0
∂E
∂t

+ J, (2)

where J represents the polarization current density which is defined by the time derivative of the
polarization vector P.
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Maxwell-Schrödinger scheme(a) Maxwell-Newton scheme(b)

Figure 2. A schematic illustration of the computational schemes for the two hybrid simulations:
(a) Maxwell-Newton and (b) Maxwell-Schrödinger.

Since the electromagnetic fields have only Ey and Hz components in the present study, they can
be updated by the following recursion relations based on the Maxwell FDTD method [5, 6, 10]:

Hn+1/2
z (i + 1/2)=Hn−1/2

z (i + 1/2)− ∆t

µ0∆x

{
En

y (i + 1)− En
y (i)

}
, (3)

En+1
y (i)=En

y (i)− ∆t

ε0∆x

{
Hn+1/2

z (i + 1/2)−Hn+1/2
z (i−1/2)

}
−∆t

ε0
δ (i− iF ) Jn+1/2

y (i), (4)

where n, i, iF , and δ represents the time step, the space grid along the x axis, the cell position of
the thin film, and Kronecker delta function, respectively. The edges of computational domain in the
Maxwell FDTD simulation are supplemented by the Mur absorbing boundary condition [10].

The Schrödinger equation for an electron subjected to a laser field is given by

i~
∂ψ

∂t
= − ~

2

2m

∂2ψ

∂y2
− qyEy + V, (5)

where the so-called length gauge has been adopted to describe the interaction between the electron
and the electromagnetic field [11]. The following recursion relations based on the Schrödinger FDTD
method [4–8, 12] can be obtained by separating the real and imaginary parts of the Schrödinger equation:

ψ
n+1/2
imag (j) = ψ

n−1/2
imag (j) +

~∆t

2m
α {ψn

real(j)} −
∆t

~
{

V (j)− qyEn
y (iF )

}
ψn

real(j), (6)

ψn+1
real (j) = ψn

real(j)−
~∆t

2m
α

{
ψ

n+1/2
imag (j)

}
+

∆t

~

{
V (j)− qyEn+1/2

y (iF )
}

ψ
n+1/2
imag (j), (7)

where ψimag and ψreal are the imaginary and real parts of the wave function ψ discretized on the space
grids {j} placed along the y axis. The operator α in these equations performs the following sixth-order
accurate difference to simulate the second-order derivative ∂2/∂y2 for an arbitrary function F :

α {F (j)}=
1

90∆y2
{F (j + 3)− 13.5F (j + 2) + 135F (j + 1)

−245F (j) +135F (j − 1)− 13.5F (j − 2) + F (j − 3)} . (8)
We employ the following Dirichlet boundary for the Schrödinger FDTD simulation:{

ψ(1) = ψ(2) = ψ(3) = 0,
ψ(jmax − 2) = ψ(jmax − 1) = ψ(jmax) = 0, (9)
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where jmax denotes the number of grids for the y axis. This condition is well-known to induce spurious
oscillations when the wave function impinges on the boundary. Therefore, we utilize sufficient wide
analysis domain so as to avoid these numerical artifacts.

The polarization current density J in the Maxwell-Schrödinger scheme is defined by the following
expression with the electron density N :

J = qN

∫ ∞

−∞
ψ∗

~
im
∇ψ dυ. (10)

Equation (10) describes the average behaviour of the current density due to the motion of all electrons
expressed by the wave function of a representative electron. The y component of (10) can be evaluated
by

Jn+1/2
y (iF ) =

qN~∆y

m

K−3∑

j=4

[
ψ

n+1/2
real (j)β

{
ψ

n+1/2
imag (j)

}
− ψ

n+1/2
imag (j)β

{
ψ

n+1/2
real (j)

}]
, (11)

where the operator β performs the following sixth-order accurate difference to simulate the first-order
derivative ∂/∂y for an arbitrary function F .

β {F (j)} =
1

60∆y
{F (j + 3)− 9F (j + 2) + 45F (j + 1)−45 F (j − 1) + 9 F (j − 2)− F (j − 3)} . (12)

The Maxwell-Schrödinger scheme is realized by using Equations (3), (4), (6), (7), and (11) recursively
as illustrated in Figure 2(a).

2.2. Maxwell-Newton Hybrid Scheme

The computational procedure adopted in the Maxwell-Newton scheme is shown in Figure 2(b). The
part for solving Maxwell’s equations is the same as in the Maxwell-Schrödinger schemes based on (3)
and (4). The following Newton equation is employed to describe the motion of an electron confined by
the electrostatic potential V and subjected to an external electromagnetic field:

m
d2y

dt2
= qEy + FV , (13)

FV = −∂V

∂y
, (14)

where we assume that the electron feels no frictional force. The polarization vector P and polarization
current density J in the Maxwell-Newton scheme [9] are, respectively, defined by

P = qNr, (15)

J =
∂P
∂t

. (16)

One can derive the following recursion relations for simulating these polarization and current density in
the FDTD framework as

Jn+1/2
y (i) = Jn−1/2

y (i) +
qN∆t

m

{
qEn

y (i) + Fn
V (i)

}
, (17)

Pn+1
y (i) = Pn

y (i) + ∆tJn+1/2
y (i). (18)

In the Maxwell-Newton scheme Equations (3), (4), (17), and (18) are solved recursively as displayed
schematically in Figure 2(b).
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3. COMPUTATIONAL RESULTS

The incident laser fields are generated from the following electric and magnetic current sources J(i)
e and

J(i)
m with the unit function u(t)

J(i)
e =

J0

∆x
√

µ0/ε0

exp

{
−0.5

(
t0 − t

σt

)2
}

u(t)ây, (19)

J(i)
m =

J0

∆x(µ0/ε0)
exp

{
−0.5

(
t0 − t

σt

)2
}

u(t)âz, (20)

where we have set J0, ∆x, σt, and t0 as 1000MA/m, 0.125 nm, 1.25 fs, and 20σt fs, respectively. The
time step ∆t is chosen to be smaller by a factor of 0.9 than ∆tCFL, i.e., the maximum value allowed in
the CFL condition [10], so as to guarantee numerical stability.

We compare the results simulated by the Maxwell-Schrödinger and Maxwell-Newton schemes for
the following three electrostatic potentials VS , VD, and VAH :

VS =
mωSy2

2
, (21)

VD = VS + V0 exp

{
−0.5

(
yD + y

σD

)2
}

, (22)

VAH = V1

(
y

yAH

)4

, (23)

where the parameters characterizing the potentials, ωS , V0, σD, yD, V1, and yAH , are given as 50Trad/s,
0.5 eV, 0.625 nm, 10σD nm, 4.5 eV, and 25 nm, respectively. The potential energy curves for these three
potentials are plotted in Figure 3. As displayed in this figure VS is a single-well and harmonic potential,
while VD is almost identical to this VS potential but is supplemented by a small ‘humps’ located at
around y = −6.25 nm. This hump allows the quantum electron to bifurcate every time when it impinges
on the hump owing to tunnelling while does not for the classical electron, as we explored in our previous
study [6]. The third potential VAH is single-well but anharmonic, which allows us to investigate a
different quantum mechanical effect other than that caused by tunnelling. We have chosen the ground
state of each of these electrostatic potentials as the initial wave packet in all quantum simulations.

The time responses of the polarization current density J in the thin film obtained by the two hybrid
simulations are represented in Figure 4, where the blue solid and red broken lines represent, respectively,
the numerical results obtained by the Maxwell-Schrödinger and Maxwell-Newton schemes. Figure 4(a)
representing the results for the single and harmonic well VS shows that both results agree excellently,
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Figure 3. Spatial profile of the studied electrostatic potentials: the blue line with circles represents the
harmonic single-well potential VS while the red and green lines denote the almost harmonic double-well
potential VD and anharmonic single-well potential VAH , respectively.
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indicating that the classical theory of the Maxwell-Newton scheme can be safely used for this case.
On the other hand, Figure 4(b), displaying the results for the double-well potential VD, shows that
the polarization current densities obtained from these two schemes deviates from each other more and
more strongly after the first 30 fs. This indicates that the Maxwell-Newton scheme is unreliable for this
double-well potential, as was demonstrated in our previous study for a triple-well potential [6]. The
results displayed in Figure 4(c) for the anhamonic potential VAH shows a trend somewhat between (a)
and (b): the polarization current density of the Maxwell-Newton scheme roughly follows that of the
Maxwell-Schrödinger scheme, but there can be observed a quantitative difference between them. This
indicates that the Maxwell-Newton scheme could become unreliable for quantitative calculation even
when the confining potential is single well.

In order to rationalize the observed trends, we have investigated the dynamics of electron in the
thin film, namely, the spatiotemporal propagation of the electron wave packets and the corresponding
classical trajectories obtained, respectively, by the Maxwell-Schrödinger and Maxwell-Newton schemes.
The results for the three electrostatic potentials VS , VD, and VAH are displayed in Figures 5(a), 5(b),
and 5(c), respectively. In the figures the thick oscillatory curve in color whose scale is displayed on
the right end of each figure indicates the time-evolution of the probability density of the electron
wave packet |ψ|2 and the triangles plotted in the same figure denote the classical trajectory. On the
left-hand side of each figure the potential energy curve of the corresponding electrostatic potential is
also plotted. The vertical axes for both sides of the figure commonly indicate the y axis. As shown
in Figure 5(a) representing the results for the single and harmonic well, the electron wave packet is
localized at each time step keeping a Gaussian shape similar to the ground state and closely follows
the corresponding classical trajectory. This excellent agreement between the quantum and classical
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Figure 4. Comparison of the time response of the polarization current density for the electrostatic
potentials VS , VD, and VAH (See Figure 3). (a), (b), and (c) Correspond, respectively, to the case for
the electrostatic potential VS , VD, and VAH . The blue solid and red broken lines represent the results
obtained by the Maxwell-Schrödinger and Maxwell-Newton schemes, respectively.
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electron dynamics results in an almost identical behaviour of the current densities obtained by these
two schemes as displayed in Figure 4(a). On the other hand, Figure 5(b), representing the results for
the double-well VD, shows that the electron wave packet gets fragmented into several pieces due to
tunnelling. Furthermore interference among these fragments makes the wave packet complicated even
further. Since the classical dynamics could not support such fragmentation and interference, the current
density obtained by the Maxwell-Newton scheme deviates largely from that obtained by the Maxwell-
Schrödinger scheme as observed in Figure 4(b). Figure 5(c), representing the results for the anharmonic
potential VAH , shows that the electron wave packet follows the corresponding classical trajectory in
the beginning before t∼200 fs. For the later time t, however, the electron wave packet starts to spread
gradually and a nodal structure in the probability density appears. This nodal structure reflects the
fact that the electron wave packet is no more a single Gaussian distribution but is fragmented into a
few components. In case for purely harmonic electrostatic potentials an initial Gaussian wave packet
remains to be a Gaussian through time propagation. Therefore, the observed fragmentation is caused by
anharmonicity in the electrostatic potential, which induces dephasing of the electron wave packet. Since
classical mechanics cannot account for such dephasing effects, the classical trajectory deviates from the
center of the electron wave packet, which causes a difference in the polarization current density between
the two schemes.

Next, we have examined a dependence of the computational results on the strength of the applied
laser field. Since the applied laser field we have studied so far is rather strong, we have employed a
weaker laser field here by decreasing the amplitude of the current sources 10 times smaller than that used
for the simulations in Figures 4 and 5 as J0 = 100 MA/m. Figures 6(a) and 6(b) display the resultant
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Figure 5. Time evolution of the electron wave packet and the corresponding classical trajectory.
(a), (b), and (c) Correspond, respectively, to the results for the electrostatic potential VS , VD, and VAH .
The spatial profile of the potential is displayed on the left-hand side of each figure. The thick curve in
color scale represents the probability density of the electron.
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Figure 6. Comparison of the time response of the polarization current density for different electrostatic
potentials. (a), (b), and (c) Correspond, respectively, to the cases of VS , VD, and VAH . The thin
film is subjected to the weak electromagnetic fields excited by current sources with the amplitude
J0 = 100MA/m. See the caption to Figure 4 for other remarks.

time responses of the polarization current densities J for the single- and double-well potentials VS and
VD. The blue solid and red broken lines represent the results obtained by the Maxwell-Schrödinger and
Maxwell-Newton schemes, respectively, as for Figure 4. Unlike the results in Figure 4 the polarization
current densities for not only the single-well potential VS but also the double-well potential VD obtained
by the two schemes agree very well as displayed in Figures 5(a) and 5(b). On the other hand, Figure 6(c)
representing the result for the anharmonic single-well potential VAH shows that the computational
results by the two hybrid simulations still differs quantitatively from each other.

As has been done in Figure 5 for the strong electromagnetic field, the time evolution of the electron
wave packet and the corresponding classical trajectory for this weak laser field are displayed in Figure 7,
where (a), (b), and (c) denote the numerical results for VS , VD, and VAH , respectively. It is noted
that Figures 7(a) and 7(b), representing the results for VS and VD, are almost identical to each other
and that no fragmentation of the electron wave packet is observed for the double-well case unlike the
corresponding result in Figure 5(b). This can be rationalized by the small strength of the laser field as
follows: since the electric field of the laser pulse is small, it could not give enough energy to the electron
to reach the hump of the potential for VD. Therefore, since the potential energy curves of VS and VD

below this hump are exactly the same harmonic potential, their electron dynamics should naturally be
identical to each other for this weak strength of the laser field. In the case of the anharmonic potential
VAH illustrated in Figure 7(c), however, the electron wave packet spreads as the time proceeds and it
undergoes bifurcation after t = 300 fs. Therefore, this dephasing effect existing only in the quantum
simulation causes a difference between the results obtained by the two schemes even when the laser field
is sufficiently weak.

The present investigations show that the conventional Maxwell-Newton scheme can be applied not
only to macroscopic problems as have been studied in most cases but also to microscopic problems
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Figure 7. Time evolution of the electron wave packet and the corresponding classical trajectory for the
weak electromagnetic fields excited by current sources with the amplitude J0 = 100 MA/m. (a), (b),
and (c) Correspond, respectively, to the cases of the electrostatic potential VS , VD, and VAH . See the
caption to Figure 5 for other remarks.

of a nano-scale order on condition that the electrostatic confining potential for electron is purely
harmonic. However, when the electrostatic potential deviates from a harmonic one even slightly, the
Maxwell-Newton scheme would give unreliable results owing to quantum-mechanical tunnelling and/or
anharmonicity effects. Therefore, such problems should be solved by the Maxwell-Schrödinger hybrid
scheme.

4. CONCLUSIONS

In this paper, we have focused on the anharmonisity of the electrostatic potential, and investigated
the interaction between laser fields and a nano-scale thin film modelled by an electron confined in
an electrostatic potential. The two distinct hybrid simulations, the Maxwell-Schrödinger and the
conventional Maxwell-Newton schemes, have been compared for an anharmonic single-well potential
problem, where quantum-mechanical tunnelling does not take place. Furthermore, harmonic single-
well and harmonic double-well potential problems have been also investigated to make a comparison
with the results for the anharmonic single-well potential. The computational results show that the
two multi-physics simulations provide almost identical results for the harmonic confining potential,
indicating a validity of use of the conventional Maxwell-Newton scheme for this case. In the case of the
double-well potential, however, the results by the Maxwell-Newton approach differ significantly from
those by the Maxwell-Schrödinger approach when tunnelling plays an important role. Finally, for the
case of the anharmonic potential, the result of the Maxwell-Newton simulation deviates from that of
the Maxwell-Schrödinger simulation quantitatively owing to an effect of dephasing of the electron wave
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packet by the anharmonicity in the electrostatic potential. These results have clearly demonstrated
that the Maxwell-Schrödinger scheme is indispensable to multi-physics simulation particularly when
the tunnelling, interference and anharmonicity effects play an essential role.
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