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Abstract—Two exact approaches to synthesize metasurfaces for time-harmonic waves are discussed.
The first approach is a spectral approach based on wave momentum conservation. Here, the spectral
approach is applied to scalar and paraxial wave transformations. This approach effectively allows the
arbitrary translation of the transformation plane parallel to the metasurface. The second approach
is a direct-space approach based on the extraction of the susceptibility tensors of the metasurface
elements. This approach is applied to vectorial field transformation and can be used for single or
multiple transformations. An example of wave transformation by a metasurface is illustrated for each
of the two approaches.

1. INTRODUCTION

Metasurfaces are promising devices for electromagnetic field control beyond conventional means.
As two-dimensional metamaterial structures, they do not suffer from the disadvantages associated
with volumetric metamaterials, such as bulkiness, excessive losses and fabrication difficulty [1].
Metasurfaces have been employed to control the reflection and transmission of electromagnetic waves [2],
realize generalized refraction [3] and reflection-less refraction [4] for plane-waves, single-layer perfect
absorbers [6] and reciprocal [7] and non-reciprocal [8, 9] polarization rotators.

The metasurface synthesis problem is stated as follows; a metasurface is an infinitesimally thin
planar sheet with an arbitrary lateral extension. The sheet is composed of scattering elements much
smaller than the operating wavelength. Given a monochromatic time-harmonic electromagnetic field
incident on the metasurface and given a specific scattered field, it is required to determine the description
of the metasurface scattering elements to produce the transformation between the incident and the
scattered fields. An illustration of the synthesis problem configuration is shown in Figure 1. In what
follows, we assume a harmonic-time dependence exp(−iωt) and that the metasurface is directed along
the z-direction and located at z = 0.

So far, only two approaches have been introduced to formally accomplish this transformation,
the first is based on momentum transformation [10], and the second is based on susceptibility tensor
extraction [11]. In this paper, we discuss these two exact approaches to synthesize the metasurface given
the incident and the scattered fields. The first approach is spectral and yields a metasurface description
in the momentum space of the waves [10]. This approach is best suited for scalar and paraxial waves
for its simplicity and its capability of arbitrarily translating the plane of the scattered field parallel
to the metasurface. The second approach is spatial and yields a metasurface description in terms of
susceptibilities [11]. This approach is best suited for vectorial field transformation due to its direct
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Figure 1. An illustration of an electromagnetic transformation by a metasurface. The metasurface is a
non-uniform structure of extent Lx×Ly with sub-wavelength thickness (δ � λ) and located at z = 0. It
is required to find the electromagnetic description of the metasurface to transform a specified incident
wave f i(x, y, 0−) into a specified reflected wave f r(x, y, 0−) and an arbitrary specified transmitted wave
g(x, y, 0+).

connection with the metasurface scattering elements. We note that the synthesis approaches discussed
here are the first step in metasurface design. Complete metasurface design further requires determining
the exact shapes of the scattering elements, which is out of the scope of this paper. However, the
scattering elements may be directly determined using lookup maps [3], iterative analysis [4], or dipole
response approximation [5].

This paper is organized as follows; first the spectral synthesis method based on momentum
transformation for scalar and paraxial fields is introduced Section 2. The section starts with the
derivation of the momentum transformation relations followed by the reverse propagator operator. An
example of a metasurface that transforms an incident Gaussian beam into a hypergeometric-Gaussian
vortex beam is shown for illustration. Next, the spatial synthesis method based on scattering element
susceptibilities for vectorial fields is introduced in Section 3. The section starts with the derivation
of the element susceptibilities from the metasurface boundary conditions followed by the application
of the method for metasurface synthesis for electromagnetic wave transformation. An example of a
metasurface that acts as a perfect lens for an electric dipole is shown for illustration. The conclusion
of the work is given in Section 4. Two appendices are included; the first presents the derivation of
the momentum transformation relation for the spectral approach and the second presents Maxwell’s
equations in the sense of distributions for a planar sheet.

2. SPECTRAL SYNTHESIS METHOD: MOMENTUM TRANSFORMATION

The electromagnetic wave momentum (wavevector) is conserved in homogeneous media. Subsequently, a
forced change in any of the momentum components necessarily changes the other components such that
the total momentum is conserved. Hence, by forcing local changes onto the transverse components of
the wavevector, the wavevector may be locally varied such that the wavefront is reshaped in a controlled
fashion. The interaction between the metasurface and the fields is local in space, i.e., the difference
between the field at a certain point on one side of the metasurface and the same point on the opposite
side is solely determined by the metasurface transfer function at the same point. Formal mathematical
derivation is given in appendix A. The local interaction in the direct space translates into a convolution
relation in the momentum space. Although momentum space manipulation is convolutional in nature,
it allows for superior light manipulation at distance compared to direct space manipulation, as will be
shown. The momentum transformation method thus emerges as best suited candidate for metasurface
synthesis since it can effectively manipulate the transverse components of the wavevector.

The following sub-section establishes the scalar approach for momentum transformation, which
deals with scalar fields, such as acoustic fields and paraxially approximate fields encountered in optics.
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2.1. The Scalar Transform

In the scalar case, for a thin metasurface, the interaction between the fields and the metasurface is local,
i.e., linear-shift variant. For a metasurface located at z = 0 in the Cartesian coordinate system with
the fields f(x, y) at z = 0− and g(x, y) at z = 0+, this linear-shift variant relation reads

g (x, y) =
∫∫

S
f

(
x′, y′

)
h

(
x′, y′;x, y

)
dx′dy′,

=
∫∫

S
f

(
x′, y′

)
δ
(
x′ − x, y′ − y

)
η (x, y) dx′dy′,

= f (x, y) η (x, y) , (1)

where the z-coordinate is suppressed, S denotes the plane of the metasurface and h(x′, y′;x, y) is the
generalized transfer function of the metasurface, which reduces to η(x, y) due to local interaction.

The fundamental transformation between the direct space and the momentum space in the vicinity
of the metasurface plane is established through the two-dimensional Fourier transform pair,

f̃ (kx, ky; 0) =
1
2π

∫∫ ∞

−∞
f (x, y; 0) e−i[kxx+kyy]dxdy, (2)

f (x, y; 0) =
1
2π

∫∫ ∞

−∞
f̃ (kx, ky; 0) ei[kxx+kyy]dkxdky ,

where the tilde denotes momentum space quantities, and (kx, ky) are the transverse components of
the wave momentum, k. In the momentum space, relation (1) is expressed as a convolutional relation
reading g̃ = f̃ ∗ η̃. Alternatively, this relation is rewritten to express the metasurface function explicitly
as

η̃ (kx, ky) = g̃ (kx, ky) ∗ ζ̃ (kx, ky) (3)

with ζ = 1/f .

2.2. Plane Translation of Scattered Field

Equation (3) by itself does not offer much advantage over its direct space counterpart (1). However,
it could be argued that the momentum space representation offers better insight into the required
metasurface dynamic range of momentum variation, i.e., the lower and upper bounds of momentum
variation that need to be induced by the metasurface in order to achieve the required transformation.
This assists in synthesizing the metasurface using scattering elements. On the other hand, the superior
advantage of the momentum space representation is clearly apparent when wave manipulation at a
distance is required. For instance, to specify the transmitted field at a distance z = d away from the
metasurface plane, it is sufficient to introduce a momentum space operator to propagate the momentum
components of g̃ from z = d back to the metasurface plane at z = 0. This operator, named the reverse
propagator, is a Fourier propagator taking the simple form

Φ̃ (kx, ky; d) = exp
(
−i

√
k2 − k2

x − k2
yd

)
. (4)

Extending (4) with (3) yields the complete momentum transformation equation

η̃ (kx, ky) =
[
g̃ (kx, ky) Φ̃ (kx, ky; d)

]
∗ ζ̃ (kx, ky) . (5)

We note here that the function η(x, y) may be reduced to the commonly used optical transfer
function (OTF) [12], which takes the form

g̃ (kx, ky) = f̃ i (kx, ky) η̃OTF (kx, ky) ,

where η̃OTF is the OTF and superscript i denotes the incident wave. This reduction takes places under
certain special conditions, such as normal incidence, large electrical size of the surface and when reflection
is ignored. Under these conditions, the momentum space convolution reduces to a simple product and
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η reduces to the OTF, e.g., in the case of normal incidence without reflection, f̃(kx, ky) = δ(kx)δ(ky)
reducing the convolution to a product.

We also note that if a passive metasurface design is required, additional conditions must be
invoked, namely, that the intensity of the incident wave is equal to or greater than the combined
intensities of the reflected and transmitted waves at every point on the metasurface, viz. |f i(x, y, 0−)|2 ≥
|f r(x, y, 0−)|2 + |g(x, y, 0+)|2, with the superscript r denoting the reflected wave.

The momentum transformation technique is not limited to scalar wave manipulation and could be
extended to vectorial fields as well as demonstrated in [10]. It should be noted though that the vector
nature of the problem introduces an extra level of complication, where the metasurface becomes a vector
mode transformer in the momentum space.

2.3. Illustrative Example: Vortex Hypergeometric-Gaussian Beam

Hypergeometric-Gaussian (HyG) beams are a class of paraxial wave solutions with a complex amplitude
that is proportional to a confluent hypergeometric function. The beam intensity profile is characterized
by a single bright ring with the field amplitude vanishing at its center. HyG beams carry topological
charges, i.e., their phasefronts are helical, and thus have a singular phase profile. In quantum mechanics,
HyG beams describe the eigenfunctions of the photon orbital angular momentum, and since they
carry orbital angular momentum, they are of interest in applications, such as micro- and nano-particle
manipulation and orbital angular momentum multiplexing [13].

The HyG beam field is defined as

gHyG (ρ, φ, z) =
Γ

(
1 + |m| + p

2

)
Γ (|m| + 1)

i|m|+1χ|m|/2ξp/2

[ξ + i]1+|m|/2+p/2
eimφ−iχ

1F1

(
−p

2
, |m| + 1;

χ [ξ + i]
ξ [ξ − i]

)
, (6)

where Γ(x) is the gamma function, 1F1(a, b;x) is the confluent hypergeometric function, w0 is the beam
waist, p ≥ −|m| is a real valued parameter, m is the topological charge, p and m together specify the
HyG mode, χ = ρ2/(w2

0 [ξ + i]), and ξ = z/zR with zR = πw2
0/λ the Rayleigh range.

HyG beams are unstable in the presence of small perturbations below the Rayleigh range, zR,
meaning that one mode can easily degenerate into others. Hence it is of interest to generate the HyG
beam directly beyond the Rayleigh range in order to avoid the inherent beam instability. In this example,
the HyG beam is generated by illuminating the metasurface by an ordinary Gaussian beam,

fGB (ρ, φ, z) =
w0

w (z)
exp

(
− r2

w (z)2
− ik

[
z +

r2

2R (z)

]
− iϑ (z)

)
, (7)

where r2 = ρ2 + z2, R(z) = z[1 + (zR/z)2] is the beam radius of curvature, w(z) = w0[1 + (z/zR)2]1/2

the beam waist with w0 the beam waist at z = 0, and ϑ(z) = arctan(z/zR) the Gouy phase. The
k-space representation of the field expressions in (6) and (7) are substituted into (5), where the reverse
propagator in this particular example is used as an advance propagator, i.e., it translates the beam
profile in the negative z-direction as opposed to the conventional positive translation. The purpose of
the propagator here is to generate the HyG beam at the plane of the metasurface with the characteristics
of a HyG at z = zR, thus avoiding the instability region of the beam. The propagator is given by

Φ̃ = exp
(
i
√
k2 − k2

x − k2
yzR

)
.

Figure 2 shows the synthesized metasurface function required to convert an ordinary Gaussian beam
into a vortex hypergeometric-Gaussian beam. Figures 2(a) and 2(b) respectively depict the phases of the
incident ordinary Gaussian beams and the transmitted hypergeometric-Gaussian beam. The incident
beam has a beam waist w0 = λ and zero Guoy phase and is transformed into a vortex hypergeometric-
Gaussian beam with the same beam waist, a topological charge m = 4, and p = 10. The transmitted
hypergeometric-Gaussian beam is advance-propagated to distance z = zR to avoid the beam instability
range. The magnitude and phase of the metasurface function required to achieve the transformation
are plotted in 2(c) and 2(d), respectively. It is interesting to note that even though the vorticities of
the metasurface and the transmitted beam have the same topological charge magnitude, |m| = 4, they
are in counter rotation. This difference in rotation is necessary for the conservation of the total orbital
angular momentum, since the incident beam does not carry orbital angular momentum.
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(a) (b)

(c) (d)

Figure 2. Transformation of an ordinary Gaussian beam into a hypergeometric-Gaussian beam carrying
orbital angular momentum. The phase of the incident Gaussian beam is depicted in (a) with the effect of
the phase-front curvature visible in the radial variation. The phase of the transmitted hypergeometric-
Gaussian beam is depicted in (b) with four distinctive phase transitions corresponding to a vorticity
with topological charge m = 4. The magnitude and phase of the spatial metasurface function to achieve
the transformation are plotted in in (c) and (d), respectively.

3. DIRECT SYNTHESIS METHOD: SUSCEPTIBILITY TENSORS

Since a the presence of the metasurface induces a discontinuity in the electromagnetic field, a rigorous
treatment of such discontinuity is necessary. One approach, proposed in [14], takes advantage of
expressing the quantities in Maxwell’s equations in the sense of distributions. This representation
allows for a generalized set of boundary conditions to be devised. More details on the expression of
Maxwell’s equations in the sense of distributions are given in Appendix B. The concept of generalized
boundary conditions has been worked out for the case of a source-free thin planar surface in [15], yielding
the following generalized sheet transition conditions for a surface at z = 0

ẑ × ΔH = −iωP⊥ − ẑ ×∇⊥Mz, (8a)

ẑ × ΔE = iωμM⊥ − ẑ ×∇⊥
(
Pz

ε

)
, (8b)

ẑ · ΔD = −∇ · P⊥, (8c)
ẑ · ΔB = −μ∇ · M⊥, (8d)

where E, H, D and B are respectively the electric, magnetic, displacement and magnetic flux fields. The
delta terms represent field differences on both sides of the surface, e.g., ΔE = E(x, y, 0+)−E(x, y, 0−),
and the subscript ⊥ denotes the transverse vector components with respect to z. The quantities ε and
μ are respectively the permittivity and permeability, and P and M are respectively the electric and
magnetic surface polarization densities. The polarization densities are generally expressed in terms of
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the acting (local) field as

P = εN〈αee〉Eact + εN〈αem〉
√
μ

ε
Hact, (9a)

M = N〈αme〉
√
ε

μ
Eact +N〈αmm〉Hact, (9b)

where 〈αab〉 are the averaged polarizabilities around a given scattering element; the subscripts e and m
respectively stand for electric and magnetic; N is the number of scattering elements per unit area. The
acting (local) field is the average field on both sides of the surface taking into account the contribution
due to the coupling between the scattering elements, but does not include the field produced by the
elements. To account for the acting field due to sub-wavelength scattering elements, each scattering
element is modeled by a small disk encompassing electric and magnetic current dipoles. In [15], the
fields of these disks are expressed in terms of P and M, which permits eliminating the acting field
expressions from (9). Additionally, the effective surface susceptibilities could be used in place of the
polarizabilities for a complete macroscopic description of the surface. Hence,

P = εχeeE + εχem

√
μ

ε
H, (10a)

M = χme

√
ε

μ
E + χmmH, (10b)

where the field terms on the right-hand side are the average on both sides of the surface, e.g.,
E = [E(x, y, 0+) + E(x, y, 0−)]/2. Note that assuming propagation in the positive z-direction, the
field at z = 0− could be expressed as E(x, y, 0−) = Ei(x, y, 0−) + Er(x, y, 0−), where the superscripts i
and r respectively stand for incident and reflected. Similarly, the field at z = 0+ could be expressed as
the transmitted field E(x, y, 0+) = Et(x, y, 0+).

3.1. Extraction of Surface Susceptibilities

From the previous analysis, the synthesis method could be formulated as an inverse problem where the
electromagnetic fields are defined everywhere and the properties of the metasurface are unknown. This
method, as detailed in [11], is thus based on solving equations (8) for the components of the susceptibility
tensors with relations (10). Equations (8a) and (8b) involve the derivatives of the normal components of
the polarization densities and yield a set of coupled inhomogeneous partial differential equations. In this
scenario, solutions of the inverse problem is typically not available in analytic form and may be found by
means of numerical analysis. Nevertheless, under the assumption that the metasurface is infinitesimally
thin and hence no physical scattering elements could be employed to induce a variation in Pz, it is
acceptable to enforce Pz = 0. Additionally, the condition Mz = 0 is enforced to further simplify the
analysis without severely limiting the transformation capabilities of the metasurface. These conditions
admit obtaining closed-form solutions for the susceptibilities. In what follows, only equations (8a)
and (8b) will be used as they combine all the transverse components of the fields which are sufficient
to completely describe the electromagnetic fields on each side of the metasurface according to the
uniqueness theorem. These two vectorial equations represent a set a four scalar equations relating the
transverse electric and magnetic fields to the effective surface susceptibilities. Therefore, the inverse
problem is determined for a given arrangement of four effective susceptibilities.

3.2. Synthesis for Single Transformation

By inserting (10) into (8a) and (8b), and dropping out the equations with the normal field components,
the following relations are obtained(

ΔHy

−ΔHx

)
= iωε

(
χxx

ee χxy
ee

χyx
ee χyy

ee

)(
Ex

Ey

)
+ iωε

√
μ

ε

(
χxx

em χxy
em

χyx
em χyy

em

)(
Hx

Hy

)
, (11a)

(−ΔEy

ΔEx

)
= iωμ

√
ε

μ

(
χxx

me χxy
me

χyx
me χyy

me

)(
Ex

Ey

)
+ iωμ

(
χxx

mm χxy
mm

χyx
mm χyy

mm

)(
Hx

Hy

)
. (11b)
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The linear system (11) consists of four equations with sixteen unknowns. This system is
underdetermined and requires further processing to become solvable. Two approaches may be considered
for the processing, the first approach enforces certain relations between the susceptibilities, and the
second eliminates twelve of the unknown susceptibilities. In what follows, the two approaches are
investigated. For the first approach, certain physical conditions between the susceptibility components
are readily available, such as the conditions for reciprocity and for losslessness. According to [16, 17],
the conditions for reciprocity are given as

χ
T
ee = χee, χ

T
mm = χmm, χ

T
me = −χem, (12)

where superscript T denotes the transpose, and the conditions for losslessness are given as

χ
T
ee = χ

∗
ee, χ

T
mm = χ

∗
mm, χ

T
me = χ

∗
em, (13)

where superscript ∗ denotes the complex conjugate.
It should be noted that enforcing such relations between susceptibilities limits the types of possible

electromagnetic transformations achievable with the metasurface. On the other hand, employing the
second approach, where only four susceptibility components exist, provides a general synthesis method
for arbitrary electromagnetic transformations. Since the linear system consists of four equations, then
one of the four possible susceptibilities is chosen per equation. This yields a total number of 256
possible arrangements. Depending on the required transformation and the application, many of these
arrangements may violate the reciprocity or the losslessness conditions and may be eliminated.

For simplicity and without loss of generality, the following analysis assumes a reciprocal metasurface
where only the diagonal terms of the susceptibility tensors are retained. Solving (11) under this
assumption yields

χxx
ee =

ΔHy

iωεEx

, (14a)

χyy
ee =

−ΔHx

iωεEy

, (14b)

χxx
mm =

−ΔEy

iωμHx

, (14c)

χyy
mm =

ΔEx

iωμHy

. (14d)

To demonstrate the relationship linking the transmitted field to the incident field and the
susceptibilities, a reflectionless metasurface is assumed to simplify the analysis. Hence solving (14)
for the transmitted field yields

Et
x = −Ei

x +
8Ei

x + i4χyy
mmμωH i

y

4 + χxx
ee χ

yy
mmεμω2

, (15a)

Et
y = −Ei

y +
8Ei

y − i4χxx
mmμωH

i
x

4 + χxx
mmχ

yy
ee εμω2

, (15b)

Ht
x = −H i

x +
8H i

x − i4χyy
ee εωEi

y

4 + χxx
mmχ

yy
ee εμω2

, (15c)

Ht
y = −H i

y +
8H i

y + i4χxx
ee εωE

i
x

4 + χxx
ee χ

yy
mmεμω2

. (15d)

Equations (15) show that the transmitted field components depend on their own counterparts and their
orthogonal dual, e.g., Et

x depends on Ei
x and H i

y. This is an important synthesis condition that has to
be accounted for in the metasurface design process.
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3.3. Illustrative Example: Holographic Repeater

A holographic repeater is a device that constructs an image of a primary source at a desired distance
away from that source. There is significant interest in such repeaters, particularly in point-to-point free-
space communication applications. Previous research work in this area employed near-field patterned
plates [18] or antenna arrays and a metascreen [19] to replicate the source image. In this example,
a holographic repeater is constructed employing a metasurface illuminated by an ideal dipole. The
metasurface is located midway between the dipole source and its holographic image.

The main difficulty in successfully reconstructing the source image is that away from the source,
the evanescent components of the field decay in magnitude in contrast to the propagating components
which only incur a phase change. A perfect source reconstruction based on superlenses made out
of doubly-negative metamaterials was proposed in [20]. Here, an equivalent two-dimensional perfect
lens is constructed by choosing the appropriate susceptibilities for the metasurface. Moreover, if
the metasurface has an infinite extension, then the evanescent field components can be successfully
transmitted and a perfect construction of the holographic image of the source at a distance is possible.
Nevertheless, the constructed holographic image of the source can only radiate in the forward direction
(away from the metasurface), in contrast to the actual dipole source. Any causal radiation from the
holographic image in the backward direction would necessarily require the presence of a source located
farther away from the metasurface and the holographic image.

(a) (b)

(c) (d)

Figure 3. The electric susceptibilities of a reciprocal holographic reaper metasurface. The metasurface
is illuminated by the field radiated from an x̂-oriented electric dipole located at z = −10λ. The
constructed holographic image appears at z = 10λ and is completely causal (i.e., no backward radiation).
The magnitude and phase of χxx

ee are plotted in (a) and (b), respectively. The corresponding values of
χyy

ee are plotted in (c) and (d), respectively.

In this example, the dipole source is oriented along x̂ and is located at x = 0, y = 0 and z = −10λ.
It is required to construct a holographic image of the dipole at x = 0, y = 0 and z = 10λ. The non-zero
incident field components are thus given by

Ei
x (r0, θ0, φ) =

ieikr

8πr3εω
[
1 + k2r2 − ikr +

(−3 + k2r2 − 3ikr
)
cos (2θ)

]
cos2 (φ)

+
ieikr

4πr3εω
[−1 + k2r2 + ikr

]
sin2 (φ) ,
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Ei
y (r0, θ0, φ) =

eikr

8πr3εω
[
3i− ik2r2 + 3kr

]
sin2 (θ) sin (2φ) ,

Ei
z (r0, θ0, φ) =

eikr

8πr3εω
[
3i− ik2r2 + 3kr

]
sin (2θ) cos (φ) ,

H i
y (r0, θ0, φ) =

eikr

4πr2
[−1 + ikr] cos (θ) ,

H i
z (r0, θ0, φ) =

eikr

4πr2
[1 − ikr] sin (θ) sin (φ) ,

where r20 = x2 + y2 + (z + 10λ)2 and θ0 = arccos([z + 10λ]/r0). The transmitted field at z = 0+ is
the phase conjugate of the incident field at z = 0−, and the metasurface in this example acts as a
phase conjugating surface in transmission mode. The field difference and average are thus respectively
proportional to the imaginary and real parts of the incident field, e.g., ΔE = 2Im{Ei} and E = Re{Ei}.
The susceptibilities are found in a straightforward fashion under the assumption of reciprocity using (14).

Figure 3 depicts the electric susceptibility of the synthesized metasurface. The magnitude and
phase of χxx

ee are plotted in 3(a) and 3(b), respectively, while the corresponding values of χyy
ee are plotted

in 3(c) and 3(d), respectively. The magnetic susceptibilities near the center of the metasurface are
similar to their electric orthogonal duals.

4. CONCLUSION

In this paper, the two exact approaches to synthesize a metasurface capable of electromagnetic
transformation have been described. The first approach is spectral in the wave momentum space
and yields a spectral description of the metasurface function. This approach is most suitable for scalar
and paraxial waves for its simplicity and the physical insight it provides. The momentum approach
is extensible to vectorial fields as well, but the extensions entails more involved analysis, which may
subtract from the ease of application. Here, only the scalar transformation based on momentum is
shown to demonstrate the concept. The second approach is a direct space approach based on extracting
the surface electric and magnetic susceptibilities. This approach is more suitable for vectorial field
transformation.

In the momentum transformation case, a relation between the spectral components on each side
of the metasurface is established. The metasurface transfer function is introduced to induce changes
in the transverse components of the wave on one side of the metasurface to those of the wave on the
other side of the metasurface while conserving the total wave momentum. This spectral representation
has the added advantage when manipulating the wave at a distance far away from the metasurface is
required. An illustrative example is shown, where an incident ordinary Gauss beam is transformed into
a vortex hypergeometric-Gaussian beam beyond its instability region.

On the other hand, in the direct space transformation case, the differences and the averages of the
fields on both sides of the metasurface are linked to the electric and magnetic susceptibilities. These
relations yield an underdetermined system of coupled nonlinear equations. The system of equations
can be linearized by assuming no transformation of the field components normal to the surface. The
resulting linear system could then be made determined either by enforcing certain relations between
the susceptibility components, such as reciprocity and losslessness, or by selectively choosing to retain
only a specific set of susceptibility components, which extends the transformation possibilities of the
metasurface.

The presented systematic approaches to synthesize a metasurface are the two possible exact
approaches to achieve electromagnetic transformation. Nevertheless, these approaches are the first
step in the overall metasurface design process. Once the metasurface description, whether as a spectral
function or in terms of the electric and magnetic susceptibilities, is determined, the following step is to
map this description to physical scattering elements. This mapping could be carried out using iterative
full-wave analysis for example. Nevertheless, the presented approaches may be considered as useful
interpretations of Maxwell’s equations for metasurface applications.
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APPENDIX A. METASURFACE-FIELD LOCAL INTERACTION IN SPACE AND
MOMENTUM CONSERVATION

A formal representation of (3) is derived applying the distribution theory for the momentum
discontinuity in the metasurface plane. First, the difference between the fields at the two sides of
the metasurface is considered

g (x, y) − f (x, y) = Λ (x, y) ,

g̃ (kx, ky) − f̃ (kx, ky) = Λ̃ (kx, ky) , (A1)

where Λ(x, y) is the field difference. Equation (A1) seems a priori contradictory, since Λ̃(kx, ky) has to
be zero due to the momentum conservation. However, this apparent contradiction vanishes when the
momenta are considered in the sense of distributions, i.e., generalized functions describing the physics.
This may be shown by using the Fourier transform property of distributions [21]

〈F−1
{
Λ̃

}
, ϕ̃〉 = 〈Λ̃,F−1 {ϕ̃}〉, (A2)

where F−1{ψ̃} is the inverse Fourier transform of ψ̃, ϕ̃ is a well-behaved, i.e., smooth and has a
compact support, testing function. This well-behavior of ϕ̃ is also necessary when describing causal
physical phenomena. Hence,

〈ψ(x, y), ϕ(x, y)〉 =
∫∫ ∞

−∞
ψ(x, y)ϕ(x, y)dxdy.

Choosing the testing function to be the general transfer function of the metasurface, and considering
the momentum conservation relation, (A2) reduces to

〈F−1
{

Λ̃
}
, h̃〉 = 〈0,F−1

{
h̃
}
〉,

which requires supp[Λ̃] = 0, i.e., Λ̃ = α̃(kx, ky)δ(kx, ky), with α̃ an arbitrary spectral function. Inserting
this relation into (2) and changing the order of the integrals, assuming the well-behavior of h, recovers (1)
by choosing α(x, y) = [η(x, y) − 1]f(x, y).

APPENDIX B. MAXWELL EQUATIONS IN THE SENSE OF DISTRIBUTIONS FOR
A PLANAR SHEET

If a function f(z) is discontinuous at z = 0, it can be rewritten as

f(z) = f+(z)U(z) + f−(z)U(−z), (B1)

where U(x) is the Heaviside unit step function and f±(z) denote the extension of the function for z > 0
and z < 0, respectively. Since Maxwell’s equations imply spatial and temporal derivatives, it is required
to understand the behavior of df(z)/dz across the discontinuity. By properties of the distributions, we
have 〈

U ′, φ
〉

= − 〈
U, φ′

〉
= 〈δ, φ〉 , (B2)

the derivative of the Heaviside unit step function is the Dirac delta. Thus the derivative of (B1) with
respect to z can be expressed as

d
dz
f(z) =

{
f ′+(z)U(z) + f ′−(z)U(−z)} + (f+(0) − f−(0))δ(z) =

{
f ′

}
+ [[f ]] δ(z), (B3)

where the term {·} is the regular part defined for z 	= 0, and the term [[·]] is the singular part defined
at the discontinuity. Equation (B1) can thus be expressed as

f(z) = {f(z)} +
M∑

j=0

fjδ
(j)(z), (B4)
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where M is an integer, fj a constant coefficient, and δ(j)(z) the j-th derivative of the Dirac delta. This
representation is essential for the proper formulation of the boundary conditions across the discontinuity.
To illustrate the process, this formulation is applied to the Maxwell-Ampère equation,

∇× H = J− iωD, (B5)
with the fields H,D and the electric current J taking the form of (B4). Equation (B5) then reads

∇× H = ∇⊥ × {H} + ẑ × ∂

∂z
{H} +

M∑
j=0

∇⊥ × Hjδ
(j)(z) +

M∑
j=0

ẑ × ∂

∂z
Hjδ

(j)(z), (B6)

where the relation ∇ = ∇⊥ + ẑ ∂
∂z is employed. The second term on the right-hand side of (B6) can be

written in form of (B3), whereas the last term on the right-hand side of the same equation solemnly
includes derivatives of the Dirac delta function since Hj is not a function of z. Therefore, equation (B6)
becomes

∇× H = ∇⊥ × {H} + ẑ ×
{
∂

∂z
H

}
+ ẑ × [[H]] δ(z)

M∑
j=0

∇⊥ × Hjδ
(j)(z) +

M∑
j=0

ẑ × Hjδ
(j+1)(z), (B7)

where the first two terms on the right-hand side of (B7) are the regular parts. Equating the derivative
order of the Dirac delta functions, we have, for j = 0

ẑ × [[H]] + ∇⊥ × H0 = J0 − iωD0, (B8)
and for j ≥ 1

ẑ × Hj−1 + ∇⊥ × Hj = Jj − iωDj . (B9)
Similarly, the same process is applied to the rest of Maxwell’s equations; for j = 0

ẑ × [[E]] + ∇⊥ × E0 = −K0 + iωB0, (B10a)
ẑ · [[D]] + ∇⊥ × D0 = ρ0, (B10b)
ẑ · [[B]] + ∇t × B0 = m0, (B10c)

and for j ≥ 1
ẑ × Ej−1 + ∇⊥ × Ej = −Kj + iωBj , (B11a)
ẑ ·Dj−1 + ∇⊥ × Dj = ρj , (B11b)
ẑ ·Bj−1 + ∇⊥ × Bj = mj , (B11c)

where K is the magnetic current, and ρ and m are respectively the electric and magnetic charges.
The relations for j = 0 are the thus the constituents of the boundary conditions for time-harmonic

waves, whereas the relations for j ≥ 1 are compatibility relations that can be used recursively to find
the unknown terms in (B8) and (B10). In the case of a thin sheet that induces field discontinuities,
the higher order source quantities vanish. Moreover, by assuming that the distributions have a finite
support, i.e., M is finite, then all the terms with index j > M identically vanish. Recursively applying
the finite support approximation yields that all terms with index j > 0 also identically vanish. Hence,
relations (B9) and (B11) can be modified into

ẑ × H0 = 0, (B12a)
ẑ × E0 = 0, (B12b)
ẑ · D0 = 0, (B12c)
ẑ ·B0 = 0. (B12d)

By making use of D = εE + P and B = μH + μM, and inserting (B12) into (B8) and (B10), the
final expression for a source-free single planar sheet boundary conditions are

ẑ × [[H]] = −iωP0,⊥ + ∇⊥ × M0,‖, (B13a)

ẑ × [[E]] = iωμM0,⊥ + ∇⊥ × 1
ε
P0,‖, (B13b)

ẑ · [[D]] = −∇⊥ ·P0,⊥, (B13c)
ẑ · [[B]] = −μ∇⊥ ·M0,⊥, (B13d)

where the subscript ‖ denotes the normal component.
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