
Progress In Electromagnetics Research Letters, Vol. 51, 21–26, 2015

Focusing Properties of Hypergeometric Gaussian Beam through
a High Numerical-Aperture Objective
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Abstract—The focusing properties of radially polarized hypergeometric Gaussian beam are studied
using the Richards-Wolf vectorial diffraction model. Such a polarized beam is decomposed into radial
and longitudinal polarization. With a proper combination of the beam order, beam size and imaginary
parameter variables, the adjustably confined flat-topped focus and focal hole can be obtained in the
focal region. Moreover, we got originality characteristic for the axial intensity distribution of two shaped
symmetric light spots. The tight focusing of a hypergeometric Gaussian beam may find applications in
data storage, laser drilling, optical trapping, etc.

1. INTRODUCTION

It is well known that increased induced field intensity in a localized area is required in a variety
of applications in optical data storage, microscopy, material processing, micro-particle trapping
manipulation, etc. [1–5]. There are many ways to realize increased induced field intensity in a localized
area. For example, field enhancement of incident near-infrared light can be achieved by using the
exhibited surface plasmon polariton from erbium ions in a golden film [6]. A grounded dielectric slab
using a single supersrate layer to achieve field enhancement of Gaussian beams is also investigated in [7–
9]. In addition, based on Richards-Wolf vectorial diffraction model [10, 11], it is predicted that strong
electric field and a smaller spot are achievable by tightly focusing a radially polarized beam [12, 13]. If
the intensity pattern of the radially polarized beam is like an annular, the spot size will be much smaller
and the field intensity stronger [14].

Defined by a separable-variable-based solution of the paraxial parabolic equation in cylindrical
coordinate systems, a novel family of hypergeometric beams was firstly introduced by Kotlyar et al. [15].
A fully coherent hypergeometric beam would exhibit non-diffractive behavior upon propagation in free
space. But these modes have an infinite energy. One way of achieving a practically realizable beam
is to modulate the hypergeometric beam with a Gaussian exponential. In this way, we obtain the
hypergeometric Gaussian beam. Generation and particular cases of the intensity and diffraction plots
for hypergeometric Gaussian beam were discussed and analyzed [16, 17]. Near- and far-field profiles of
the hypergeometric Gaussian beam were considered in [18]. However, to the best of our knowledge,
there are no papers studying the focusing of the hypergeometric Gaussian beam through a high NA
objective.

In this paper, we study the focus-shaping technique of hypergeometric Gaussian beam by a high
NA lens. Numerical simulation shows that total intensity distribution in the vicinity of the focus
is dependent not only on the beam order and the beam size, but also on the imaginary parameter
variables γ. The adjustably confined flat-topped focus and focal hole can be obtained by choosing
a proper combination of parameters. Specifically, the distribution of the axial intensity shaped two
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symmetric light spots about the focus can be achieved for different γ. Finally, we discuss the full-width
at half-maximum (FWHM) and beam quality on the focal plane. The results show that subwavelength
focusing and high beam quality are achieved. Hence an added advantage of using this technique is that
it allows us to open up new applications of such small flat-topped focus and focal holes.

2. RICHARDS-WOLF DIFFRACTION THEORY

For a high NA objective lens, the electric field of a hypergeometric Gaussian incident beam at a pupil
can be defined as follow [16, 19].
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where m is an integer, and it is the order of hypergeometric Gaussian beam. w0 denotes the source
beam size of a fundamental Gaussian beam. However, a new kind of hypergeometric Gaussian beam is
obtained if m is lager than 1. f is the focal length of the lens and γ the real parameters. The value of
θ is related to the NA of objective lens and 0 ≤ θ ≤ arcsin(NA/n). α = arcsin(NA/n) is the maximal
NA angle, n the refractive index between the objective lens and the sample, and n = 1 the index of
refraction of free space. Obviously, as defined in Eq. (1), the amplitude distribution of hypergeometric
Gaussian beam is determined by m and w0.

The analysis was performed on the basis of Richards-Wolf vectorial diffraction method widely used
for high NA focusing systems at arbitrary incident polarization. In the case of a radially polarized
hypergeometric Gaussian beam, the focusing field is simplified as [20, 21].
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where Er(r, z) and Ez(r, z) are radial and longitudinal electric field components near the focal plane,
respectively. The azimuthal component Eϕ(r, z) of the electric field is zero everywhere in the diffraction
field and A = E0πfn/λ, E0 a constant relating to the power of the incident beam, f the focal length,
k = 2π/λ the wave number in the vacuum. J0(x) and J1(x) denote Bessel functions of zero and first
order, and E(θ) is the amplitude of the electric field in front of the pupil. Considering that Er(r, z) and
Ez(r, z) are orthogonal, the total intensity is given as E2

total = E2
r (r, z) + E2

z (r, z).
In order to describe the focusing property, the FWHM on focal plane will be investigated.

Meanwhile, in order to describe longitudinal component of the focused field, the beam quality η is
defined as: η = Φz/(Φr + Φz). Where Φj = 2π

∫ r0

0 |Ej(r, 0)|2rdr(j = r or z), here r0 is the first zero
point in the distribution of focusing electric density on the focal plane. Through numerical calculation,
the size of η has a close relationship with the values of m and w0. However, in order to include the total
energy of incident beam, the upper range of integration is taken as 4λ, which is larger than r0.

3. FOCUSING PROPERTY

In order to obtain the focusing property of a radially polarized hypergeometric Gaussian beam. Based
on Eq. (2) and Eq. (3), the focusing performance of the radially polarized hypergeometric Gaussian
beam is shown in Figure 1 and Figure 2 for γ = 0 and γ �= 0, respectively. Here the numerical aperture
of the focusing lens is considered as NA = 0.95 and f = 1 cm. n = 1 is the index of refraction of free
space. The laser wavelength is 632.8 nm and the power of laser 100 mW.

Figures 1(a), 1(e) and 1(i) display the lateral normalized intensity distribution on the focal plane.
The total intensity distribution of the incident radially polarized hypergeometric Gaussian beam focused
by high NA objective on the focal plane is described as black curves in Figures 1(a), 1(e) and 1(i).
Obviously, the radius of incident hypergeometric Gaussian beam increases gradually from Figures 1(a),
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Figure 1. Focusing performance of radially polarized Hypergeometric Gaussian beam with different
values of parameter (m, w0) and γ = 0, (a)–(d) for m = 4, w0 = 1.5 mm, (e)–(h) for m = 4, w0 = 3mm
and (i)–(l) for m = 8, w0 = 3 mm, respectively.

to 1(e) and to 1(i). Evidently, for larger m and w0, the circular focusing spot appears, and the lateral size
of the focusing spot decreases. One can see that focusing is achieved in Figures 1(e) and 1(i). Moreover,
Figure 1(e) shows flat topped distribution of the amplitude, which can be regarded as the critical
condition for obtaining focusing. So when m = 4 and w0 = 1.5 mm, the incident radially polarized
hypergeometric Gaussian beam cannot achieve focusing on the focal plane. As shown in Figures 1(b)–
1(d), 1(f)–1(h), and 1(j)–1(l), one can easily know that the total focused field is determined by radial
and longitudinal components. The lateral intensity distribution of radial electric field component forms
a hollow distribution on the axial or on the focal plane. Furthermore, the position of the maximum of
the radial component is most near the axis. But the longitudinal component has an intensity maximum
on the axis precisely. Therefore, The maximum intensity of radial and longitudinal electric fields can
directly decide the total intensity distribution of the focal plane and size of the focal spot. As shown
in the blue curve in Figure 1(a) or contour plot of Figure 1(d), if the maximum radial electric field
component is greater than the maximum value of the longitudinal field component, the incident radially
polarized hypergeometric Gaussian beam cannot realize focusing on the focal plane. On the contrary,
in the vicinity of the focus, focusing spot can be achieved.

According to Eq. (2), because of J1(0) = 0, the intensity of radial component in the longitudinal
direction at focal spot is zero, which is shown as the blue curves in Figures 1(a), 1(e) and 1(i). If the
maximal intensity is not located on the focal plane, the size of focal spot will be enlarged. Meanwhile,
in Eq. (3), Ez(0, 0) �= 0. Therefore, the focusing is determined by the weight of longitudinal component.
Obviously, numerical results indicate that the weight of longitudinal electric field component at focal
spot will increase for large value of parameters m and w0. Actually, if large value of w0 (or m) is
selected, for fixed value of m (or w0) the focused field and subwavelength focal spot can be achieved.
However, extremely large values of m and w0 are not recommended based on the numerical results.
It is worth noticing that the incident energy should be confined in the pupil of objective lens when
one determines the value of parameter of a hypergeometric Gaussian beam. Therefore, considering the
previous designed annual filter, most incident energy of a hypergeometric Gaussian beam lies in the
region near the edge of the objective lens.
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Figure 2. Focusing performance of radially polarized Hypergeometric Gaussian beam with different
values of parameter (m, w0) and γ �= 0, (a)–(d) for m = 8, w0 = 3 mm and γ = 5; (e)–(h) for m = 8,
w0 = 3mm and γ = 10, respectively.

(a) (b)

Figure 3. The beam quality and FWHM of the radially polarized Hypergeometric Gaussian beam on
the focus plane for different values of parameter m and w0, (a) for m = 4 and (b) for w0 = 3 mm.

Figures 2(a) and 2(e) display the lateral normalized intensity distribution on the focal plane. It is
worth noticing that the most difference from Figure 1 is that the parameter of γ is nonzero in Eq. (1).
According to Eq. (1), γ is the imaginary part. Therefore, it has no effect on the amplitude distribution
of the incident hypergeometric Gaussian beam at the pupil. However, there is a remarkable effect of
the intensity distribution of electric field on the focal plane. Comparing Figure 2(d) with Figure 1(l),
obviously, it is no longer focused on the focal plane, but the formation of two symmetric focal spots
near the focus. Meanwhile, from Figure 2(d) to Figure 2(h), it is easy to see that the distance between
two symmetric focal spot increases with an increasing γ, and the focusing field exhibits large lateral
width on the focal plane, which may be regraded as the focal spot shifted on the focal plane.

The focusing characteristics, such as FWHM and beam quality η, are shown in Figure 3 for different
values of m and w0. From the numerical results it can be obtained that when m = 4, w0 = 1.5 mm
and m = 2, w0 = 3 mm, the maximal amplitude of incident hypergeometric Gaussian beam is near the
origin of coordinate, and the focal spot vanishes on the focal plane. Therefore, in this case, the FWHM
of the focal spot cannot be defined. On the other hand, for fixed value of m (or w0), the beam quality
η increases with an increasing w0 (or m). Therefore, in order to obtain longitudinal polarized focusing
larger m or w0 is essential.

Summarizing the above content, the focusing performance of incident radially polarized
hypergeometric Gaussian beam is discussed with different values of m, w0 and γ. Moreover, in previous
researches, the intensity distributions on the focal plane of radially polarized Bessel, Bessel-Gaussian and
Gaussian were investigated, and the FWHMs were 0.59λ, 0.68λ and 0.78λ, respectively [22]. Although
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the FWHM is 0.82λ for the radially polarized hypergeometric Gaussian beam with m = 8, w0 = 3 mm in
Figure 1(i), smaller FWHM can be achieved with large value of (m, w0) in Figure 3. For example, when
m = 4, w0 = 8 mm, focusing spot appears at focal spot with FWHM of 0.51λ. Therefore, the radially
polarized hypergeometric Gaussian beam shows the superiority in focusing with superresolution.

4. CONCLUSION

In summary, based on the Richards-Wolf vectorial diffraction theory, we have clarified the focusing
performance of incident radially polarized hypergeometric Gaussian beam by objective lens with large
NA. The FWHM and beam quality are analyzed for different values of parameters. It is shown that
for small values of (m, w0), their focusing characteristics are similar to that in focusing system with
low NA. With a proper combination of the beam order, beam size and imaginary parameter variables,
the adjustably confined flat-topped focus and focal hole can be obtained in the focal region. Moreover,
the distributions of the axial intensity shaped two symmetric light spots about the focus for different
imaginary parameter variables are achieved. Therefore, radially polarized hypergeometric Gaussian
beam can be applied in the focusing system with high numerical aperture to achieve focusing with
superresolution and can be widely used in applications such as data storage, laser drilling and optical
trapping.
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