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A Magnetic Field Integral Equation Based Iterative Solver
for Scattered Field Prediction

Robert Brem* and Thomas F. Eibert

Abstract—An iterative solution scheme based on the magnetic field integral equation (MFIE) to
compute electromagnetic scattering for arbitrary, perfect electrically conducting (PEC) objects is
topic of this contribution. The method uses simple and efficient approaches for the computation of
surface current interactions which are typically found in the well-known iterative physical optics (IPO)
technique. However, the proposed method is not asymptotic, since no physical optics (PO) concepts
are utilized. Furthermore, a least squares correction method is introduced, which is applied not on
the complete current vector, but on individual groups of currents. This helps to quickly reduce the
residual error and to improve convergence. The result is a simple method which is capable to improve
the simulation results obtained by pure asymptotic methods such as PO or shooting and bouncing rays
(SBR). The method can be regarded as a simplified iterative method of moments (MoM) technique.
Numerical examples show that the proposed approach is advantageous e.g., in problem cases where the
neglect of diffraction effects or currents in shadow regions would cause large errors. It also provides an
improved prediction of the peak scattering contributions.

1. INTRODUCTION

Although the high-frequency approximation methods PO or SBR provide excellent field predictions for
large object scattering in many applications, problem cases exist where these simple methods fail to
provide reliable results. Effects such as strong multiple scattering, complicated diffraction mechanisms
or significant scattering contributions of currents in shadow regions are difficult to be taken into account
accurately. If improved accuracy is desired and exact methods such as MoM are computationally too
expensive, hybrid methods are appropriate alternatives. Much research effort has been invested in the
development of such efficient numerical techniques, which combine exact and approximate (asymptotic)
methods in order to reduce the computational cost. Typically, complex parts of a scattering or radiating
object are treated by MoM or, e.g., a finite element (FE) method, whereas large, smooth parts are
treated by ray- or current-based asymptotic approaches. The interaction between the currents in these
separately computed domains has to be taken into account accurately. This is normally done in an
iterative manner. Well-known examples are the PO-MoM approach [1], which can be improved by
incorporating higher-order edge or surface diffraction effects [2, 3]. Other methods employ electric and
magnetic field integral equation (EFIE-MFIE) formulations to different domains, where the MFIE is
iteratively approximated by PO [4] or use sophisticated iterative techniques with special basis functions
in the hybrid PO-MoM approach [5]. A ray-based geometrical theory of diffraction (GTD)-MoM
technique is introduced in [6]. Advanced methods also use the uniform theory of diffraction (UTD)
in combination with FE and MoM [7].

Iterative methods based on a repeated evaluation of the MFIE follow a different concept to lower
the computational cost compared to MoM. Here, the introduction of separate domains is not required.
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Examples are the methods proposed in [8, 9] which are applied to simple scattering objects. A similar
method is the IPO, which was developed to compute the scattering from cavities [10, 11]. It is also
based on an iterative computation of the MFIE, starting with an initial current vector obtained by
PO. The computed currents of one iteration step are the new radiating currents in the next step. The
computation is repeated until a certain accuracy is reached (a residual error of about 0.1 is typically
acceptable and accurate enough for practical radar cross section (RCS) cavity problems).

The proposed method in this paper is based on an iterative solution of the MFIE, applicable to
arbitrary 3D PEC scattering objects. The interaction between currents is computed in the same efficient
manner (low sampling point density and fast far-field approximation (FaFFA) [12]) as with IPO. The
MFIE is, however, exactly evaluated, i.e., no asymptotic concepts are applied. A correction method to
improve the convergence of the iterative scheme, which directly uses the group partitioning introduced
by the FaFFA, is applied. For all groups (boxes) a correction factor is computed and multiplied with
all corresponding box currents. The factors are determined by solving a linear least squares problem
so that the MFIE for all boxes is fulfilled with minimum quadratic error. In Section 2 the evaluation
of the MFIE is shown and in Section 3 the correction method is introduced. This is followed by a
demonstration of the performance with numerical examples and a conclusion.

2. ITERATIVE SOLUTION OF THE MFIE AND ITS IMPLEMENTATION

The magnetic field integral equation for the PEC case is given as [13]

J (r) = 2n̂ (r) × Hi (r) + 2n̂ (r) ×−
∫

S
J
(
r′
)×∇′G

(
r, r′

)
dS′, (1)

where J(r) is the electric surface current density on the surface S of the scattering body, n̂(r) the
outward pointing unit normal vector, and Hi(r) the incident magnetic field. The bar at the integral
sign stands for the principal value integral with points r = r′ excluded from integration. The gradient
of the Green’s function is

∇′G
(
r, r′

)
=

e−jkR′

4πR′3
(
1 + jkR′)R′, (2)

where R′ = |R′| = |r − r′|. The integral

H̃s (r) = −
∫

S
J
(
r′
)×∇′G(r, r′)dS′ (3)

accounts for the radiation of the surface currents. With the boundary condition J = n̂ × (Hi + Hs) on
S, the relation

Hs (r) = Hi (r) + 2H̃s (r) (4)

holds between the scattered magnetic field and the sum of the incident magnetic field and the field
produced by the integral.

A triangle mesh with a total number of NP patches is used for surface modeling. The surface
current density Jk on triangle k (k = 1, . . . , NP ), is expressed by two orthogonal tangential vectors of
this triangle, weighted by corresponding current density coefficients Ik,1/2. These have to be determined
within the iterative solution scheme:

Jk (r) =
{

Ik,1t̂k,1 + Ik,2t̂k,2 for r in triangle k
0 otherwise. (5)

This pulse basis function approach is similar to the simplest form in [14]. The current locations are
assumed to be at the centroids rk of the triangles which are also the locations of the observation points
for the evaluation of the integral in (3). In contrast to the traditional MoM-approach with Rao-Wilton-
Glisson (RWG) functions, this point based description of currents is ideally suited for the MFIE [14].

In order to efficiently compute the interaction between currents, the FaFFA method, as shown in
Fig. 1, is applied. The currents are grouped into boxes, where the interaction of currents in near-field
box pairs, which are closer than a certain far-field distance, is directly evaluated (quadratic complexity).
For the later shown examples, the well-known far-field distance according to 2D2/λ is chosen, where
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Figure 1. Computation of box interaction j → i. (a) Near-field case and (b) far-field case with FaFFA
acceleration.

D is the side length of a box. The interaction of currents in far-field box pairs is done in a two-step
scheme. First, the field contributions of all currents in the source box are computed at the center of
the observation box, then, the contributions for all currents in the observation box are evaluated by
applying a location dependent phase shift on the center field. This far-field computation has a linear
complexity and the total complexity of FaFFA will be O(N1.5) with an optimally chosen number of
currents per box (=

√
N).

In order to generate the box structure in the proposed algorithm, first the maximum extension of
the scattering object in x-, y- and z-direction is determined. Then, this space is subdivided into cubic
boxes where empty boxes are neglected. All boxes have an identical side length, which can be arbitrarily
specified. The possibility to adjust this value is useful for the applied correction scheme presented in
Section 3. The assignment of currents to boxes is directly given by this regular 3D grid structure.
For the numerical examples shown later, the box size is chosen on the order of a few wavelengths,
which is smaller than the optimal value so that the complexity of the interaction computation will lie
between O(N1.5) . . .O(N2). Nevertheless, due to the utilized simple MFIE evaluation, fast simulations
are possible. This issue will be further discussed in Section 3.

The current densities in observation box i are denoted with index m (m = 1, . . . , Ni) and the
current densities in source box j with index n (n = 1, . . . , Nj). The total number of boxes is NB and
the centers of the boxes are denoted by ri and rj , respectively. The current densities induced by incident
and radiated fields on triangle k are obtained by taking the scalar product of a tangential vector on this
triangle with the first or the second term of the RHS of (1), i.e.,

Ii
k,1/2 = t̂k,1/2 ·

[
2n̂k × Hi(rk)

]
Ĩs
k,1/2 = t̂k,1/2 ·

[
2n̂k × H̃s(rk)

]
, (6)

where t̂k,1/2 are the tangential vectors and n̂k the normal vector of triangle k. By grouping all current
densities Ii

k,1/2 in vector Ii
i and all current densities Ĩs

k,1/2 in vector Ĩs
i , the current density vector Ii of

box i can be written as

Ii = Ii
i + Ĩs

i = Ii
i +

NB∑
j=1

Ĩs
ij , (7)

where Ĩs
ij is the induced surface current density vector in box i caused by box j. For the near-field case,

the induced current densities (t̂m,1- or t̂m,2-component) on patch m in box i by the contribution of all
current densities n = 1, . . . , Nj in box j are computed as

Ĩs
mj,1/2 = t̂m,1/2 ·

⎡
⎣2n̂m ×

Nj∑
n=1

ΔAn

Q∑
q=1

Jn × Rmn,q
e−jkRmn,q

4πR3
mn,q

(1 + jkRmn,q) wq

⎤
⎦

= t̂m,1/2 ·
⎡
⎣2n̂m ×

Nj∑
n=1

ΔAn

Q∑
q=1

(
In,1t̂n,1 × Rmn,q + In,2t̂n,2 × Rmn,q

)
Kmn,qwq

⎤
⎦ , (8)
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where Kmn,q is the complex term exp(−jkRmn,q)(1 + jkRmn,q)/(4πR3
mn,q), ΔAn is the corresponding

triangle area, Rmn,q is the vector from quadrature point q (q = 1, . . . , Q) on triangle n to the centroid
of triangle m, i.e., Rmn,q = rm − rn,q and wq is the weight for numerical integration. The application
of a quadrature rule with Q > 1 is useful for nearby patches and improves the accuracy of the integral
evaluation. All current densities Ĩs

mj,1/2 (m = 1, . . . , Ni) together form the complex 2Ni × 1 vector Ĩs
ij ,

where 2Ni is due to both tangential vectors. By introducing the interaction matrix Aij and the current
density vector Ij , formed by all current densities In,1/2 of box j, the compact representation

Ĩs
ij = Aij Ij Aij ∈ C

2Ni×2Nj (9)

can be given. Therefore, 4NiNj operations are required for evaluation of the matrix-vector product
to compute a surface current density vector Ĩs

ij in the near-field case. For the far-field case, first, the
scattered field contribution of all current densities in box j at the box center ri of box i is computed as

H̃s
ij =

Nj∑
n=1

ΔAn

Q∑
q=1

Jn × Rin,q
e−jkRin,q

4πR3
in,q

(1 + jkRin,q)wq

=
Nj∑
n=1

ΔAn

Q∑
q=1

(
In,1t̂n,1 × Rin,q + In,2t̂n,2 × Rin,q

)
Kin,qwq, (10)

where Kin,q = exp(−jkRin,q)(1 + jkRin,q)/(4πR3
in,q), Rin,q = ri − rn,q and H̃s

ij is a complex 3D vector.
In compact form, this can be written as

H̃s
ij = Aij Ij Aij ∈ C

3×2Nj , (11)

where the matrix Aij directly describes the mapping of a current density vector with complex scalar
elements on a three-dimensional complex vector in space. In the next step, the induced current densities
on the Ni patches can be obtained by applying a phase shift and the vector operation according to

Ĩs
mj,1/2 = t̂m,1/2 ·

[
2n̂m × H̃s

ij

]
e−jkR̂ij ·(rm−ri). (12)

Similar to the near-field case, all current densities Ĩs
mj,1/2 together build the current density vector Ĩs

ij .
The number of operations in the far-field case is 2Ni + 6Nj .

With the precomputed interaction matrices Aij for all near- and far-field cases, the MFIE according
to (1) is iteratively evaluated. The start vector J(0) is given by a PO computation. In contrast to the
classical IPO, shadowed parts of the scattering body are also excited by Hi and the radiated fields
of new currents, i.e., interactions between currents are completely taken into account. The proposed
method is therefore not based on the asymptotic PO approximation, it is an iterative MoM approach.

3. CORRECTION METHOD

In general, convergence of the iterative MFIE computation cannot be guaranteed so that an appropriate
handling of this problem is required. If (1) is written in matrix-vector form, the given system matrix
is required to have a spectral radius smaller than one to ensure a convergent solution. In order to
stabilize the computation, a relaxation parameter can be introduced or even a technique such as the
generalized minimal residual method (GMRES) could be applied. A simplified GMRES approach for
cavity problems is introduced in [11]. However, as stated in [15], these methods typically show a
very slow convergence due to the introduced approximations. It is a good alternative to use simpler
correction methods, monitor the residual error in each iteration step and stop the procedure when a
certain accuracy is reached. In this spirit works our proposed correction method.

The obtained total current distribution on the scatterer at an iteration step l (l = 1, . . . , Nit with
Nit being the total number of iterations) can be written similar to (1) as

J(l) = 2n̂ × Hi + 2n̂ ×−
∫

S
J(l−1) ×∇′GdS′. (13)
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The current density J(1) is computed via the initial current density vector J(0), which is obtained by PO
approximation. Similar to the presentation in (7), the complete current density vector can be written
as

I(l) = Ii + Ĩs(l−1). (14)

The optimal current density found at step l would perfectly satisfy the MFIE, i.e., plugging J(l) instead
of J(l−1) into the integral of (13) or replacing Ĩs(l−1) by Ĩs(l) in (14), respectively, would exactly fulfill
these equations. However, in reality an error remains, which can be expressed as

ΔJ(l) = J(l) − 2n̂ × Hi − 2n̂ ×−
∫

S
J(l) ×∇′GdS′ = J(l) − J(l+1), (15)

or according to (14) as
ΔI(l) = I(l) − Ii − Ĩs(l) = I(l) − I(l+1). (16)

The corresponding residual error can thus be defined by

R(l) =

∥∥∥I(l) − Ĩs(l) − Ii
∥∥∥

‖Ii‖ . (17)

The error R(l) is related to the current density vector Ĩs(l), which is computed in the step l+1 (s. (14)),
i.e., the residual error R(l) is also computed in this step. In other words, the step of the residual error is
always related to the step of the current densities which are plugged into the MFIE for error evaluation
according to (15) or (16). In step l + 2 the error R(l+1) is obtained and compared with R(l). If the
error decreases, i.e., R(l+1) < R(l), nothing changes (the computed current density I(l+1) is used for step
l + 2 to obtain I(l+2) as already done), otherwise, a complex correction factor is computed for each box,
i.e., all current densities of a box at step l + 1 are equally weighted and a new current density I(l+2) is
generated. The correction factors αi (i = 1, . . . , NB) are determined in such a way that the MFIE for
each box i is most accurately fulfilled, i.e., the equation

αiI
(l)
i −

NB∑
j=1

αj Ĩ
s(l)
ij = Ii

i (18)

should hold. This is enforced by solving a linear least squares problem. (18) can be written as

α1

(
Ĩs(l)
11 − I(l)

1

)
+ α2Ĩ

s(l)
12 + α3Ĩ

s(l)
13 + . . . + αNB

Ĩs(l)
1NB

= −Ii
1

α1Ĩ
s(l)
21 + α2

(
Ĩs(l)
22 − I(l)

2

)
+ α3Ĩ

s(l)
23 + . . . + αNB

Ĩs(l)
2NB

= −Ii
2

α1Ĩ
s(l)
31 + α2Ĩ

s(l)
32 + α3

(
Ĩs(l)
33 − I(l)

3

)
+ . . . + αNB

Ĩs(l)
3NB

= −Ii
3

...

α1Ĩ
s(l)
NB1 + α2Ĩ

s(l)
NB2 + α3Ĩ

s(l)
NB3 + . . . + αNB

(
Ĩs(l)
NBNB

− I(l)
NB

)
= −Ii

NB
.

(19)

In matrix form this can be expressed as
Mα = b (20)

with M ∈ C
2N×NB , α ∈ C

NB×1 and b ∈ C
2N×1. The vector α of this overdetermined system is

computed by solving the least squares problem

min
α

‖Mα − b‖2 , (21)

where the LAPACK routine cgels, using a QR factorization of M, is utilized.
The complexity of this correction is proportional to NN2

B. Since NB can be seen as dependent on
N , in form of NB = kN with a small factor k � 1, the correction step causes an asymptotic complexity
proportional to N3. It is clear that this method is not suitable for very large problems. Nevertheless,
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with the simple MFIE evaluation and the application of only a few iterations (and therefore possible
correction steps), fast simulations are possible. This can be further improved by a similarly efficient
hierarchical implementation as in the MLFMM with aggregation, translation and disaggregation steps.

The group-wise improvement of the current densities can help to quickly reduce the residual error.
Stability problems may be avoided by simply choosing a smaller box size, so that more correction
coefficients αi are introduced. However, it is important to note that such a scheme can not guarantee
stability. For critical cases which do not show convergence to the desired degree, even for a large number
of correction coefficients, a finer current sampling density should be applied, i.e., more currents should be
introduced to model the surface current distribution with better accuracy. The method can be further
extended to weight the two orthogonal current density components on a triangle patch individually for
each box, so that 2NB coefficients are introduced. In this case (18) can be written as(

αi,1I
(l)
i,1

αi,2I
(l)
i,2

)
−

NB∑
j=1

Aij

(
αj,1I

(l)
j,1

αj,2I
(l)
j,2

)
= Ii

i. (22)

The coefficient αi,1 is multiplied with all t̂1-current density components of box i and αi,2 with all
t̂2-current density components of box i.

4. NUMERICAL EXAMPLES

The following examples show the performance of the iterative solver, denoted as iterative MFIE
(IMFIE). A comparison between MoM, SBR, IPO and IMFIE concerning achieved accuracies and
required simulation times is performed. In order to obtain the MoM reference solutions, CST Microwave
Studio [16] was used, where the residual error to achieve was set to 10−3. For SBR, IPO and IMFIE
own codes are applied. All simulations are performed on a system with 12×3.47 GHz computing power.
In order to provide a reasonable comparison to our single-threaded test codes, the thread use in CST is
set to 1.

4.1. Cube

The bistatic RCS for scattering at a PEC cube with a side length of 10 wavelengths and plane wave
incidence is shown for the different computational techniques MoM, SBR, IPO and IMFIE according to
Fig. 2. SBR and IPO give (almost exactly) the same results, which are obviously very inaccurate. Both
methods fail to give a good RCS prediction since diffraction contributions are completely neglected.
The IPO solution is constant, it does not improve with more iterations since no multiple bounces occur.
Only after one iteration, the IMFIE scheme computes an RCS close to the MoM solution, where the
agreement is very good in the main scattering directions. A mesh discretization of λ/3 (mean triangle
edge length) and a box side length of 1λ are chosen. Table 1 compares simulation times (with all solvers
utilizing 1 thread) and accuracies of the methods.

Due to the very simple MFIE evaluation and the coarse current density, it is clear that the IMFIE
solution does not perfectly match the MoM results of CST Microwave Studio. This is also observed in
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Figure 2. Bistatic RCS (hh) for a 1m × 1m × 1 m PEC cube for plane wave incidence with φ = 45◦,
θ = 45◦, f = 3GHz. Observation range φ = 0◦, . . . , 360◦, θ = 90◦.
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Table 1. Comparison of simulation results for
the cube.

Simulation
time
[sec]

Mean
error
[dB]

Mean error
main lobes

[dB]

MoM 149 - -

SBR 21 12.2 3.5

IPO 65 (It. 1) 10.2 3.5

IMFIE 85 (It. 2) 5.3 1.1

Table 2. Comparison of simulation results for
the NASA Almond.

Simulation
time
[sec]

Mean
error
[dB]

Mean error
main lobes

[dB]

MoM 545 - -

SBR 12 11.3 6.0

IPO 7 (It. 1) 11.2 6.1

IMFIE 170 (It. 39) 3.7 1.2
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Figure 3. Simulation of a 9.936 in long PEC NASA Almond for plane wave incidence with φ = 0◦,
θ = 90◦, f = 7 GHz. Observation range φ = 0◦, . . . , 360◦, θ = 90◦. (a) Bistatic RCS (hh). (b) Residual
error.

the following examples. One might expect a good agreement of the IMFIE results with MoM for all
observation angles. However, larger deviations can occur for observations with low RCS due to some
inaccuracies in the currents. Nevertheless, the average RCS level for these observations is typically
better predicted than with asymptotic methods. For the desired goal — the efficient improvement of
simple asymptotic solver results in problematic cases — this method is very well suited.

4.2. NASA Almond

The bistatic RCS result of a PEC NASA Almond benchmark target [17] is shown in Fig. 3(a). The
IMFIE results are shown for different numbers of correction coefficients, where the results with lowest
residual error, see Fig. 3(b), are plotted. For the chosen discretization and the second case with
98 coefficients, the solution starts to diverge after 23 iterations. Increasing the number of coefficients
improves the convergence significantly. The IMFIE computed RCS is in much better agreement with
MoM (mean error 3.7 dB with 196 coefficients) than the SBR and IPO results (mean error approx.
11 dB). A mesh discretization of λ/4 and a box side length of λ/2 are chosen for IPO and IMFIE.
Fig. 4(a), Fig. 4(b) and Fig. 4(c) show the surface current densities (magnitude of Jy-component) for
MoM, IMFIE and SBR method, respectively. The IPO result is more or less similar to the SBR result.
Table 2 shows the simulation data.

4.3. Glider

The scattering at a CST Microwave Studio [16] PEC glider model in Fig. 5 shows that the IMFIE
approach can also be applied to large realistic objects. The total number of unknowns is 66 571,
corresponding to a discretization of λ/5. The correction method works with 3619 coefficients. After
3 iterations the RCS values in main scattering directions can be determined with an average error of
1.3 dB. The box size is set to λ/2. Simulation times and errors are summarized in Table 3. In this
case, the IPO method without any correction technique provides a similar good result after 3 iterations
(divergence is observed after 7 iterations).
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Figure 4. Surface current distributions (magnitude of Jy-component) on the PEC NASA Almond for
plane wave incidence with φ = 0◦, θ = 90◦, f = 7 GHz. (a) MoM. (b) IMFIE (It. 39). (c) SBR.
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Figure 5. Bistatic RCS (hh) for a 14.5 m long, 14 m wide PEC glider for plane wave incidence with
φ = 270◦, θ = 135◦, f = 1GHz. Observation range φ = 220◦, . . . , 320◦, θ = 90◦.

Table 3. Comparison of simulation results for the glider.

Simulation

time [sec]

Mean error

[dB]

Mean error

main lobes [dB]

MoM 1712 - -

SBR 95 8.2 2.3

IPO 768 (It. 3) 7.9 1.3

IMFIE 1680 (It. 3) 8.4 1.3

5. CONCLUSION

An iterative magnetic field integral equation (MFIE) based approach for scattered field prediction of
arbitrary perfect electrically conducting (PEC) objects was investigated. By using a simple computation
approach in combination with an error correction technique it can help to efficiently improve the results
obtained by simple asymptotic methods and can thus be a convenient alternative to otherwise required
computationally more expensive exact or hybrid methods or the necessity to enhance the asymptotic



Progress In Electromagnetics Research M, Vol. 40, 2014 35

solvers with complicated diffraction methods. As numerical examples revealed, an accurate scattered
field prediction can be achieved with only a few MFIE iterations. Problem cases, where simple
physical optics (PO) or shooting and bouncing rays (SBR) computations provide only poor results,
can be properly treated. A precise determination of RCS peak values is an important advantage. A
hierarchical interaction computation similar to the multilevel fast multipole method (MLFMM) scheme
is recommended for large simulation tasks to further improve the efficiency.

REFERENCES

1. Jakobus, U. and F. Landstorfer, “Improved PO-MM hybrid formulation for scattering from three-
dimensional perfectly conducting bodies of arbitrary shape,” IEEE Trans. Antennas Propagat.,
Vol. 43, No. 2, 162–169, 1995.

2. Jakobus, U. and F. Landstorfer, “Improvement of the PO-MoM hybrid method by accounting for
effects of perfectly conducting wedges,” IEEE Trans. Antennas Propagat., Vol. 43, No. 10, 1123–
1129, 1995.

3. Jakobus, U. and F. Landstorfer, “Application of Fock currents for curved convex surfaces within
the framework of a current-based hybrid method,” Third International Conference on Computation
in Electromagnetics, 415–420, Bath, UK, Apr. 1996.

4. Hodges, R. and Y. Rahmat-Samii, “An iterative current-based hybrid method for complex
structures,” IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 265–276, 1997.

5. Tasic, M. and B. Kolundzija, “Efficient analysis of large scatterers by physical optics driven method
of moments,” IEEE Trans. Antennas Propagat., Vol. 59, No. 8, 2905–2915, 2011.

6. Thiele, G. and T. Newhouse, “A hybrid technique for combining moment methods with the
geometrical theory of diffraction,” IEEE Trans. Antennas Propagat., Vol. 23, No. 1, 62–69, 1975.

7. Tzoulis, A. and T. Eibert, “A hybrid FEBI-MLFMM-UTD method for numerical solutions of
electromagnetic problems including arbitrarily shaped and electrically large objects,” IEEE Trans.
Antennas Propagat., Vol. 53, No. 10, 3358–3366, 2005.

8. Kaye, M., P. Murthy, and G. Thiele, “An iterative method for solving scattering problems,” IEEE
Trans. Antennas Propagat., Vol. 33, No. 11, 1272–1279, 1985.

9. Murthy, P., K. Hill, and G. Thiele, “A hybrid-iterative method for scattering problems,” IEEE
Trans. Antennas Propagat., Vol. 34, No. 10, 1173–1180, 1986.

10. Obelleiro, F., J. Rodriguez, and R. Burkholder, “An iterative physical optics approach for analyzing
the electromagnetic scattering by large open-ended cavities,” IEEE Trans. Antennas Propagat.,
Vol. 43, No. 4, 356–361, 1995.

11. Burkholder, R., “A fast and rapidly convergent iterative physical optics algorithm for computing
the RCS of open-ended cavities,” Appl. Computational Electromagn. Soc. J., Vol. 16, No. 1, 53–60,
2001.

12. Lu, C. and W. Chew, “Fast far-field approximation for calculating the RCS of large objects,”
Microwave Opt. Tech. Letters, Vol. 8, No. 5, 238–241, 1995.

13. Gibson, W., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, Boca Raton,
2008.

14. Kang, G., J. Song, W. Chew, K. Donepudi, and J. Jin, “A novel grid-robust higher order vector
basis function for the method of moments,” IEEE Trans. Antennas Propagat., Vol. 49, No. 6,
908–915, 2001.

15. Burkholder, R. and T. Lundin, “Forward-backward iterative physical optics algorithm for
computing the RCS of open-ended cavities,” IEEE Trans. Antennas Propagat., Vol. 53, No. 2,
793–799, 2005.

16. https://www.cst.com/Products/CSTMWS.
17. Woo, A., H. Wang, M. Schuh, and M. Sanders, “Benchmark radar targets for the validation of

computational electromagnetics programs,” IEEE Antennas Propagat. Mag., Vol. 35, No. 1, 84–89,
1993.


