
Progress In Electromagnetics Research C, Vol. 54, 67–74, 2014

Two-Dimensional DOA Estimation Using
a Co-Prime Symmetric Cross Array

Sheng Liu, Li Sheng Yang*, De Cheng Wu, and Jian Hua Huang

Abstract—In this paper, a co-prime symmetric sparse cross array is employed to estimate two-
dimensional (2-D) direction-of-arrival (DOA). Some special forth-order-cumulants (FOCs) of array
received data are used to construct a high-order matrix that is equivalent to a cross-covariance matrix
based on two uniform linear arrays. After some modifications, an existing 2-D DOA estimation algorithm
becomes more effective, and it shows further improved performance when the co-prime symmetric cross
array is utilized. Numerical simulations demonstrate the effectiveness of our methods.

1. INTRODUCTION

Direction of arrival (DOA) estimation of signals by sensor array is common in various applications,
such as radar and wireless communication, which has been extensively discussed in the literature [1, 2].
For the extendable aperture, the sparse arrays have caused wide concern for decades. Compared with
uniform array, the distances between adjacent sensors of sparse array are not equivalent. Moreover, they
can break the limit of half wavelength. Just because of this property, sparse array can perform higher
angle resolution than the uniform array under the same number of sensors. If the places of sensors are
designed properly, the array can be used to estimate more sources than the number of elements, which
is difficult to achieve for uniform array. A lot of design methods [3–6] for the spare array have been
proposed by authors. In [4], in order to avoid angle ambiguity, authors present the design approach of
co-prime array. In [7], co-prime sparse array is employed for one-dimensional (1D) DOA estimation.
In [8], co-prime sparse array is extended to co-prime symmetric array that is used for the location of
near-field sources.

Reconstructing covariance matrix is a key step for DOA estimation using sparse array. Recently,
many 2D DOA estimation algorithms based on cross-covariance matrix are presented [9–13]. In [9, 10],
using the relationship between cross-covariance matrix and the array manifolds, the 2-D DOA can
be estimated via rotational invariance technique. In [11], utilizing the cross-correlation matrix of array
received data, authors structure a cost function without eigenvalue decomposition (EVD), then azimuth
angles and elevation angles can be estimated independently similar to music algorithm. To facilitate
the expression, we call the algorithm in [11] as computationally efficient subspace algorithm (CESA)
and the algorithm in [10] as 2-D ESPRIT. In [12, 13], two effective angles matching methods based
on cross-covariance matrix are proposed, which simplifies the process of 2-D DOA estimation. A 2-D
DOA estimation algorithm has been proposed in [14], and the element mutual coupling is taken into
consideration. But three uniform linear arrays need to be employed, which increases the hardware costs.
However, all these methods are based on the L-shaped array consisting of two uniform linear arrays.
Because of aperture loss, it is difficult to make these algorithms achieve the best effect.
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In this paper, a cross array comprising of two co-prime symmetric arrays is employed to estimate the
2-D DOA. An uniform method is given to obtain a cross-covariance matrix using forth-order-cumulant
instead of second-order-cumulant. A new array received model based on uniform L-shaped array can be
got. Then, an improved CESA (ICESA) is proposed, and it has better performance than CESA. The
performance will be improved further when the co-prime symmetric cross array is used. Besides, when
this sparse array is applied to the 2-D ESPRIT algorithm proposed in [10], more effective estimation
also can be accomplished.

Notation: The superscript (·)T , (·)∗ (·)H denote the transpose, conjugate and the conjugate
transpose respectively.

2. DATA MODEL WITH CO-PRIME SYMMETRIC CROSS ARRAY

Figure 1 shows the array configuration which comprises two co-prime symmetric linear arrays with X
array on x axis, and Z array on z axis. Each sub-array consists of 2(M + N) − 3 elements, where
M = N + 1 and M ≥ 4. The element placed at the origin is common for referencing purpose. The x-
coordinate of the elements on X array and the z-coordinate of the elements on Z array are −(M−1)Nd,
−(N − 1)Md, . . ., 0, . . ., (N − 1)Md, (M − 1)Nd successively, where d ≤ λ

2 . Suppose that there are K
narrow band sources impinging on the array. And the sources are uncorrelated with each other. Let θk

and βk, k = 1, 2, . . . , K, be the elevation angle and azimuth angle of the kth source.
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Figure 1. Co-prime symmetric sparse cross array configuration.

Let (4N − 1) × 1 vector x(t) and z(t) be the observed vectors received by X array and Z array
respectively, where{

x(t) = [x−(M−1)N (t), x−(N−1)M (t), . . . , x0(t), . . . , x(N−1)M (t), x(M−1)N (t)]T

z(t) = [z−(M−1)N (t), z−(N−1)M (t), . . . , z0(t), . . . , z(N−1)M (t), z(M−1)N (t)]T
(1)

Denote θ = [θ1, θ2, . . . , θK ], β = [β1, β2, . . . , βK ] and 2d
λ π = Δ. The received vectors can be

written as {
x(t) = A1(β)s(t) + ex(t)
z(t) = A2(θ)s(t) + ez(t)

, t = 1, 2, . . . , T (2)

where s(t) = [s1(t), s2(t), . . . , sK(t)]T is the non-Gaussian incident signal vector; ex(t) =
[ex1(t), . . . , ex(4N−1)(t)]T and ez(t) = [ez1(t), . . . , ez(4N−1)(t)]T are the additive white Gaussian
noise with zero-mean at the two sub-arrays; A1(β) = [a1(β1),a1(β2), . . . ,a1(βK)] and A2(θ) =
[a2(θ1),a2(θ2), . . . ,a2(θK)] denote the array manifold matrices of X array and Z array;
a1(βk) =

[
e−jΔ(M−1)N cos βk e−jΔ(N−1)M cos βk . . . 1 . . . ejΔ(N−1)M cos βk ejΔ(M−1)N cos βk

]T and

a2(θk) =
[
e−jΔ(M−1)N cos θk e−jΔ(N−1)M cos θk . . . 1 . . . ejΔ(N−1)M cos θk ejΔ(M−1)N cos θk

]T , k =
1, 2, . . . , K, are the steering vectors of the X array and Z array to the kth signal.
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3. 2-D DOA ESTIMATION USING FOC

3.1. Reconstruction of Cross-Covariance Matrix

In this part, a matrix C ∈ C((M+2)N+1))×((M+2)N+1) is constructed in forth-order-cumulants of array
received data. And the elements of C can be expressed as Cuv = cum{xa(t), x∗

b(t), zc(t), z∗d(t)}. Let
(u − 1) mod N = u1,

(u−1)−u1

N = u2, (v − 1) mod N = v1 and (v−1)−v1

N = v2. Then, we have{
u − 1 = u1 + u2N
v − 1 = v1 + v2N

(3)

where 0 ≤ u1 ≤ N − 1, 0 ≤ v1 ≤ N − 1, 0 ≤ u2 ≤ M + 2 and 0 ≤ v2 ≤ M + 2.
The element Cuv = cum{xa(t), x∗

b(t), zc(t), z∗d(t)} can be obtained as the following rules⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = u1M, b = (u1 − u2)N if 0 ≤ u1 ≤ N − 1, u2 ≤ M − 1
a = N(M − 1), b = −N if u1 = 0, u2 = M
a = N(M − u1), b = −u1M if 1 < u1 ≤ N − 1, u2 = M
a = N(M − 1), b = −2N if u1 = 0, u2 = M + 1
a = M(N − 1), b = −2M if u1 = 1, u2 = M + 1
a = N(M − u1 + 1), b = −u1M if 2 ≤ u1 ≤ N − 1, u2 = M + 1
a = N(M − 1), b = −3N if u1 = 0, u2 = M + 2

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c = −v1M, d = −(v1 − v2)N if 0 ≤ v1 ≤ N − 1, v2 ≤ M − 1
c = −N(M − 1), d = N if v1 = 0, v2 = M
c = −N(M − v1), d = v1M if 1 < v1 ≤ N − 1, v2 = M
c = −N(M − 1), d = 2N if v1 = 0, v2 = M + 1
c = −M(N − 1), d = 2M if v1 = 1, v2 = M + 1
c = −N(M − v1 + 1), d = v1M if 2 ≤ v1 ≤ N − 1, v2 = M + 1
c = −N(M − 1), d = 3N if v1 = 0, v2 = M + 2

(5)

Let C4sk
= cum{sk(t), s∗k(t), sk(t), s∗k(t)}, according to (3), (4), (5), we can know that

Cuv = cum{xa(t), x∗
b(t), zc(t), z∗d(t)} =

K∑
k=1

C4sk
ejΔ [(u−1) cos βk−(v−1) cos θk] (6)

Denote Ā1 = [ā1(β1), ā1(β2), . . . , ā1(βK)], Ā2 = [ā2(θ1), ā2(θ2), . . . , ā2(θK)], C4S =
diag(C4s1 , . . . , C4sK

), where

ā1 =
[
1 ejΔcos βk . . . ej(M+2)NΔ cos βk

]T (7)

ā2 =
[
1 ejΔcos θk . . . ej(M+2)NΔ cos θk

]T (8)

From (6), (7), (8), it is easy to know that C = Ā1C4SĀH
2 , which can be considered as a cross-

covariance matrix of the received data from a L-shaped array consisting of two uniform linear arrays.
This cross-covariance matrix C can be used for many 2D DOA estimation algorithms [9–13]. And the
total computation complexity is different for different algorithms. So we only compare the computation
complexity of forming cross-covariance matrix for different arrays. For proposed sparse cross array, the
resulting multiplications required are in the order of O((MN + 2N + 1)2T ), where T is snapshots. For
the L-shaped array with the same number of elements, the resulting multiplications required are in the
order of O((2M +2N −1)2T ). Hence, the complexity of forming cross-covariance matrix with proposed
cross array is higher than corresponding L-shaped array.

3.2. Improved CESA for 2D DOA Estimation

Similar to CESA presented in method [11], we get the first column of C, and denote it as c1. Then we
construct a new vector c

c =
[
Jc∗1(2 : MN + 2N + 1)

c1

]
(9)
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where c1(2 : MN + 2N + 1) indicates a column vector consisting of the 2th element to the last element
of c1. Using the vector c, we can construct a (2MN + 4N + 2 − L) × L matrix Rc expressed as

Rc = [c̄1 c̄2 . . . c̄L] (10)

where c̄l is the column vector consisting of the lth to the (2MN + 4N + 1 − L + l)th element of c,
MN + 2N + 1 ≥ L ≥ K. L is a changeable number for counterpoising the computation complexity and
precision. We can achieve the estimation of azimuth angles like MUSIC algorithm by maximizing the
cost function f(β)

f(β) =
1

aH(β)(I −ROcRH
Oc)a(β)

(11)

where, ROc is a (2MN + 4N + 2−L)×L matrix obtained by the Gram-Schmidt orthogonalization on
the column of Rc, and a(β) is a (2MN + 4N + 2 − L) × 1 vector expressed as

a(β) =
[
1 ejΔcos β . . . ej(2MN+4N+1−L)Δ cos β

]T (12)

Replacing C with CH , we can get the estimation of elevation angles with the same method used for
estimating the azimuth angles. Using the corresponding angles matching method [11, 13], we can get
the final 2-D DOA estimation.

It should be pointed out that the application of this method has been studied in [11], where authors
give the Rc with a fixed number of columns, i.e., the number of sources K. In fact, L = K is not the
best choice in many conditions. But there is not a strict standard to determine how to choose the best
L. Selecting a small L, the received data can’t be utilized adequately, hence the estimator can’t get high
precision and high resolution estimation, especially at low SNR or less snapshots scenarios. But large
L will increase the computational burden. In addition, when the L is large enough the improved effect
will be not obvious, which can be roughly proved in Experiment 1. Taking an overall consideration, we
trend to choice the L slightly larger than the number of signal sources.

Besides of CESA, for the 2D-ESPRIT algorithm with L-shaped proposed in [9, 10], the cross-
covariance matrix also is used directly to estimate azimuth angles and elevation angles. Naturally,
under the same number of elements, the performance of this algorithm can be improved by exploiting
the co-prime symmetric cross array, which can be proved in Experiment 4.

Because of the co-prime symmetric array structure, there is no issue of angle ambiguity need to be
concerned [8]. However, a fact we should admit is that the computation complexity will increase when
the co-prime symmetric cross array is employed.

4. SIMULATIONS EXPERIMENT

In this section, numerical simulation results are showed to demonstrate the performance of proposed
method for 2-D DOA estimation. We consider the geometry structure of the co-prime symmetric
cross array as Figure 1, and assume that M = 5, N = 4, d = λ/2. We employ an L-shaped array

Figure 2. The spatial spectra of CESA for different L, snapshots = 200, SNR = 5 dB.
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consisting of two fifteen-element uniform linear arrays. The number of elements of the cross array is
29 which is equivalent to the L-shaped array. Suppose that the power ratio of signal sources are 1 : 1 in
Experiment 1, 2, 3 and 1 : 2 in Experiment 4. The SNR is defended as 10 log10(

σ2
n
p ), where σ2

n represents
the power of noise and p denotes the average power of all signal sources. The root mean square error
(RMSE) is used to be a evaluating index, and it can be expressed as

RMSE =

√√√√ 1
KJ

J∑
j=1

K∑
k=1

((
θ̂kj − θk

)2
+ (β̂kj − βk)2

)
(13)

where J = 100 is the number of independent experiments, and θ̂kj, β̂kj are the estimations of azimuth
angle and elevation angle in the jth experiment for the kth signal. For the CESA, the scanning range
of the angle is limited within the region of [0◦, 90◦] with scanning interval δ = 0.5 in Experiment 1
and δ = 0.1 in Experiment 2, 3. In order to unify the standard, we choose L = 6 for the ICESA in
Experiment 2, 3. According to Experiment 1, we can know this selection is reasonable.

(a) (b)

(e) (f)

(c) (d)

Figure 3. The spatial spectra of three methods, snapshots = 200, SNR = 10 dB.
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4.1. Experiment 1

In the first experiment, we want to compare the performance of ICESA with uniform L-shaped array
for different values of L. The snapshots is fixed 200, SNR is fixed at 5 dB, elevation angles and azimuth
angles are fixed at [θ1, θ2] = [40◦, 50◦], [β1, β2] = [35◦, 45◦] respectively. In this experiment, we also want
to find a appropriate L for the following experiments. Since the elevation angles and azimuth angles are
estimated independently in the same method. So, comparing the spatial spectrum of azimuth angles is
enough to show the performance of ICESA for different values of L. From Figure 2, we can see that
the performance of L = 6 is very close to L = 8 but better than L = 2 (CESA), and L = 4. Taking the
complexity into account, we choose L = 6 for Experiment 2, 3.

4.2. Experiment 2

In the second experiment, we compare the angle resolution of CESA with uniform L-shaped array,
ICESA with uniform L-shaped array and ICESA with sparse cross array. The snapshots is fixed
200, SNR is fixed at 10 dB, elevation angles and azimuth angles are fixed at [θ1, θ2] = [40◦, 50◦],
[β1, β2] = [68◦, 70◦] respectively. From Figure 3, we can find that the elevation angles with 10◦ interval
can be distinguished distinctly by three methods with little difference. For the azimuth angles with 2◦
interval, CESA with uniform L-shaped array can’t distinguish the two angles, and ICESA with uniform
L-shaped array can distinguish the two azimuth angles reluctantly. But for ICESA with sparse cross
array, the two azimuth angles can be distinguished distinctly. Through the simulation results, we can
get the conclusion the angular resolution of ICESA with sparse cross array is the best.

4.3. Experiment 3

Firstly, we compare the estimation precision of three methods mentioned in Experiment 2 with respect
to SNR. Two signal directions are set to [θ1, θ2] = [55◦, 65◦], [β1, β2] = [20◦, 35◦]. We fix the number of
snapshots at 200 with the SNR varying from −5 dB to 10 dB. Secondly, we compare the performance
of three methods with respect to the number of snapshots, and two signal directions are set to
[θ1, θ2] = [50◦, 55◦], [β1, β2] = [45◦, 50◦]. The SNR is fixed at 7.5 dB with the number of snapshots
changing from 100 to 500. From Figure 4 and Figure 5, we can observe visually that ICESA with sparse
cross is better than the other two algorithms, particularly for low SNR. But, we must admit that when
SNR is high the accuracy of three methods is very close. Another fact is that the performance of ICESA
is more stable with the changes of snapshots.

Figure 4. The estimation RMSE versus SNR
(Snapshots = 200).

Figure 5. The estimation RMSE versus
snapshots (SNR = 7.5 dB).
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4.4. Experiment 4

In the fourth experiment, we compare the performance of 2D ESPRIT algorithm with uniform L-shaped
array and sparse cross array. Two signal directions are set to [θ1, θ2] = [55◦, 65◦], [β1, β2] = [20◦, 35◦].
Because of the performance difference between CESA and 2D ESPRIT. The range of SNR in this
experiment is different from Experiment 3. Firstly, we fix the number of snapshots at 200 with the SNR
varying from 0 dB to 15 dB. Secondly, the SNR is fixed at 10 dB with the number of snapshots changing
from 100 to 500. From Figure 6 and Figure 7, we can see that when the co-prime symmetric cross array
is used, the performance of 2D ESPRIT will be improved obviously. This experiment again indicates the
validity of the co-prime symmetric cross array and the construction method of cross-covariance matrix.

Figure 6. The estimation RMSE versus SNR
(Snapshots = 200).

Figure 7. The estimation RMSE versus
snapshots (SNR = 10 dB).

5. SUMMARY AND DISCUSSION

In this paper, we present a design approach of co-prime symmetric sparse cross array as well as
the construction method of cross-covariance matrix. Simulation results show that the performance
of some existing 2-D DOA estimation algorithms can be improved when this special array is exploited.
Additionally, an ICESA is also proposed and shows better precision and resolution than that of CESA.
The estimation effectiveness can be improved further as the use of the co-prime symmetric cross array.
Hence our study can provide a reference for relevant 2-D DOA estimation algorithms.
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