
Progress In Electromagnetics Research, Vol. 149, 45–54, 2014

Full-Wave Semi-Analytical Modeling of Planar Spiral Inductors
in Layered Media

Yan-Lin Li and Sheng Sun*

Abstract—In this paper, we present a full-wave semi-analytical solution to calculate the self and
mutual impedances of two coupled spiral inductors with rectangular cross sections. In low-frequency
electromagnetism, the self and mutual impedance of planar spiral inductors can be obtained based on the
eddy current approximation, where the displacement current is disregarded. As the frequency increases,
the size of the system can be designed to be smaller. However, the displacement current becomes more
important in inductively-coupled systems. By directly deriving the Maxwell’s equations without the
eddy current assumption, the obtained full-wave model could be applied to both homogeneous and
planarly layered media for wireless power transfer systems. Compared to the traditional methods,
the newly derived impedances show a considerable discrepancy at GHz frequencies for millimeter-sized
inductors, indicating the significance of the displacement current if the operating frequency of wireless
power transmission reaches the GHz-range.

Nomenclature

E, H: Electric and magnetic fields
δ(x): Dirac Delta function
ρ, ϕ, z: Coordinates of the cylindrical coordinate system
ρn, zn: Radius and position of loop/coil n

ρni, ρno: Inner and outer radii of coil n, see Fig. 3
σ: Conductivity
ε0, μ0: Permittivity and permeability of free space
εr, μr: Relative permittivity and permeability
Bm,Dm: The amplitudes of upgoing and downgoing waves in layer m

dm: Location of layer m, see Fig. 3
F (z, z1): Propagation function in layered media
f, ω: Operation frequency and angular frequency

H
(1)
0 (x) , H

(2)
0 (x): Hankel functions

I, J : Electric current and electric current density in a loop/coil
k, kρ, kz: Wave number and its ρ and z components
km, kmz : Wave number and its z component in layer m

tm: Thickness of layer m, see Fig. 3
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wn, hn, sn: Width, thickness and spacing of coil n, see Fig. 3

Zij
mn,M ij

mn, Rij
mn: Self (i = j and m = n) or mutual impedance, inductance and resistance between

coil m of inductor i and coil n of inductor j

J0 (x) , J1 (x)Bessel functions of the first kind

1. INTRODUCTION

Analytical and semi-analytical solutions are possible and always preferable in the modeling of inductors
with regular configurations, among which planar inductors with cylindrical symmetry and rectangular
cross section are the most common case. In the literature, the inductance formulae can be derived
from the magnetic coupling between two coaxial circular current filaments [1–3], the Neumann’s
formula [4, 5], or the approximate expressions based on the data-fitting technique [6, 7]. Previous
research mainly focused on inductors with different shapes, coaxial and non-coaxial configurations,
and simple background was assumed. In addition, the eddy current approximation was used for low-
frequency electromagnetism, which could be utilized for medical implant applications [8], for example.

Recently, high-frequency operations are of great interest as the density of electronic circuits grows
and the exploitation of usable high frequencies, such as terahertz (THz), has advanced considerably.
For inductor-based converter, a more accurate model is needed to predict the substrate leakage currents
in a large frequency range, from a few megahertz up to 4–5 GHz [9, 10]. For wireless power transmission
(WPT) into dispersive tissue, the optimal frequency was reported to be above 1 GHz when the size of
the transmit coil became much smaller than the wavelength [11–13]. Since the tissue can be considered
as a low-loss dielectric, the ratio between the displacement current and the conduction current is
characterized by ωε/σ. In high-frequency regime, ωε is comparable to or even larger than σ, which
means the displacement current is not negligible any more. Hence, a full-wave or full-wave model for a
coupled inductor system should be established to solve the self and mutual impedances more accurately.

In [11, 14], the vertical magnetic dipole (VMD) model [15] was applied to describe a WPT system
with two concentric loops. The electromagnetic fields, due to a current loop over planarly layered media,
can be obtained by computing a series of Sommerfeld integrals (SIs). Note that VMD model is only
suitable for tiny current loops without considering the cross-section, where approximate magnetic dipole
sources were assumed. It implies that it cannot be directly applied on a current loop with relatively
large size, and a practical case with the cross-section. Hence, a general analytical or semi-analytical
model is urgently appealing for more practical cases, which might also be considered as a more accurate
3D benchmark for the available computational electromagnetic solvers.

To address the aforementioned issues, we propose a full-wave model to describe a system with
two coupled planar spiral inductors. The transmitting and receiving inductors have N1 and N2

turns of coaxial planar circular coils with rectangular cross-sections, respectively, which are located in
planarly layered media. The wave propagation through inhomogeneous media can also be modeled by
incorporating both the eddy current and the displacement current terms in Faraday’s law. Furthermore,
the self and mutual impedances can be obtained by the filament method and the equivalent circuit theory,
where the cross section influence of coils is also taken into account. Based on this full-wave framework,
the high-frequency responses of self and mutual impedances (Zij

mn) of the coupled spiral inductors can
be captured and modeled semi-analytically. To the best of our knowledge, the idea in [16] was firstly
proposed for geophysical probing. In this work, it is the first attempt to derive the solution to the field
radiated by a planar spiral inductor by involving the conductivity (σ) and the permittivity (ε) in an
explicit form, and then incorporate the filament method [3] to investigate the wave propagation into
inhomogeneous media. Therefore, the eddy current effect and the displacement current effect on the
impedances of a coupled spiral inductor system can be captured simultaneously.

The remainder of this paper is organized as follows: the coupled inductor system is described
and semi-analytical solutions of Zij

mn are derived in Section 2. In Section 3, the proposed solution is
verified numerically based on a finite-element method, and different examples are demonstrated for both
homogeneous and inhomogeneous layered media. Finally, this paper will be concluded by an overview
in Section 4.
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2. FORMULATIONS AND EQUATIONS

As shown in Fig. 1, the two coaxial spiral inductors are embedded in a planarly layered media. The
layered media are vertically inhomogeneous, with the topmost and the bottommost layers being half-
spaces, and characterized by μ, ε and σ. This model can be considered as a simplified WPT system
used in implantable biomedical devices.
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z
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layer −m coil 1coil 2
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Figure 1. Spiral inductors with rectangular cross section in layered media: (a) 3-dimensional view,
and (b) sectional view.

2.1. Formulation Using Filament Method

Assuming a time dependence e−iωt for all sources and fields, the electromagnetic fields due to an electric
current source satisfy

∇× H+(iωε − σ)E = Je, (1)
∇× E = iωμH. (2)

Considering Je as a loop current source, only transverse electric (TE) modes can be excited because
of the cylindrical symmetry. All the derivations below are assumed to be carried out in the cylindrical
coordinate system. Following the procedure in [16, 17], (1) and (2) can be combined to be (3).(

∂
∂ρ

1
ρ

∂
∂ρρ + ∂2

∂z2 + ω2με + iωμσ
)

Eφ= − iωμIδ (ρ − ρ1) δ (z − z1) (3)

Letting

Eϕ=
∫ ∞

0
dkρkρẼφJ1 (kρρ), (4)

we have (
∂2

∂z2
+ k2

z

)
Ẽϕ = −iωμIδ (z − z1) ρ1J1 (kρρ1) , (5)
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where k2 = ω2με + iωμσ and k2
z = k2 − k2

ρ. The solution of (5) is given by

Ẽϕ = −ωμIρ1J1 (kρρ1) eikz |z−z1|

2kz
, (6)

and hence from (4) we can obtain (7),

Eϕ (ρ, z) = −Iωμρ1

2

∫ ∞

0
dkρ

kρ

kz
J1 (kρρ) J1 (kρρ1) eikz|z−z1| (7)

which is the electric field generated by a current loop in free space. If the background consists of layered
media, the propagation function in the integrand of (7), eikz |z−z1|, needs to be augmented by an upgoing
wave plus a downgoing wave [15, 16]. For example, suppose the transmitter and receiver are placed in
layer n and layer m, respectively. We have (8),

Eϕ (ρ, z) = −Iωμρ1

2

∫ ∞

0
dkρ

kρ

k0z
J1 (kρρ)J1 (kρρ1)F (z, z1) (8)

where
F (z, z1) = eikmz |z−z1| + Bme−ikmzz + Dmeikmzz. (9)

Bm and Dm can be solved recursively by applying constraint conditions at the boundaries of different
layers [15, 16].

After E radiated by the source loop is determined, we can obtain the electromotive force (emf )
introduced at the receiver loop, i.e.,

E =
∮

E · dl =
∫ 2π

0
ρEϕdϕ = 2πρEϕ (10)

According to the circuit theory, the mutual impedance between two loops can be defined as

E = ZI = (R + iωM) I. (11)

Obviously, Z is frequency-dependent, due to the frequency dependence of kmz . Moreover, since both
the effects of the eddy current (σE) and displacement current (iωεE) are taken into account in (1), this
full-wave solution is practical and accurate for the high-frequency modeling. In the air, note that if the
displacement current term in (3) is omitted, we have kz = −ikρ and hence

M = πμ0ρρ′
∫ ∞

0
dkρJ1 (kρρ) J1 (kρρ1) ekρ|z−z1|, (12)

which becomes the traditional formula of the mutual inductance between two filaments [1] without
considering the displacement current term.

2.2. Impedances of Two Coupled Spiral Inductors

Similar to the previous procedure [3], the self and mutual impedances can be obtained based on the
filament formulation and superposition theorem. First, let us consider the impedances between receiving
coil m and transmitting coil n. For typical printed circuits, the metal thickness is normally on µm scale,
and thus the aspect width to height ratio could be much larger than 1. As the dimension of the coils is
far less than the wavelength, it is reasonable to assume the current density (Jϕ) is inversely proportional
to the filament radius ρ [3], i.e.,

Jϕ (ρ, t) =
Ie−iωt

ρh ln (ρo/ρi)
. (13)

Since dI = Jϕ (ρ) dρdh, (14) can be obtained by integrating (7) over the cross section of coil n,

Eϕ (ρ, z) = − Iωμ

2hn ln (ρno/ρni)

∫ ∞

0
dkρ

kρ

k0z
J1 (kρρ)

∫ ρno

ρni

dρ1J1 (kρρ1)
∫ hn

2

−hn
2

dhe−ikz |z−(zn+h)| (14)
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and further simplified by ∫ ρno

ρni

dρ1J1 (kρρ1) =
J1 (kρρno) − J1 (kρρni)

kρ
. (15)

Similarly, following the routine in [3], the mutual impedance between these two coils is given by (16),

Zmn =Z0

∫ ∞

0
dkρ

[J1(kρρmo)−J1(kρρmi)] [J1(kρρno)−J1(kρρni)]
kρk0z

∫ hm
2

−hm
2

dτ1

∫ hn
2

−hn
2

dτ2e
−ikz |(zm+τ1)−(zn+τ2)|,

(16)
where

Z0 =
ωπμ

hmhn ln (ρmo/ρmi) ln (ρno/ρni)
. (17)

When the background is free space, the inner double integral can be solved analytically. For the layered
media, since the exponential term in (15) is substituted by F (z, z1), the inner double integral has to be
evaluated numerically. Then, the impedances between the inductors can be obtained by summing up
all the coil impedances, i.e.,

Zij =
Ni∑

m=1

Nj∑
n=1

Zij
mn (18)

2.3. Sommerfeld Integral (SIs) Evaluation

The only difficulty to obtain the impedances lies in the slow convergence of Sommerfeld-type integrals
involved in (7), (8), (14), (16). It is because the integrand includes highly oscillatory Bessel functions,
slowly decaying exponential terms, as well as singularities introduced by kmz . More specifically,
the singularities are related to the k2

z = k2 − k2
ρ dependence and vanishing denominator of the

integrands [15, 18]. SIs have no closed-form solution and thus must be calculated numerically. The
simplest way to evaluate SIs is deforming the Sommerfeld integration path (SIP) from the real axis
into the complex kρ plane, by virtue of the Cauchy’s theorem. On the other hand, the tabulation and
interpolation method [19], discrete complex image method (DCIM) [20], and the steepest descent path
(SDP) [15, 21] can also be applied to accelerate the convergence.

Here, the original SIP is deformed into the forth quadrant and divided into sub-paths with
exponentially increasing length. Furthermore, Bessel functions are transformed using Hankel functions
and the reflection formula: ⎧⎪⎨

⎪⎩
J0 (kρρ) =

H
(1)
0 (kρρ) + H

(2)
0 (kρρ)

2
H

(1)
0 (−x) = −H

(2)
0 (x)

. (19)

In this way, the singularities are avoided and the asymptotic behavior of Hankel functions contributes
to a fast convergence when the exponential damping in SIs is small.

3. NUMERICAL DEMONSTRATION

Since ε, σ and ω are all incorporated in the above formulation, both the dielectric loss and the
displacement current effect at high frequencies can be captured. Here, the interested frequency range is
in GHz for the mm-sized inductors, where the wavelength is much larger than the coil dimensions and
thus (13) is guaranteed.

3.1. Field Distribution in Inhomogeneous Media

To verify our proposed solution, a two-half-space-layer problem is considered, where an electric current
loop (ρ1 = 2 cm, z1 = 0, f = 1 GHz) lies d = 1cm above a layer filled with lossy medium
(εr = 100, σ = 10), as shown in Fig. 2(a). Fig. 2(b) and Fig. 2(c) show the semi-analytical and
simulated Eϕ (ρ, z) line distributions along the vertical z- and horizontal ρ-directions, respectively. It
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Figure 2. Eϕ(ρ, z) distribution of (a) a current loop along (b) line ρ = 2 cm, ϕ = 0, and (c) z = 0,
ϕ = 0.

can be noticed that the semi-analytical solutions obtained by (8) have good agreements with those
obtained by the numerical method based on finite element method (FEM). It is interesting to observe
that Eϕ decays faster in the lower layer than that in the upper layer, due to the dielectric loss.

3.2. Impedances of Coupled Spiral Inductor Systems

Let us consider a more general inductively coupled system with two spiral inductors, as shown in Fig. 3.
The dimensions are tabulated in Table 1. Here we only evaluate the mutual impedances between the
two inductors, while the self-impedances can be obtained in the similar way. First, the air background
is considered, as shown in Fig. 3(a). The calculated inductances and resistances in frequency range
from 0.1 to 10 GHz are shown in Fig. 4. Also, Table 2 gives a quantitative comparison of the proposed
and referred M21. Note that the results obtained by the proposed method have a good agreement
with those obtained by the eddy current assumption below 1 GHz. However, considerable discrepancy
occurs at GHz frequency regime for both inductance and resistance. This is consistent with the physics
that the M21 and R21 are frequency-dependent, and the displacement current becomes significant when
the frequency becomes higher and the wave effect appears. Moreover, M21 reaches the maximum at
f = 6.31 GHz, which has a 56.0% discrepancy from the traditional calculation.

It should be pointed out that Rij
mn is 0 because the expression of Zij

mn is previously purely
imaginary [1] for an air background case. However, Rij

mn is a nonzero value as Zij
mn is a complex number

based on the proposed full-wave formulation. Note that at frequencies above 10 GHz, the wavelength
becomes comparable to the inductor dimension, and thus (13) fails to approximate the real current
distribution along the inductors. Fig. 4(b) shows a general sketch of the frequency-variant R21.
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Table 1. Dimensions for the spiral coils.

N1 z1 ρ1 w1 h1 s1

4 17.5 µm 0.5 mm 1mm 35 µm 0.5 mm
N2 z2 ρ2 w2 h2 s2

3 −1.00175 cm 0.5 mm 1mm 35 µm 0.5 mm

Table 2. Comparison between the proposed results and reference for M21 (nH).

M21
11 M21

12 M21

Reference 0.0016 0.0098 1.5712
Proposed (f = 108 Hz) 0.0016 0.0098 1.5717

Proposed (f = 6.31 × 109 Hz) 0.0020 0.0119 2.4512
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Figure 3. Spiral inductors embedded in (a) air and (b) layered media.

The proposed method can also be applied to the case with the presence of planarly layered media,
based on the augmented propagation function. For simplicity but without loss of generality, 3-layer
medium is considered. As shown in Fig. 3(b), the topmost layer (layer 0) and the bottommost layer
(layer −2) are the air, while the middle layer (layer −1) is the dielectric.

To model the displacement current effect, f = 1 GHz, μr = 1.0 and σ = 0 are assumed, while the
other parameters maintain the same as shown in Table 1. Fig. 5 presents M21 and R21 as functions of
εr for different values of thickness of layer −1. Results for air background case are also presented for
reference. As εr increases, both M21 and R21 increase, then reach the maximum, and finally start to
drop. Because σ = 0, it means there is no eddy current existing in the system. Thus, the oscillations are
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Figure 5. Mutual (a) inductances and (b) resistances of the system in inhomogeneous media.

Table 3. Comparison between the proposed result and reference for M21 (nH) and R21 (Ω).

M21 R21

f = 108 Hz Peak f = 108 Hz Peak
Reference 1.5708 - 0.0121 21.8706a

Proposed 1.5826 2.5347b 0.0124 70.8615c

a f = 3.9811 GHz; b f = 1.0798 GHz; c f = 2.1544 GHz.

mainly caused by the effect of the displacement current. In addition, the oscillations are advanced for
the thicker dielectric layer, implying that the displacement current contribution is actually enhanced by
high permittivity, which can be considered equivalently with a higher frequency, due to k2 = εrμrω

2/c2.
Finally, let us consider a muscle plate placed at layer −1, where the permittivity and conductivity

vary with frequency and can be obtained by Debye relaxation model [11, 22]. The power transmission
may bear radiation and dielectric loss at the same time. As shown in Fig. 6(a), the conductivity of muscle
grows rapidly with frequency in the GHz range, while the permittivity begins to shrink. In Fig. 6(b) and
Fig. 6(c), the frequency-variances of the mutual inductance and resistance for the system are illustrated,
followed by a detailed comparison tabulated in Table 3. It is interesting to find that the results overlap
at the beginning, and then diverge dramatically from each other as frequency increases. Since the
displacement current contribution is discarded, the referred M21 drops monotonously. Note that the
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Figure 6. Mutual (b) inductances and (c) resistances of the system embedded by a muscle plate with
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maximum values of the proposed M21 and R21 can be found at f = 1.0798 GHz and f = 2.1544 GHz,
respectively. From the perspective of energy transmission efficiency, an optimal frequency can thus be
deduced at GHz frequency range based on (11), which is consistent with the conclusion in [11].
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