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Stored Electromagnetic Energy and Antenna Q
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(Invited Paper)

Abstract—Decomposition of the electromagnetic energy into its stored and radiated parts is
instrumental in the evaluation of antenna Q and the corresponding fundamental limitations on antennas.
This decomposition is not unique and there are several proposals in the literature. Here, it is shown
that stored energy defined from the difference between the energy density and the far field energy equals
the energy expressions proposed by Vandenbosch for many but not all cases. This also explains the
observed cases with negative stored energy and suggests a possible remedy to them. The results are
compared with the classical explicit expressions for spherical regions where the results only differ by the
electrical size ka that is interpreted as the far-field energy in the interior of the sphere.

1. INTRODUCTION

Electrostatic energy in free space can be written as an integral of the energy density, ε0|E|2/4, or
equivalently as an integral of the electric potential, φ, times the charge density, ρ, [11, 31, 34, 40]. A
similar expression holds for the magnetostatic energy. The electrodynamic case is more involved. In [4],
Carpenter suggests a generalization in the time domain based on φρ + A · J, i.e., the sum of the scalar
potential times the charge density and the vector potential, A, times the electric current density, J,
see also [9, 39]. Geyi uses a similar expression to analyze small antennas in [13]. Vandenbosch presents
general integral expressions in the electric current density for the stored electric and magnetic energies in
the frequency domain [41] and time domain [43, 44]. These expressions are similar to the expressions by
Carpenter but include some correction terms. Analogous results were already suggested by Harrington
based on differentiation of the method of moments impedance matrix [29].

Stored electromagnetic energy is used to determine lower bounds on the Q-factor for
antennas [5, 8, 38, 45]. The bounds by Chu [5] and Collin & Rothschild [8] are based on mode expansions
and subtraction of the power flow from the energy density. This gives analytic expressions for the lower
bound on Q for small spherical antennas [5, 8]. The results are generalized to the case with electric
current sheets by addition of the stored energy in the interior of the sphere [26, 38]. Stored energy for
general media and its relation to the input impedance are analyzed by Yaghjian and Best [48]. The
energy expressions by Vandenbosch [41] express the stored energy in the current density on the antenna
structure. This is very useful for analysis of small antennas [2, 18, 21, 42] and antenna optimization [6, 18].
The expressions are verified for several antennas in [17, 30]. One problem with the expressions is that
they can produce negative values of stored energy [21]. A similar relation for the differentiated antenna
input impedance [23, 48] is derived in [3, 24].

In this paper, we investigate stored electric and magnetic energy expressions based on subtraction
of the far-field energy density. The expressions are suitable for antenna Q and bandwidth calculations
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and they are closely related to the classical methods in [8, 48], see also [45], for antenna Q calculations.
They are not restricted to spherical geometries and, furthermore, resembles the proposed expressions by
Vandenbosch [41] and the method of moments based expressions by Harrington [29]. The results provide
a new interpretation of Vandenbosch’s expressions [41] and explain the observed cases with negative
stored energy [21]. They also suggest a possible remedy to the negative energy and that the computed
Q has an uncertainty of the order ka, where a is the radius of the smallest circumscribing sphere and
k is the wavenumber. This is consistent with the use of Q for small (sub wavelength) antennas, where
ka is small and Q is large [5, 8]. Analytic results for spherical structures show that the expressions
in [41] for Q differ with ka from the results in [26], that is here interpreted as the far-field energy in the
interior of the sphere. The results for Q are also compared with estimated values from circuit models
and differentiation of the input impedance [23, 24, 48] for a dipole antenna.

The paper is organized as follows. In Section 2, the stored electric and magnetic energies defined by
subtraction of far-field from the energy density are analyzed. The coordinate dependence is analyzed in
Section 3. Stored energies from small structures are derived in Section 4. Analytic results for spherical
geometries and numerical results for dipole antennas are presented in Section 5. The paper is concluded
in Section 6. There are two appendices discussing Green’s function identities Appendix A and spherical
waves Appendix B.

2. STORED ELECTROMAGNETIC ENERGY

We consider time-harmonic electric and magnetic fields, E(r) and H(r), respectively, with a suppressed
e−iωt dependence, where ω denotes the angular frequency. The Maxwell equations in free space are [31]{

∇× E = iωμ0H = iη0kH
∇× H = −iωε0E + J = − ik

η0
E + J,

(1)

where J denotes the current density, while ε0, μ0, and η0 =
√

μ0/ε0 are the free space permittivity,
permeability, and impedance, respectively. For simplicity, we interchange between the angular frequency
and the free space wavenumber k = ω/c0, where the speed of light c0 = 1/

√
μ0ε0. We also recall the

continuity equation, ∇·J = iωρ, relating the current density J with the charge density ρ. The discussion
in this paper is restricted to electric current densities in free space, see [33] for electric and magnetic
current densities and [24] for electric current densities in lossy media.

The time-harmonic electric and magnetic energy densities [31, 34, 40] are ε0|E|2/4 and μ0|H|2/4,
respectively. The energy densities are not observable [4] and there are a few alternative suggestions
in the literature [11]. The electric and magnetic energies comprise both radiated and stored energies;
however, for antenna Q calculations one must extract the stored energy.

The Maxwell’s Equation (1) show that the sources and fields obey the conservation of energy
equation in differential form,

i2ω
(ε0

4
|E|2 − μ0

4
|H|2

)
+

1
2
E · J∗ = −1

2
∇ · (E × H∗) , (2)

V

J(r)

a
n̂

V

^
^

x y
z

^

Figure 1. Illustration of the object geometry V with surface ∂V , outward normal unit vector n̂, and
current density J(r). The object is circumscribed by a sphere with radius a.
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where the superscript ∗ denotes complex conjugate. We consider current distributions J whose support
is in a volume V bounded by the surface ∂V , see Fig. 1. Integrating (2) over this volume gives the real
part result

1
2

Re
∫

∂V
E(r) × H∗(r) · n̂(r) dS = −1

2
Re
∫

V
E(r) · J∗(r) dV, (3)

where n̂ denotes the outward-normal unit vector of the surface ∂V . The first term in the real part
expression (3) is readily identified in view of the Poynting vector [31, 40] as the time-average radiated
power flow through the surface ∂V , so that (3) equates the radiated power exiting ∂V to the time average
of the power generated by J, as expected from energy conservation. Furthermore, integrating (2) over
all space shows that the radiated power exiting the surface ∂V can be expressed in terms of the far field
as

Pr =
1
2

Re
∫

∂V
E(r) × H∗(r) · n̂(r) dS =

1
2η0

∫
Ω
|F(r̂)|2 dΩ, (4)

where Ω denotes the surface of the unit sphere and the far field behaves like E(r) ∼ eikrF(r̂)/r as
r → ∞, where r = rr̂ and r = |r|. Similarly, by integrating (2) over all space one obtains the imaginary
part result

1
4

∫
R3

μ0|H(r)|2 − ε0|E(r)|2 dV =
1
4ω

Im
∫

V
E(r) · J∗(r) dV, (5)

where we used the fact that the integral of the imaginary part of the divergence term in (2) vanishes as
the integration volume approaches R

3. The imaginary part result (5) relates the well-defined difference
between the time-average electric and magnetic energies with the net reactive power delivered by J.

As is well known [5, 8], the total energy, defined as the integral of the energy density integrated
over all space, is unbounded due to the 1/r2 decay of the energy density in the far radiation zone. This
is resolved by decomposition of the total energy into radiated and stored energy. The stored energy
is, however, difficult to define and interpret. The classical approach used by Chu [5] and Collin &
Rothschild [8], and subsequently by others, is based on mode expansions, and therefore restricted to
canonical geometries. Spherical regions are most commonly considered but there are also some results for
cylindrical [8] and spheroidal [12, 36] structures. The stored energy density is customarily defined as the
difference between the total energy density and the radiated power flow in the radial direction [7, 8, 35],
thus the stored electric energy becomes

W
(E)
P =

ε0

4

∫
R3

r

|E(r)|2 − η0 Re {E(r) × H∗(r)} · r̂dV, (6)

where R
3
r = {r : limr0→∞ |r| ≤ r0} is used to indicate that the integration is over an infinite spherical

volume. The classical results by Chu [5] are for spheres with vanishing interior field [8], so that the
stored energy is due to the exterior field only (i.e., for the region where r > a where a is the radius
of the smallest sphere circumscribing the sources). The Thal bound [38] restricts the results to fields
generated by electric surface currents, see also [26]. Here it is observed that there is a stored energy
but no radiated energy flux in the interior of the sphere. The definition (6) is useful for spherical and
cylindrical geometries [7, 8, 35]. This definition is difficult to generalize to arbitrary geometries due to
its coordinate dependence that originates from the scalar multiplication with r̂. The subtraction of the
radiated energy flow is equivalent to subtraction of the energy of the far field outside a circumscribing
sphere, cf., (4). This suggests an alternative stored electric energy defined by subtraction of the far-field
energy, i.e.,

W
(E)
F =

ε0

4

∫
R3

r

|E(r)|2 − |F(r̂)|2
r2

dV =
ε0

4
lim

r0→∞

(∫
r≤r0

|E(r)|2 dV−r0

∫
Ω
|F(r̂)|2 dΩ

)
, (7)

where the integration is over the infinite sphere R
3
r . The subtracted far-field in the integrand can

alternatively be written as a subtraction of the radius times the radiated power [10, 48].
We note that the definitions with the power flow (6) and far field (7) differ only in the interior of

the smallest circumscribing sphere associated with the source support. In the interior of the smallest
circumscribing sphere, which we assume next to be of radius a, this subtracted far-field energy is then

ε0

4

∫ a

0

∫
Ω
|F(r̂)|2 dΩ dr =

a

2c0
Pr. (8)
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Assuming that the contribution to the true stored electric energy, say W (E), due to the exterior field
outside the smallest circumscribing sphere, is equal to that of W

(E)
P and W

(E)
F in (6) and (7), and that

it subtracts some non-negative value less than ε0|F|2/(4r2) inside the sphere, we obtain the bound

W
(E)
F ≤ W (E) ≤ W

(E)
F +

a

2c0
Pr. (9)

This means that the true stored electric energy, W (E), can be bounded from below and above by (7).
The stored magnetic energy, W

(M)
F , is defined analogously. The stored energy is commonly normalized

with the radiated power to define Q-factors. The Q-factor is Q = max{Q(E), Q(M)}, where

Q(E) =
2ωW (E)

Pr
and Q(M) =

2ωW (M)

Pr
(10)

and we have included a factor of 2 in the definitions of Q(E) and Q(M) to simplify the comparison with
antenna Q. This translates the bound (9) into

max{0, QF} ≤ Q ≤ QF + ka, (11)

where we have added that Q is non-negative.
We show that the stored energy with the subtracted far field (7) is similar to the energy defined

by Vandenbosch in [41] for the free space case. For simplicity we express the energy using the scalar
potential φ and the vector potential A in the Lorentz gauge [31, 34, 40], so that (∇2+k2)φ(r) = −ρ(r)/ε0

and (∇2 + k2)A(r) = −μ0J(r) and therefore

φ(r) = ε−1
0 (G ∗ ρ)(r) =

1
ε0

∫
V

G(r − r1)ρ(r1) dV1 (12)

and
A(r) = μ0(G ∗ J)(r) = μ0

∫
V

G(r − r1)J(r1) dV1, (13)

where ∗ denotes convolution and G is the outgoing Green’s function i.e., G(r) = eikr/(4πr) and r = |r|.
The vector and scalar potentials are related by ∇ ·A = ikφ/c0 and the electric and magnetic fields are
given by [31]

E = iωA −∇φ and H = μ−1
0 ∇× A. (14)

We also use the corresponding far-field potentials defined by

φ∞(r̂) =
1

4πε0

∫
V

ρ(r1)e−ikr̂·r1 dV1 and A∞(r̂) =
μ0

4π

∫
V

J(r1)e−ikr̂·r1 dV1 (15)

giving the electric far-field
F(r̂) = iωA∞(r̂) − r̂ikφ∞(r̂). (16)

Using that the far-field is orthogonal to r̂, i.e., r̂ ·F = 0, the far-field radiation pattern obeys

|F(r̂)|2 = ω2|A∞(r̂)|2 − k2|φ∞(r̂)|2. (17)

The electric energy density is proportional to

|E|2 = ω2|A|2 − 2Re{iωA · ∇φ∗} + |∇φ|2 = ω2|A|2 − 2k2|φ|2 + |∇φ|2 − 2Re {iω∇ · (φ∗A)} , (18)

where we used ∇ · (φ∗A) = φ∗∇ · A + A · ∇φ∗ = ik|φ|2/c0 + A · ∇φ∗. We integrate this result over a
large sphere to get the far-field type stored electric energy (7) expressed in the potentials

W
(E)
F =

ε0

4

∫
R3

r

|E(r)|2 − |F(r̂)|2
r2

dV

=
ε0

4

∫
R3

r

|∇φ(r)|2 − k2|φ(r)|2 + ω2

(
|A(r)|2 − |A∞(r̂)|2

r2

)
− k2

(
|φ(r)|2 − |φ∞(r̂)|2

r2

)
dV, (19)

where we applied the divergence theorem to the integration of the last term in (18), obtaining via the
discussion in (16) and (17) that

∫
Ω Im{φ∗(rr̂)Ar(rr̂)}r2 dΩ → 0 as the radius r → ∞ in R

3
r , see (16).
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Use the energy identity for the Helmholtz equation, |∇φ|2 − k2|φ|2 = ε−1
0 Re{φρ∗}+∇·Re{φ∗∇φ},

and that φ∗∇φ → ikr̂|φ|2 for large enough r, to rewrite the first two terms in (19) as∫
R3

r

|∇φ(r)|2 − k2|φ(r)|2 dV = ε−1
0 Re

∫
V

φ(r)ρ∗(r) dV =
∫

V

∫
V

ρ(r1)
cos(kr12)
4πε2

0r12
ρ∗(r2) dV1 dV2, (20)

where we also used that the surface term vanishes. The Green’s function identity, see Appendix A∫
R3

r

G(r − r1)G∗(r− r2) − e−ik(r1−r2)·r̂

16π2r2
dV = −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πr12
j1(kr12), (21)

where j1(z) = (sin(z) − z cos(z))/z2 is a spherical Bessel function [40], is used to rewrite the two
remaining terms in (19) as∫

R3
r

|G ∗ J|2 − | ∫V e−ikr1·r̂J(r1) dV1 |2
16π2r2

dV = −
∫

V

∫
V

J(r1) · sin(k|r1 − r2|)
8πk

J∗(r2) dV1 dV2

+i
∫

V

∫
V

J(r1) · r2
1 − r2

2

8πr12
j1(kr12)J∗(r2) dV1 dV2 (22)

and∫
R3

r

|G ∗ ρ|2 − | ∫V e−ikr1·r̂ρ(r1) dV1 |2
16π2r2

dV = −
∫

V

∫
V

ρ(r1)
sin(k|r1 − r2|)

8πk
ρ∗(r2) dV1 dV2

+i
∫

V

∫
V

ρ(r1)
r2
1 − r2

2

8πr12
j1(kr12)ρ∗(r2) dV1 dV2 . (23)

We note that the first terms in the right-hand side of (22) and (23) only depend on the distance
r12 = |r1 − r2| and are hence coordinate independent, whereas the last terms depend on the coordinate
system due to the factor r2

1 − r2
2 = (r1 + r2) · (r1 − r2). The coordinate dependence originates in the

division with r2 and the explicit evaluation of the integral in (21) over large spherical volumes R
3
r , see

Appendix A.
Collecting the terms in (20), (22), and (23), we get a quadratic form in the current density J for

the far-field type stored electric energy (19) as

W
(E)
F = W

(E)
F0

+ WF1 + WF2 , (24)

where W
(E)
F0

+ WF1 is the coordinate independent part

W
(E)
F0

+ WF1 =
η0

4ω

∫
V

∫
V
∇1 · J(r1)∇2 · J∗(r2)

cos(kr12)
4πkr12

− (k2J(r1) · J(r2)∗ −∇1 · J(r1)∇2 · J∗(r2)
) sin(kr12)

8π
dV1 dV2 (25)

and W
(E)
F0

and WF1 contain the cos and sin parts, respectively. The coordinate dependent part is

WF2 =
η0

4ω

∫
V

∫
V

Im
{
k2J(r1) · J∗(r2) −∇1 · J(r1)∇2 · J∗(r2)

} r2
1 − r2

2

8πr12
k j1(kr12) dV1 dV2 . (26)

The coordinate independent part W
(E)
F0

+ WF1 is identical to the energy by Vandenbosch in [41] for free
space and hence presents a clear interpretation of the energy [41] in terms of (7). We also see that the
definition (7) partly explains the peculiar effects of negative stored energies [21] and suggests a remedy
to it in (11). The coordinate dependent part WF2 is more involved. A similar coordinate dependent term
is observed in [48]. Obviously the actual stored energy, as any physical quantity, should be independent
of the coordinate system. First, we observe that WF2 = 0 for any current density that has a constant
phase. This includes the fields originating from single spherical modes on spherical surfaces and hence
most cases in [5, 8, 26, 38]. It also includes currents in the form of single characteristic modes [2]. We
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also get the coordinate independent part by taking the average of the stored energy from J and J∗. The
term WF2 is further analyzed in Sections 3 and 4.

For the stored magnetic energy we can use |B|2 = |∇ × A|2 or simpler the energy identity (5), to
directly get the difference∫

R3
r

μ0|H(r)|2 − ε0|E(r)|2 dV = Re
∫

V
A(r) · J∗(r) − φ(r)ρ∗(r) dV, (27)

where we used E ·J∗ = iωA ·J∗−∇· (φJ∗)− iωφρ∗. This gives the far-field type stored magnetic energy
W

(M)
F = W

(M)
F0

+ WF1 + WF2 , where the coordinate independent part

W
(M)
F0

+ WF1 =
η0

4ω

∫
V

∫
V

k2J(r1) · J∗(r2)
cos(kr12)
4πkr12

−(k2J(r1) · J(r2)∗ −∇1 · J(r1)∇2 · J∗(r2)
)sin(kr12)

8π
dV1 dV2 (28)

is expressed as a quadratic form in J, see also [41]. We also have the radiated power [14, 41]

Pr =
η0

2

∫
V

∫
V

(
k2J(r1) · J∗(r2) −∇1 · J(r1)∇2 · J∗(r2)

)sin(kr12)
4πkr12

dV1 dV2 . (29)

It is illustrative to rewrite the coordinate independent far-field stored energy in the potentials:

W
(E)
F0

=
1
4

Re
∫

V
ρ∗(r)φ(r) dV and W

(M)
F0

=
1
4

Re
∫

V
J∗(r) ·A(r) dV . (30)

We note that the sum of the first terms, W
(E)
F0

+W
(M)
F0

, corresponds to a frequency-domain version of the
energy expression by Carpenter [4], see also [9, 39]. Moreover, they reduce to well-known electrostatic
and magnetostatic expressions in the low-frequency limit [31].

We follow standard notation in the method of moments (MoM) and use the operator L as the
integral operator associated with the electric field integral equation (EFIE) [32]. Here, the operator is
generalized to volumes and defined as

〈J,LJ〉 = 〈J, (Lm −Le)J〉 = i
∫

V

∫
V

(
kJ∗(r1) ·J(r2)− 1

k
∇1 ·J∗(r1)∇2 ·J(r2)

) eik|r1−r2|

4π|r1 − r2| dV1 dV2 . (31)

The total stored energy is related to the frequency derivative of L, i.e.,

W
(E)
F0

+ W
(M)
F0

+ 2WF1 =
η0

4ω
Im
〈
J, k

∂L
∂k

J
〉

, (32)

where 〈
J, k

∂L
∂k

J
〉

= i
∫

V

∫
V

(
kJ∗(r1) · J(r2) +

1
k
∇1 · J∗(r1)∇2 · J(r2)

)
eik|r1−r2|

4π|r1 − r2| dV1 dV2

−k

∫
V

∫
V

(
kJ∗(r1) · J(r2) − 1

k
∇1 · J∗(r1)∇2 · J(r2)

)
eik|r1−r2|

4π
dV1 dV2 . (33)

The difference between the stored magnetic and electric energies is

W
(M)
F0

−W
(E)
F0

=
η0

4ω
Im〈J,LJ〉= η0

4ω

∫
V

∫
V

(k2J∗(r1) · J(r2)−∇1 · J∗(r1)∇2 · J(r2))
cos(kr12)
4πkr12

dV1 dV2 (34)

that expresses the stored electric and magnetic energies as

W
(E)
F0

+ WF1 =
η0

8ω
Im
〈
J,

(
k
∂L
∂k

− L
)

J
〉

and W
(M)
F0

+ WF1 =
η0

8ω
Im
〈
J,

(
k
∂L
∂k

+ L
)

J
〉

, (35)

respectively. These relations are similar to the method of moments expressions in [24, 29]. The
corresponding total radiated power is Pr = −η0

2 Re〈J,LJ〉.
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3. COORDINATE DEPENDENT TERM

The stored electric (24) and magnetic energies defined by subtraction of the far-field energy (7)
contain the potentially coordinate dependent part WF2 defined in (26). Assume that WF2 = WF2,0

for one coordinate system. Consider a shift of the coordinate system r → d + r and use that
r2
1 − r2

2 → r2
1 − r2

2 + 2d · (r1 − r2). This expresses the coordinate dependent term as

WF2,d = WF2,0 + kd · W, (36)

where W = Wρ + WJ and

Wρ =
i

2ε0

∫
V

∫
V

ρ(r1)∇1
sin(kr12)
8πkr12

ρ∗(r2) dV1 dV2

=
kε0

4

∫
Ω

r̂
∣∣∣∣
∫

V

ρ(r1)e−ikr̂·r1

4πε0
dV1

∣∣∣∣
2

dΩ =
kε0

4

∫
Ω
|φ∞(r̂)|2r̂dΩ (37)

and we used (A5), the identity

∇1
sin(kr12)
4πkr12

= −ik lim
r→∞

∫
|r|=r

r̂G(r − r1)G∗(r− r2) dS =
−ik
16π2

∫
Ω

r̂e−ikr̂·(r1−r2) dΩ, (38)

and the far-field potential (15). Similarly, the current part is

WJ = − iμ0

2

∫
V

∫
V

J(r1) · J∗(r2)∇1
sin(kr12)
8πkr12

dV1 dV2 = − k

4μ0

∫
Ω
|A∞(r̂)|2 r̂dΩ. (39)

Using the far-field identity (17) simplifies W to

W = − ε0

4k

∫
Ω
|F (r̂)|2 r̂ dΩ. (40)

The corresponding Q factor is hence shifted as

ΔQF2 =
−kd · ∫Ω r̂ |F(r̂)|2 dΩ

2
∫
Ω |F(r̂)|2 dΩ

, (41)

where we see that |ΔQF2| ≤ ka for all coordinate shifts within the smallest circumscribing sphere, see
Fig. 1. We note that this term is similar to the coordinate dependence observed in [48].

4. SMALL STRUCTURES

Evaluation of the stored energy for antenna Q is most interesting for small structures, where Q is
large, e.g., Q ≥ 10, and can be used to quantify the bandwidth of antennas [5, 21, 23, 42, 48]. The
low-frequency expansion of the stored energy are presented in [13, 21, 41, 42]. Here, we base it on the
low-frequency expansion J = J(0) + kJ(1) + O(k2) as k → 0, where ∇ · J(0) = 0 and the static terms
J(0) and ρ0 = −i∇ · J(1)/c0 have a constant phase. For the corresponding asymptotic expansions of the
Q-factor components in (24), we note that the coordinate dependent part vanishes if J and ρ(r) have
constant phase. This gives

Im{ρ(r1)ρ∗(r2)} = Im{(ρ0(r1) + kρ1(r1))(ρ∗0(r2) + kρ∗1(r2))} + O (k2
)

= k Im {ρ0 (r1) ρ∗1 (r2) + ρ1 (r1) ρ∗0 (r2)} + O (k2
)

(42)

as k → 0 and similarly for J. The different parts of the stored energy (24) contribute to the Q-factor
asymptotically

Q
(E,M)
F0

∼ 1
(ka)3

, QF1 ∼ 1
ka

, and QF2 ∼ ka (43)

as ka → 0, where a is the radius of smallest circumscribing sphere, and the coordinate system is centered
inside the sphere.
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We can compare the expansion (43) with the Chu [5] and Thal [38] bounds

QChu =
1

(ka)3
+

1
ka

and QThal =
3

2(ka)3
, (44)

respectively, where it is seen that QChu has components that are of the same order as Q
(E,M)
F0

and QF1

and hence that these terms are essential to produce reliable results. This is also the conclusion from (46)
that shows that the Q-factors differ by ka for spherical regions. The lower bound on small antennas is
inversely proportional to the polarizability [16, 19–21, 33, 42, 46, 47].

The coordinate dependent part QF2 is negligible for small structures and is of the same order as
the difference between the far-field (7) and power (6) type as seen by the bound (11). We also note that
the importance of Q diminishes as Q approaches unity. This also restricts the interest of the results to
small antennas.

5. EXAMPLES

To interpret the different proposals for stored electromagnetic energy, we consider analytic and numerical
examples. The first analytic example illustrates the relation between the stored energy defined by
subtraction of the power flow (6), used in [5, 8, 35], and the far-field power (7) similar to [41] for
spherical modes and shows that their Q factors differ by ka. The second example considers a dipole
antenna and compares the Q factors from differentiation [23, 48] with the stored energy determined from
the current density (25) [41], see also [17] for additional examples.

5.1. Numerical Example for Spherical Shells

The two formulations (6) and (7) for the stored energy can be compared for electric surface currents
on spherical shells. This is the case analyzed by Thal [38] and Hansen & Collin [26], see also [27] for
the case with electric and magnetic surface currents. We expand the surface current on a sphere with
radius a in vector spherical harmonics Yτσlm, see Appendix B.3, to compute the electric and magnetic
Q factors (7)

Q
(E)
τl,F(κ)=

2ωW
(E)
F (κ)

Pr(κ)
=−

(
κR

(1)
τl (κ)R

(2)
τl (κ)

)′
2(R

(1)
τl (κ))2

and Q
(M)
τl,F=

2ωW
(M)
F (κ)

Pr(κ)
=Q

(E)
τl,F(κ) − R

(2)
τl (κ)

R
(1)
τl (κ)

, (45)

respectively. Here, τ = 1 for the TE and τ = 2 for the TM cases and l is the order of the spherical
mode. We note that the expressions for the TE and TM are written in identical forms by using the
radial functions R

(p)
τl (B8), see also [25]. The corresponding power flow stored energy (6) is

Q
(E,M)
τ l,P (κ) =

2ωW
(E,M)
P (κ)

Pr(κ)
= κ + Q

(E,M)
τ l,F (κ), (46)

where Q
(E,M)
τ l,F denotes the electric and magnetic far-field type Q factors in (45), see [22]. The difference

κ = ka is consistent with the interpretation of a standing wave in the interior of the sphere, cf., (11).
Moreover, the expressions (45) unifies the TE and TM cases and offer an alternative to the expressions
in [26].

The electric and magnetic Q-factors are depicted in Fig. 2 for l = 1, 2. The relative differences are
negligible for small ka where Q is large. For larger ka, where Q can be small, the relative difference
is significant although the absolute difference is exactly ka. We also note that the Q factors oscillate
and can be significant even for large ka. This is mainly due to small values of R

(1)
τl (ka) that can be

interpreted as a negligible radiated power. Moreover, the Q-factors related to the far-field type stored
energy (7) is negative in some frequency bands. The corresponding Q-factors related to (6) are always
non-negative. Moreover, it is observed that Q

(M)
1l,P ≥ Q

(E)
1l,P for low ka but there are frequency intervals

with Q
(M)
1l,P < Q

(E)
1l,P for larger ka.
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Figure 2. Electric and magnetic Q factors for electrical surface currents J(r) = J0 Yτσml(r̂)δ(r − a)
for l = 1, 2. Power (solid curves) and far-field (dashed curves) stored energies. They differ by ka (46).
(a) TE (τ = 1) modes. (b) TM (τ = 2) modes.
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Figure 3. Illustration of the Q factor for a center feed strip dipole with length  and width /100. The
Q factors are determined from the stored energies (25) and (28) and from differentiation of the input
impedance [23, 24, 48]. (a) Electric and magnetic Q-factors from (25), (28), the circuit model (dashed
curves), and differentiation of the input impedance QZ′ . (b) Difference between the computed Q-factors
QF − QZ′ , where QZ′ is computed from a difference scheme and analytic differentiation of a high order
rational approximation in 1 and 2, respectively.

5.2. Strip Dipole

Consider a center fed strip dipole with length  and width /100 modeled as a perfect electric conductor
(PEC). The Q-factors (10) determined from the integral expressions Q

(E)
F in (25) and Q

(M)
F in (28), the

simple resonance circuit model [15], and differentiation of the input impedance [23, 48] are compared
in Fig. 3(a). The circuit model is based on the circuit representations of the lowest order spherical
modes [37] with the lumped elements determined with the approach in [15]. The Q-factors from the
simple resonance circuit model approximates the integral expression very well for  < 0.3λ but starts to
differ for shorter wavelengths where the circuit model is less accurate, see Fig. 3(a). The difference QF-
QZ′ is also depicted in Fig. 3(b). We see that the difference is negligible for the considered wavelengths.
Curve (1) shows QZ′ computed with a finite difference scheme. The curve is sensitive to noise and the
used discretization. The noise is suppressed by approximating the input impedance with a high order
polynomial and performing analytic differentiation as seen by curve (2).
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6. CONCLUSIONS

The analyzed expression (7) for the stored energy defined by subtraction of the far-field energy density
from the energy density is mainly motivated by the formulation of Collin & Rothschild [8], Fante [10],
McLean [35], Yaghjian & Best [48] and the expressions by Vandenbosch in [41]. We show that the stored
energy (7) is identical to the energy in [41] for many currents. However, some current densities have an
additional coordinate dependent term. This term is very small for small antennas but it can contribute
for larger structures, see also [48]. Here, it is also important to realize that the classical definition [8]
with the subtracted power flow (6) is inherently coordinate dependent. The identification of the energy
expressions in [41] with (7) offers a simple interpretation of the observed cases with a negative stored
energy [21]. The analysis also suggests that the resulting Q factor has an uncertainty of the order ka.
This is consistent with the use of the results for small (sub wavelength) antennas [18, 21], where ka is
small and the Q-factor is large.

The energy expressions proposed by Vandenbosch in [41] are well suited for optimization
formulations as they are simple quadratic forms of the current density. The quadratic form is
very practical as it allows for various optimization formulations such as Lagrangian [21] and convex
optimization [18] and has already led to many new antenna results. Their resemblance of the electric
field integral equation (EFIE) makes the numerical implementation very simple. The new formulation
also produce simplified analytic expressions (46) the unifies the TE and TM cases for the Q factor of
current densities on spherical shells [26, 27]. These results for the spherical modes and the antennas are
very interesting for the interpretation of the Q factor, QF, defined by subtraction of the far field (7).
The analytic results for the spherical modes show that the subtracted far-field inside the sphere defines
a stored energy that can be negative, see also [21], and a QF that differ from the classical definition (6)
by the electrical size ka, i.e., QP = QF + ka, where QP denotes the Q defined using (6).

ACKNOWLEDGMENT

This work was supported by the Swedish Research Council (VR), the Crafoord Foundation, the Swedish
Governmental Agency for Innovation Systems (VINNOVA) within the VINN Excellence Center CHASE,
and the Swedish Foundation for Strategic Research (SSF).

Prof. Edwin Marengo at Northeastern University, MA, USA is also acknowledged for valuable
discussions and his hospitality during a visit of MG to Boston, August 2012.

APPENDIX A. GREEN’S FUNCTION IDENTITIES

Multiply the Helmholtz Green’s function for G1: (∇2 + k2)G1 = −δ(r − r1) with G∗
2, and similarly for

G∗
2. Adding the results together with a standard vector calculus identity gives 2(∇G1 ·∇G∗

2−k2G1G
∗
2) =

G1δ2 + G∗
2δ1 + ∇2(G1G

∗
2), where δn = δ(r − rn) with n = 1, 2 denotes the Dirac delta distribution.

Integration yields the identity [41]∫
R3

r

∇G(r − r1) · ∇G∗(r − r2) − k2G (r − r1) G∗(r− r2) dV =
cos(k|r1 − r2|)

4π|r1 − r2| , (A1)

where we used Gauss’s theorem together with the observation that

∇(G1G
∗
2) →

−r̂eikr̂·(r2−r1)

8π2r3
(A2)

for large enough radius.
The k-derivative of the Helmholtz Green’s equation for G1 is (∇2 + k2)∂kG1 + 2kG1 = 0. Similarly

to the derivation of (A1) we multiply with G∗
2, and repeat the procedure with the k-derivative of G∗

2.
Adding the result and applying vector calculus identities to move ∇2 away from the k-derivative results
in the identity

4kG1G
∗
2 = δ2∂kG1 + δ1∂kG

∗
2 −∇ · q, (A3)
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where
r̂ · q = r̂ · (G1∇∂kG2 − (∂kG

∗
2)∇G1 + G∗

2∇∂kG1 − (∂kG1)∇G∗
2)

→ −k

8π2r

[
2 +

1
r

(
r̂ · (r1 + r2) + i

(|r̂× r1|2 − |r̂× r2|2
))

+ O
(

1
r2

)]
e−ikr̂·(r1−r2) (A4)

for large enough radius. Collecting term of decay rate r−1 on the left-hand side and the remaining terms
on the right-hand side. Integration over a large sphere, together with Gauss’s theorem and elementary
integrals result in∫

R3
r

G(r − r1)G∗(r − r2) − e−ik(r1−r2)·r̂

16π2r2
dV = −sin(kr12)

8πk
+ i

r2
1 − r2

2

8πk2r3
12

(sin(kr12) − kr12 cos (kr12))

= −sin(kr12)
8πk

+ i
(r1 + r2) · (r1 − r2)

8πr12
j1(kr12)

= −sin(kr12)
8πk

− i
(r1 + r2)

k
· ∇1

sin (kr12)
8πkr12

. (A5)

Here j1(z) = (sin(z) − z cos(z))/z2 and r12 = |r1 − r2|. Note that (A5) generalizes the result in [41]
to the case r1 + r2 �= 0 and shows that the integral depends of the coordinate system. The result also
shows that it is necessary to specify how the integration over R

3 is performed, i.e., here as the limit
R

3
r = {r : limr0→∞ |r| < r0}.

APPENDIX B. ELECTRIC SURFACE CURRENTS ON A SPHERE

The two formulations (6) and (7) for the stored energy can be compared for electric surface currents
on spherical shells. This is the case analyzed by Thal [38] and Hansen & Collin [26], see also [27]
for the case with electric and magnetic surface currents. We expand the surface current on a sphere
with radius a in vector spherical harmonics Y, see (B9). For simplicity, consider the surface current
J(r) = J0 Yτσml(r̂)δ(r − a) that induces the electric and magnetic fields

E(r) = iη0J̃0
u(p)

τσml(kr)

R
(p)
τl (ka)

and H(r) = J̃0
u(p)

τ̄σml(kr)

R
(p)
τl (ka)

, (B1)

where p = 1 for r < a and p = 3 for r > a, u(p)
τσml is the spherical vector waves, and R

(p)
τl the radial

functions in Hansen [25], defined in (B8). We note that the derivatives of R
(p)
τl (κ) are easily expressed

in z(p), see (B8). Here, τ = 1 is transverse electric (TE) and τ = 2 transverse magnetic (TM) waves.
Moreover, the dual index τ̄ is τ̄ = 2 if τ = 1 and τ̄ = 1 if τ = 2. The current in (B1) is rescaled as
J̃0 = J0 R

(1)
τl (ka)R

(3)
τl (ka) and below we let J0 be real valued to simplify the notation. We also note that

the coordinate dependent term (26) vanishes for single spherical modes.

B.1. Far-field Type Stored Energy for the TE Case WF

We start with the transverse electric (TE) case τ = 1, i.e., J(r) = Y1σml(r̂)δ(r − a) that is divergence
free, ∇·J = 0. The integrals in (24) are evaluated analytically by expanding the Green’s functions (B10)
in spherical modes (B9). Using ∇ · Y1σml = 0, we get 〈J,LeJ〉 = 0 for (31) and hence the first part of
the stored electric energy W

(E)
F0

= 0. The expansion of the full Green’s dyadic, G = GI, (B11) gives

1
ikJ2

0

〈J,LmJ〉 =
∫

V

∫
V

Y1σml(r̂1)δ(r1 − a) · G(r1 − r2) · Y1σml(r̂2)δ(r2 − a) dV1 dV2

= a4

∫
Ω

∫
Ω

Y1σml(r̂1) · G(r1 − r2) ·Y1σml(r̂2) dΩ1 dΩ2 = ia4k R
(3)
1l (κ)R

(1)
1l (κ) (B2)

for the terms in (31) to get the first part of the stored magnetic energy as 4ωη−1
0 W

(M)
F0

=

−a2κ2J2
0 R

(2)
1l R

(1)
1l . The radiated power follow from 2η−1

0 Pr = −Re〈J,LmJ〉 = a2κ2J2
0 (R

(1)
1l )2. The
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corresponding expansion of the frequency derivative of the Green’s function (B11) is used for the terms
related to (31)

−2
ik2a4J2

0

〈J,LemJ〉 =
∫

Ω

∫
Ω

Y1σml(r̂1) · ∂G(r1 − r2)
∂k

·Y1σml(r̂2) dΩ1 dΩ2 = i
∂

∂κ

(
κR

(3)
1l (κ)R

(1)
1l (κ)

)
= i
(
κR

(3)
1l (κ)R

(1)
1l (κ)

)′
= i
(
R

(3)
1l R

(1)
1l +κR

(3)
1l

′ R(1)
1l +κR

(3)
1l R

(1)
1l

′
)

, (B3)

where ′ denotes differentiation with respect to κ, giving 4ωη−1
0 WF1 = −a2κ2

2 J2
0 (κR

(2)
1l R

(1)
1l )′.

Collecting the terms gives the electric and magnetic Q-factors in (45). We note that R
(1)
1l = jl and

R
(2)
1l = nl can be used to rewrite the Q-factors, however the form with the radial functions simplifies the

comparison with the TM case below. The differentiated terms are easily evaluated using (B3) and (B8).

B.2. Far-field Type Stored Energy for the TM Case WF

The transverse magnetic (TM) case is given by τ = 2 and generated by the current density J(r) =
J0 Y2σml(r̂)δ(r − a) that has the divergence ∇ · Y2σml = −√l(l + 1) Yσml /r. With the expansion of
the Green’s function (B10) we get the part related to the charge density (31)

−ik
a4J2

0

〈J,LeJ〉 =
∫

Ω

∫
Ω
∇1 · Y2σml(r̂1)G(r1 − r2)∇2 · Y2σml(r̂2) dΩ1 dΩ2 =

ikl(l + 1)
a2

jl(κ)h(1)
l (κ) (B4)

and the full Green’s Dyadic expansion (B11) gives
1

ika4J2
0

〈J,LmJ〉 =
∫

Ω

∫
Ω

Y2σml(r̂1) · G(r1 − r2) ·Y2σml(r̂2) dΩ1 dΩ2

= ik

(
R

(1)
2l (κ)R

(3)
2l (κ) + l(l + 1)

h(1)
l (κ) jl(κ)

κ2

)
(B5)

for the part related to the current density (31). The expansions of the frequency derivatives of the
Green’s function (B10) and Green’s dyadic (B11) give

Re
∫

Ω

∫
Ω

Y2σml(r̂1) · ∂G(r1 − r2)
∂k

· Y2σml(r̂2) −∇1 ·Y2σml(r̂1)
∂G(r1 − r2)

k2∂k
∇2 ·Y2σml(r̂2) dΩ1 dΩ2

= 2l(l + 1)nl(κ) j1(κ) − κ2
(
κR

(1)
2l (κ)R

(2)
2l (κ)

)′
(B6)

for the part related to (31).
Collecting the terms gives that the normalized radiated power is 2η−1

0 Pr/J
2
0 = Re〈J, (Le −

Lm)J〉/J2
0 = a3κ(R

(1)
2l )2. The electric and magnetic Q factors are finally determined to (45). We

note that the expressions for the TE and TM cases are written in identical forms by using the radial
functions (B8).

B.3. Spherical Waves

The radiated electromagnetic field is expanded in spherical vector waves or modes [25]:⎧⎪⎪⎨
⎪⎪⎩

u(p)
1σml(kr) = R

(p)
1l (kr)Y1σml(r̂)

u(p)
2σml(kr) = R

(p)
21 (kr)Y2σml(r̂) +

√
l(l + 1)z(p)

l (kr)/(kr)Yσml(r̂)r̂

u(p)
3σml(kr) = z

(p)′
l (kr)Yσml(r̂)r̂ +

√
l(l + 1)z(p)

l (kr)/(kr)Y2σml(r̂)

(B7)

where r is the spatial coordinate, r̂ = r/r, r = |r| and k the wavenumber. The radial functions R(p)
l (kr)

of order l and their derivatives are:

R
(p)
τl (κ) =

⎧⎨
⎩

z
(p)
l (κ) τ = 1
1
κ

∂(κz
(p)
l (κ))
∂κ

τ = 2
and

∂ R
(p)
τl

∂κ
=

⎧⎪⎨
⎪⎩

∂

∂κ
z
(p)
l τ = 1

−R
(p)
τl

κ
+

l(l + 1) − κ2

κ2
z
(p)
l τ = 2.

(B8)
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For regular waves (p = 1) z
(1)
l = jl is a spherical Bessel function, irregular waves (p = 2) z

(2)
l = nl is

a spherical Neumann function, and outgoing waves (p = 3) z
(3)
l = h(1)

l is an outgoing spherical Hankel
function. The indices are σ = {e, o}, m = 0, . . . , l, l = 1, . . ., see [1, 28]. In addition, Yτσml(r̂) denotes
the vector spherical harmonics defined as

Y1σml(r̂) =
1√

l(l + 1)
∇× (rYσml(r̂)) (B9)

and Y2σml(r̂) = r̂ × Y1σml(r̂) where Yσml denotes the ordinary spherical harmonics [1]. Here, we
follow [1, 28] and use cosmφ and sin mφ as basis functions in the azimuthal coordinate. The modes
labeled by τ = 1 are TE modes (or magnetic 2l-poles) while those labeled by τ = 2 correspond to TM
modes (or electric 2l-poles). The Green functions are expanded in spherical waves to analyze spherical
geometries. The scalar Green’s function has the expansion [1]

G(r1 − r2) =
eik|r1−r2|

4π|r1 − r2| = ik
∑
σml

jl(kr<)h(1)
l (kr>) Yσml(r̂1)Yσml(r̂2), (B10)

where r< = min{|r1|, |r2|} and r> = max{|r1|, |r2|}. In addition, the full Green’s dyadic, G = IG, can
be expanded as [1]

G(r1 − r2) = ik
∑
τσml

u(1)
τσml(kr<)u(3)

τσml(kr>), (B11)

where τ = 1, 2, 3. We also use the frequency derivatives of the Green’s function and the Green’s dyadic
expansions.
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