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Properties of Airy-Gauss Beams in the Fractional
Fourier Transform Plane

Yimin Zhou1, 2, Guoquan Zhou1, 2, *, and Guoyun Ru3

Abstract—An analytical expression of an Airy-Gauss beam passing through a fractional Fourier
transform (FRFT) system is derived. The normalized intensity distribution, phase distribution, centre
of gravity, effective beam size, linear momentum, and kurtosis parameter of the Airy-Gauss beam are
demonstrated in FRFT plane, respectively. The influence of the fractional order p on the normalized
intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and
kurtosis parameter of the Airy-Gauss beam are examined in FRFT plane. The fractional order p
controls the normalized intensity distribution, phase distribution, centre of gravity, effective beam size,
the linear momentum, and kurtosis parameter. The period of the normalized intensity, phase, and
centre of gravity versus the fractional order p is 4. The period of effective beam size, linear momentum,
and kurtosis parameter versus the fractional order p is 2. The periodic behaviors of the normalized
intensity distribution, phase distribution, centre of gravity, effective beam size, linear momentum, and
kurtosis parameter can bring novel applications such as optical switch, optical micromanipulation, and
optical image processing.

1. INTRODUCTION

An Airy beam carries infinite energy and exhibits a non-spreading property in vacuum [1]. The Wigner
distribution function [2] and wave analysis [3] have been used to explain the intriguing features of an Airy
beam. The self-healing [4], Poynting vector and angular momentum [5], ballistic dynamics [6], beam
propagation factor [7], fractional Fourier transform (FRFT) [8], and far-field divergent properties [9]
of an Airy beam have been investigated, respectively. A finite-energy Airy beam can freely accelerate
upon propagation [10, 11]. The propagation of an Airy beam in water [12], in a Kerr medium [13],
in turbulence [14], and in photorefractive media [15], in a uniaxial crystal [16], in strongly nonlocal
nonlinear media [17], and through an apertured and misaligned optical system [18] has been analyzed,
respectively. By using the coherently combinative technology, a high-power Airy beam can be
generated [19]. The Airy beam can be used in particle clearing [20], optical switching [21], optical
trapping [22], and spatiotemporal measurement [23]. Due to carrying finite power, the Airy-Gauss
beam is described in a more realistic way that the Airy beam propagates [24]. The propagation of the
Airy-Gauss beam in strongly nonlocal nonlinear media has been examined [25]. The analytical vectorial
structure of the Airy-Gauss beam has been presented in the far-field regime [26].

Suppose that a piece of graded-index fiber with a proper length L is available to perform a Fourier
transform of an input image. If this graded-index fiber is cut into pieces, a piece of length pL (p is
the order of FRFT) just performs the fractional Fourier transform of the input image. As an image
can be uniquely described by a Wigner distribution function, the FRFT also indicates that the Wigner
distribution function is rotated by an angle of ϕ = pπ/2 [27]. The FRFT has been widely used in the
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beam analysis, beam shaping and signal processing [28]. The FRFTs of many kinds of laser beams
have been investigated extensively [29–31]. However, the propagation of Airy-Gauss beam has not
been studied by FRFT method so far. Moreover, the research in the FRFT of Airy-Gauss beams is
beneficial to optical micromanipulation and can extend the application field of Airy-Gauss beams. In
the remainder of this paper, therefore, the FRFT is applied to treating the propagation of Airy-Gauss
beams. An analytical expression for the FRFT of an Airy-Gauss beam is derived, and the properties of
the Airy-Gauss beam in the FRFT plane are illustrated in detail.

2. AIRY-GAUSS BEAMS PASSING THROUGH A FRACTIONAL FOURIER
TRANSFORM SYSTEM

In the Cartesian coordinate system, the z-axis is taken to be the propagation axis. The initial distribution
of an Airy-Gauss beam in the source plane z = 0 is described by [25, 26]
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where ρ0 = (x2
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1/2. w0 is the transverse scale, Ai(·) the Airy function, and a the modulation

parameter. First, let us investigate the beam propagation factor of the Airy-Gauss beam. As the
beam propagation factor is an invariant, we calculate it in the source plane. According to the standard
definition, the first-order moment of the Airy-Gauss beam in the j-direction is found to
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where j0 = x0 or y0, and j = x or y. As the analytical expression of Eq. (2) is complicated, it is not
listed here. The second-order moment of the Airy-Gauss beam in the j-direction of the spatial domain
reads as
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The second-order moments of the Airy-Gauss beam in the j-direction of the frequency domain yield
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where k = 2π/λ is the wave number with λ being the optical wavelength, and Ai ′(·) is the Airyprime
function. The cross second-order moment in the j-direction of the source plane is given by
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where the asterisk denotes the complex conjugation. The M2
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Figure 1. The beam propagation factor as a function of the modulation parameter a.
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Figure 2. Optical system for performing the fractional Fourier transform. (a) Lohmann I system.
(b) Lohmann II system.

The beam propagation factor of the Airy-Gauss beam only depends on the modulation parameter
a. Fig. 1 represents the beam propagation factor as a function of the modulation parameter a. As
the modulation parameter a tends to zero, the beam propagation factor tends to infinity. When the
modulation parameter is equal to zero, the Airy-Gauss beam reduces to be a Airy beam and carries
infinite energy. Therefore, the starting value of the modulation parameter a in Fig. 1 is 0.01. With
increasing the modulation parameter a, the beam propagation factor quickly decreases and tends to
the saturated value 1. When the modulation parameter a is relatively large, the Airy-Gauss beam is
predominated by the Gaussian part. When the modulation parameter a is small, the Airy-Gauss beam
is predominated by the Airy part.

Optical system for performing the fractional Fourier transform is shown in Fig. 2. Fig. 2(a) denotes
the Lohmann I system, and Fig. 2(b) corresponds to the Lohmann II system. P1 and P2 are the input
and output planes, respectively. The input plane is just the source plane of the Airy-Gauss beam. f
is the standard focal length. The focus of the spherical lens is f/ sinϕ in Fig. 2(a) and f/ tan(ϕ/2)
in Fig. 2(b). The distance between the input and output planes is 2d = 2f tan(ϕ/2) in Fig. 2(a) and
d′ = f sin ϕ in Fig. 2(b). The Lohmann I and II optical systems are equivalent and are described by
the following transfer matrix (

A B
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)
=
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cos ϕ f sin ϕ
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)
. (7)

The Airy-Gauss beam passing through a Lohmann optical system obeys the well-known Collins integral
formula:
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where ρ = (x2 + y2)1/2. Inserting Eq. (1) into Eq. (8), we can obtain
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), and f2(τ) = exp(−βτ2). “⊗” denotes the convolution. The
convolution theorem of the Fourier transformation has the following property [32]
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After performing the complicated integral, Eq. (10) can be analytically expressed as
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Accordingly, the Airy-Gauss beam in FRFT plane reads as

E(x, y) =
π

iλβB
exp

(
ikz +

ikD

2B
ρ2

)
Ai

( −ikx

2w0βB
+

1
16β2w4

0

)
Ai

( −iky

2w0βB
+

1
16β2w4

0

)

× exp
[
− k2ρ2

4βB2
− ik(x + y)

8Bβ2w3
0

+
1

48β3w6
0

]
. (15)

The centre of gravity of the Airy-Gauss beam in the j-direction of the FRFT plane is given by
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The effective beam size of the Airy-Gauss beam in the j-direction of the FRFT plane turns out to
be [33]:
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The linear momentum of the Airy-Gauss beam in the j-direction of the FRFT plane is found to be [34]
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The kurtosis parameter, which is employed to describe the flatness degree of the beams, is an important
parameter to evaluate the beam propagation. The kurtosis parameter in the j-direction of the FRFT
plane yields [35]
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Figure 3. Normalized intensity distribution in the x-direction of an Airy-Gauss beam with different
fractional order p in the FRFT plane.

3. NUMERICAL CALCULATIONS AND ANALYSES

Based on the formulae derived in the section above, the properties of an Airy-Gauss beam in the FRFT
plane are numerically investigated. The x- and y-directions are separable in the formulae derived above.
Moreover, they have the same form. Therefore, hereafter we only consider the x-direction. Here we
mainly pay attention to the influence of the fractional order p on the propagation of an Airy-Gauss beam.
Calculation parameters are chosen as λ = 0.53µm, w0 = 1mm, a = 0.01, and f = 1000 mm, which is
one of the general cases. Fig. 3 represents the contour graph of the normalized intensity distribution
in the x-direction of an Airy-Gauss beam with different fractional order p in the FRFT plane. The
selection of the values for p is to show the evolution law of the normalized intensity distribution versus
the fractional order p. The normalized intensity distribution versus the fractional order p is periodic,
and the period is 4. When 0 < p < 1 and 3 < p < 4, the lateral side lobes are located at the left side.
When 1 < p < 3, the lateral side lobes are located at the right side. When the difference of the two
fractional orders is half period 2, the two normalized intensity distributions are reversal mutually, which
is shown as p = 0.1 and p = 2.1 or p = 1.1 and p = 3.1. The phase distribution in the x-direction of an
Airy-Gauss beam with different fractional order p in the FRFT plane is shown in Fig. 4. The period of
the phase versus the fractional order p is also 4. The fluctuation of the phase where the dominant lobe
is located is the smallest, which is marked with a circle in red. The reversal phenomenon that appears
in the normalized intensity distribution also happens to the phase distribution.
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Figure 4. The phase distribution in the x-direction of an Airy-Gauss beam with different fractional
order p in the FRFT plane.

The centre of gravity, effective beam size, linear momentum, and kurtosis parameter in the x-
direction as a function of the fractional order p are shown in Fig. 5. The period of the centre of gravity
versus fractional order p is 4. In the first half period, the centre of gravity increases from the minimum
value to the maximum one with increasing the value of the fractional order p. In the last half period,
the centre of gravity decreases from the maximum value to the minimum one with increasing the value
of fractional order p. The period of the effective beam size versus the fractional order p is 2. In the
first half period, the effective beam size decreases from the maximum value to the minimum one with
increasing the value of fractional order p. In the last half period, the effective beam size increases
from the minimum value to the maximum one with increasing the value of the fractional order p. The
period of the linear momentum versus the fractional order p is 2. The minus sign only denotes the
direction of the linear momentum. In the first half period, the linear momentum increases from zero to
the maximum value with increasing the value of fractional order p. In the last half period, the linear
momentum decreases from the maximum value to zero with increasing the value of fractional order p.
The period of the kurtosis parameter versus fractional order p is also 2. In the first half period, the
kurtosis parameter increases from the minimum value to the maximum one with increasing the value
of fractional order p. In the last half period, the kurtosis parameter decreases from the maximum value
to the minimum one with increasing the value of fractional order p. The kurtosis parameter represents
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Figure 5. (a) The centre of gravity, (b) the effective beam size, (c) the linear momentum, and (d) the
kurtosis parameter in the x-direction as a function of the fractional order p.

the degree of sharpness of the beam intensity distribution. In the case of p = 1, the effective beam size
reaches the minimum value, and the corresponding kurtosis parameter has the largest value. When p
is far away from 1, the kurtosis parameter has nearly the same value.

4. CONCLUSIONS

The period of the normalized intensity, phase, and centre of gravity versus fractional order p is 4. The
period of the effective beam size, linear momentum, and kurtosis parameter versus fractional order p is 2.
In the first and last quarters of the period, the lateral side lobes are located at the left side. Otherwise,
the lateral side lobes are located at the right side. With increasing the value of fractional order p in
the first half period, the centre of gravity, linear momentum, and kurtosis parameter increase, while the
effective beam size decreases. With increasing the value of the fractional order p in the last half period,
the centre of gravity, linear momentum, and kurtosis parameter decrease; however, the effective beam
size increases. When the difference of the two fractional orders is the half period, the two normalized
intensity distributions or the two phase distributions are mutual reversal. This research could bring
novel applications. The reversal phenomenon in the intensity and phase distributions can be used as
optical switch. The behavior of linear momentum can be used in optical micromanipulation. This
research is also useful to the optical image processing involving the fractional Fourier transform [36, 37].
In [36], the order of FRFT effectively enhances the security of image processing system. In the decryption
process, the phase-only mask with false information and the other two phase-only masks are respectively
placed in the input and fractional Fourier planes to recover the primary image. An imaging algorithm
with application of FRFT for ground moving train imaging by Ku-band ground-based radar has been
introduced in [37], and the multiple Doppler parameters are estimated from different sections of data
in FRFT domain.
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