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A Semi-Analytical Method to Calculate the Entries of the Method of
Moments Matrix for the Mixed Potential Integral Equation

of a Source Reconstruction Problem

Saffet Gokcen Sen*

Abstract—In this article, the mixed potential integral equation is discretized using the Rao-Wilton-
Glisson basis functions in order to obtain a method of moments matrix equation for a source
reconstruction problem. The weighting functions used in the setup of the moments equation are Dirac
delta functions. The entries of the moments matrix are computed using a semi-analytical method which
is applicable to any method of moments problem with point matching. The analytical calculation is
made possible by employing a differentiation property of the scalar Green function and the properties
of the mesh elements of the source plane. The semi-analytical method makes it easier to increase the
accuracy of the moments matrix elements. The accuracy of the method is shown by comparing the
results obtained using the semi-analytical method to those obtained by a fully numerical procedure.

1. INTRODUCTION

The source reconstruction for a specific electromagnetic field distribution is the procedure of either
setting up equivalent electromagnetic problems in order to determine equivalent sources or determining
the actual sources by solving the related integral equations. The source reconstruction method is used
in several areas which can be mentioned as near-field to far-field (NF-FF) transformation, microwave
imaging, antenna design, antenna characterization, antenna diagnostics, electromagnetic interference
estimation in electronic circuits, corrections in antenna measurements, radome defect localization. The
most important aspect of the source reconstruction method is that it takes the electromagnetic problem
into consideration just as it is, with all of the real world factors included through the electromagnetic
field measurement results.

The literature on the source reconstruction method can be divided into two parts with respect to the
type of the integral equation formulation for the problem. In the first group, a single integral equation
formulation is done whereas in the second group, a dual-integral equation formulation is preferred. In
the single equation formulation, the equivalent sources obtained using the equivalence principle are
related to the field measurement results using the radiation integrals. In the dual equation formulation,
an extra equation is set up using the Love’s equivalence principle at the measurement surface. Some
of the articles in the single equation formulation group are to be cited now. In [7–30], several NF-FF
transformation formulations using the source reconstruction method and the related applications are
studied. In [7], equivalent magnetic currents are constructed on a plane including the aperture of an
antenna using the near electric field data on a plane. These currents are then used to calculate the
far-field. In [8], equivalent magnetic currents are built on a plane including the aperture of an antenna
again. However, the near electric field data is not necessarily to be obtained on a plane and can be
gotten from a surface with an arbitrary geometry. In [9], an equivalent electric current is set up on a
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plane including the aperture of an antenna using the near electric field data obtained on an arbitrary
surface. It is also indicated that the near field data need not satisfy the Nyquist sampling criteria.
In [10], equivalent magnetic currents are reconstructed on a plane enclosing the antenna by using the
near electric field data on a circle. [11] is about the reconstruction of an equivalent magnetic current on
an arbitrary surface enclosing the antenna. The reconstruction is carried out by means of amplitude-only
electric field data acquired over arbitrary surfaces. In [12], equivalent magnetic currents are constructed
over a plane enclosing the antenna using the near electric field data obtained by spherical scanning. A
special strategy which is based on first neglecting the radial field component and then the retrieval of
it through an iterative algorithm is used in the reconstruction process. In [13], the near electric field
data of the radiating structure is used to construct equivalent electric and magnetic currents tangential
to an arbitrary 3-D surface. [14] reports an application of the sources reconstruction method to the
near-field antenna measurements. The antenna-pattern of the probe used in the near-field antenna
measurements is taken into account to eliminate the probe distortion to the measurements. [15] is
about enhancing the analysis of printed reflectarrays in the Fresnel zone of the primary feed which is
a horn antenna. The enhancement is achieved by means of the source reconstruction method which
transforms the measured far field of the horn to its near field to calculate the field on the reflectarray.
In [16], the source reconstruction method which uses electric field data to construct equivalent electric
and magnetic currents is accelerated by the multilevel fast multipole method. The source reconstruction
method mentioned in [17] is stated to have the capability of resolving equivalent currents smaller than
half a wave length which means that this method goes beyond the sampling limitation set by the Nyquist
sampling criterion. In [18], the interaction of a radome with a reflector antenna covered by the radome
is examined using the source reconstruction method. The equivalent electric and magnetic currents are
constructed on the radome surface using the near electric field data. The reconstructed currents exhibit
the defects in the radome. In [19], the source reconstruction method is used to determine the geometry
of metallic bodies on a 2-D domain. [20] is related with using the source reconstruction method for
the accurate modeling of the noise sources in an electronic circuit and the estimation of the noise to be
radiated by the circuit. [21] is about employing the graphical processing unit(GPU) with the memory
saving technique to calculate the elements of the impedance matrix of the integral equation to find
the equivalent currents. [22] describes the use of the source reconstruction method for the modeling of
a frequency scanning antenna array of an imaging system. In [23], a source reconstruction algorithm
which is different from the conventional source reconstruction algorithms working at a single frequency
is developed for structures radiating over a wide frequency band. The proposed algorithm is stated to
have a low computational cost. In [24], an iterative source reconstruction method which uses amplitude
only near electric field data is proposed. This method is shown to have the capability of reproducing
the original radiation pattern accurately in every direction. [25] explains a new accelerator scheme
for the source reconstruction method to determine the metallic parts of the structure under test by
using more than one GPU’s. In the following references, the dual-integral equation formulation is used.
In [26], the dual-integral formulation is employed to construct equivalent electric and magnetic currents
on arbitrary 3-D surfaces. In order to check the accuracy of the method, the reconstructed currents
and the original currents are compared in addition to the comparison of the reconstructed fields to the
original fields. The method is stated to be very appropriate for the diagnostic tasks due to its high
accuracy in reconstructing the original currents. In [27], several integral formulations for the source
reconstruction are compared to each other. The dual-integral equation formulation is demonstrated to
provide robust field reconstruction in the close vicinity of actual radiators for a wide range of signal
to noise ratio in the measured field data. In [28], different formulations of the source reconstruction
problem on an arbitrary 3-D closed surface are examined in detail. The dual-integral formulation
is derived using the Love’s equivalence principle. The stability and usefulness of this formulation is
demonstrated. [29] reports the use of the dual-integral equation formulation in the post-processing of
antenna measurements to correct the radiation pattern of the antenna under test to the extent as if it
had been measured in an ideal environment. [30] is about the integration of the fast multipole method
to the dual-integral equation formulation for the application of the source reconstruction to electrically
large scatterers.

In this article, using the mixed potential integral equation formulation, an x-directed point source is
to be reconstructed using its electric field data. The source reconstruction surface is a square containing
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the actual source. The electric field data is on a hemisphere the center of which is the center of the source
reconstruction plane. The unknown current is expanded in terms of the Rao-Wilton-Glisson (RWG)
basis functions. The reconstruction plane is discretized using triangular meshing. The discretized form
of the reconstruction problem is actually a method of moments matrix equation. The calculation of the
entries of the moments matrix involves the calculation of some integrals containing the scalar Green’s
function. For this calculation, a simple semi-analytical method is proposed and shown to work well by
comparing the method results to those of a fully numerical procedure. The advantage of this method to
the others in the literature is that it employs analytical evaluation of half of some double integrals which
contribute to the entries of the moments matrix. Due to this analytical evaluation, it is easier to increase
the accuracy of the moments matrix elements in this method compared to a fully numerical procedure. In
the two dimensional integrals half of which can be calculated analytically, a one dimensional quadrature
is needed to calculate the whole integral. In order to increase the accuracy of the quadrature, its
order must be increased. It is always easier to build one dimensional high order quadratures than
building high order two dimensional quadratures. Hence, the advantage and contribution of the semi-
analytical method is that it is easier to increase the accuracy of the moments matrix elements using
the semi-analytical method. In the Section 2, the reconstruction problem is formulated and its solution
is explained. The semi-analytical method is described. In the Section 3, the semi-analytical method is
shown to work well by comparing the method results to those of a fully-numerical procedure.

2. THE DESCRIPTION AND SOLUTION OF THE PROBLEM

A point source denoted by
�J (x, y, z) = x̂ Il δ (x) δ (y) δ (z) (1)

with
Il = 1A · m (2)

resides at the origin of the spherical coordinate system. The θ and φ components of the electrical field
formed by this source are sampled on the surface of a hemisphere centered at the origin. Assuming a
time harmonic dependence of e−jωt with j being the imaginary unit, ω being the angular frequency and
t being time, this electric field can be written by using the equation:

�E = jω �A − �∇φ (3)

where �A is the vector magnetic potential and φ is the scalar potential. The point source is to
be reconstructed using the electric field samples. That is the mean, the weighting function in the
construction of the method of moments matrix is the Dirac delta function. The mixed potential integral
equation to be discretized is as follows:

Ei (�r ) =
jωμ

4π

∫
S

Ji

(
�r ′) ejk|�r−�r ′|

|�r − �r ′| ds′ − 1
jω4πε

∂

∂i

∫
S

�∇′
s · �J

(
�r ′) ejk|�r−�r ′|

|�r − �r ′| ds′ (i = x, y, z) (4)

In (4), μ and ε are the permeability and the permittivity of the medium respectively. S is the source
reconstruction plane. �r is the position vector of the field point given by

�r = x̂x + ŷy + ẑz (5)

and �r ′ is the position vector of the source coordinates given by

�r ′ = x̂x′ + ŷy′ + ẑz′ (6)

The source reconstruction plane is the x-z plane. Hence, the differential area element denoted by ds′ is
given as

ds′ = dx′dz′ (7)

The electric current density is expanded in terms of RWG basis functions to obtain

�J
(
�r ′) =

N∑
n=1

In
�fn

(
�r ′) (8)
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Figure 1. A typical triangle pair in the mesh structure of the source reconstruction plane.

In (8), �fn(�r ′) are RWG basis functions and In are the expansion coefficients. The source reconstruction
plane is meshed into triangles which are known to be the same as the ones shown in Fig. 1. This typical
triangle pair is used to make the definitions related with the RWG basis functions.

The RWG basis function �fn(�r) is defined as follows:

�fn (�r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln

2A+
n

�ρ+
n if �r in T+

n

ln

2A−
n

�ρ−
n if �r in T−

n

0 if otherwise

(9)

where T+
n is the triangle on the left and T−

n is the triangle on the right in Fig. 1. �ρ+
n is the vector drawn

from the free vertex of T+
n to a point with the position vector �r in T+

n . �ρ−
n is the vector drawn from a

point with the position vector �r in T−
n to the free vertex of T−

n . A+
n is the area of the triangle T+

n . A−
n

is the area of the triangle T−
n . ln is the length of the side common to the triangles. A property of the

RWG basis functions related with surface divergence is given in [1] as follows:

�∇s · �fn (�r ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln

A+
n

if �r in T+
n

− ln

A−
n

if �r in T−
n

0 if otherwise

(10)

If the expansion in (8) is used in (4) along with the property given in (10), then the following discretized
integral equation is reached:

Ei (�r) =
N∑

n=1

jωμ

4π

∫
T+

n

In
ln

2A+
n

(
�ρ+

n

)
i

ejk|�r−�r ′|

|�r − �r ′| ds′ +
jωμ

4π

∫
T−

n

In
ln

2A−
n

(
�ρ−

n

)
i

ejk|�r−�r ′|

|�r − �r ′| ds′

− 1
jω4πε

∫
T+

n

In
ln

A+
n

∂

∂i

(
ejk|�r−�r ′|

|�r − �r ′|

)
ds′+

1
jω4πε

∫
T−

n

In
ln

A−
n

∂

∂i

(
ejk|�r−�r ′|

|�r − �r ′|

)
ds′ (i = x, y, z) (11)

Using this discretized integral equation, the following method of moments matrix equation is obtained:[
Eθ

Eφ

]
I =

[
bθ

bφ

]
(12)

Eθ and Eφ are both M ×N matrices where M is the number of sampling points on the hemisphere and
N is the number of RWG basis functions. Eθ(p,q) and Eφ(p,q) denote the elements in the row p, column
q of the matrices Eθ and Eφ respectively and are given by

Eθ (p,q) = Ip,q
x cos (θp) cos (φp) + Ip,q

y cos (θp) sin (φp) − Ip,q
z sin (θp) (13)

Eφ (p,q) = −Ip,q
x sin (φp) + Ip,q

y cos (φp) (14)
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θp and φp are the θ and φ coordinates of the pth sampling point. The integrals Ipq
i (i = x, y, z) are

defined as

Ipq
i =

jωμ

4π

∫
T+

nq

lnq

2A+
nq

(
�ρ+

nq

)
i

ejk|�rp−�r ′
q|

|�rp − �r ′
q| ds′ +

jωμ

4π

∫
T−

nq

lnq

2A−
nq

(
�ρ−

nq

)
i

ejk|�rp−�r ′
q |

|�rp − �r ′
q| ds′

− 1
jω4πε

∫
T+

nq

lnq

A+
nq

∂

∂i

(
ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
ds′ +

1
jω4πε

∫
T−

nq

lnq

A−
nq

∂

∂i

(
ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
ds′ (i = x, y, z) (15)

The quantities T+
nq

, T−
nq

, A+
nq

, A−
nq

, �ρ+
nq

, �ρ−
nq

and lnq are related with the qth RWG basis function. �r ′
q

is the position vector of a point in the triangle pair of the qth RWG basis function. �rp is the position
vector of the pth sampling point. The column vector I in (12) is an N × 1 matrix and I(q, 1) is the
coefficient Iq used in (8). bθ and bφ are both M × 1 matrices. bθ(p, 1) and bφ(p, 1) are the θ and φ
components of the electric field respectively at the pth sampling point. In order to solve the matrix
equation, Ipq

i defined in (15) must be calculated. The last two integrals in (15) are calculated in a
semi-analytical fashion which is the subject matter of this article. The analytical evaluation is enabled
by using the following property:

∂

∂i

(
ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
= − ∂

∂i′

(
ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
(i = x, y, z) (16)

It is known that there are only two types of triangles in the mesh of the source reconstruction plane.
The first type is shown in Fig. 2(a). Referring to this triangle, the analytical evaluation for the integral
with the ∂

∂x′ operator is carried out as follows:∫
Tnq

lnq

Anq

∂

∂x′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
ds′=

∫ z′2

z′1

∫ f2(z′)

f1(z′)

lnq

Anq

(−1)
∂

∂x′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
dx′dz′

=
∫ z′2

z′1

lnq

Anq

(−1)

⎡
⎣
(

ejk|�rp−�r ′
q |

|�rp − �r ′
q|

)
x′→f2(z′)

−
(

ejk|�rp−�r ′
q|

|�rp − �r ′
q|

)
x′→f1(z′)

⎤
⎦ dz′ (17)

Now, the two dimensional integral is reduced to a one dimensional integral. In (17), f1(z′) and f2(z′)
are defined as follows:

f1

(
z′
)

= x′
1 = x′

2 (18)

f2

(
z′
)

= x′
2 +

(
x′

2 − x′
3

z′2 − z′3

)(
z′ − z′2

)
(19)

1

2

3 x'

z'

f1 (z' )
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Figure 2. The triangle types in the mesh of the source reconstruction plane. (a) The first triangle
type. (b) The second triangle type.
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For the same triangle, the analytical evaluation for the integral with the ∂
∂z′ operator is carried out as

follows:∫
Tnq

lnq

Anq

∂

∂z′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
ds′=

∫ x′
3

x′
1

∫ f1(x′)

f2(x′)

lnq

Anq

(−1)
∂

∂z′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
dz′dx′

=
∫ x′

3

x′
1

lnq

Anq

(−1)

⎡
⎣(ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
z′→f1(x′)

−
(

ejk|�rp−�r ′
q |

|�rp − �r ′
q|

)
z′→f2(x′)

⎤
⎦ dx′ (20)

In (20), f1(x′) and f2(x′) are defined as follows:

f1

(
x′) = z′2 +

(
z′2 − z′3
x′

2 − x′
3

)(
x′ − x′

2

)
(21)

f2

(
x′) = z′1 = z′3 (22)

For the second triangle type shown in Fig. 2(b), the analytical evaluation for the integral with the ∂
∂x′

operator is performed as follows:∫
Tnq

lnq

Anq

∂

∂x′

(
ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
ds′=

∫ z′1

z′2

∫ f1(z′)

f2(z′)

lnq

Anq

(−1)
∂

∂x′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
dx′dz′

=
∫ z′1

z′2

lnq

Anq

(−1)

⎡
⎣(ejk|�rp−�r ′

q|

|�rp − �r ′
q|

)
x′→f1(z′)

−
(

ejk|�rp−�r ′
q |

|�rp − �r ′
q|

)
x′→f2(z′)

⎤
⎦dz′ (23)

In (23), f1(z′) and f2(z′) are defined as follows:

f1

(
z′
)

= x′
2 = x′

3 (24)

f2

(
z′
)

= x′
1 +

(
x′

1 − x′
2

z′1 − z′2

)(
z′ − z′1

)
(25)

For the same triangle, the analytical evaluation for the integral with the ∂
∂z′ operator is outlined as

follows:∫
Tnq

lnq

Anq

∂

∂z′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
ds′=

∫ x′
2

x′
1

∫ f1(x′)

f2(x′)

lnq

Anq

(−1)
∂

∂z′

(
ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
dz′dx′

=
∫ x′

2

x′
1

lnq

Anq

(−1)

⎡
⎣(ejk|�rp−�r ′

q |

|�rp − �r ′
q|

)
z′→f2(x′)

−
(

ejk|�rp−�r ′
q|

|�rp − �r ′
q|

)
z′→f1(x′)

⎤
⎦dx′ (26)

In (26), f1(x′) and f2(x′) are defined as follows:

f1

(
x′) = z′1 = z′3 (27)

f2

(
x′) = z′1 +

(
z′1 − z′2
x′

1 − x′
2

)(
x′ − x′

1

)
(28)

After the analytical treatment, the integrals in (17), (20), (23) and (26) are computed using a 80 point
Gaussian quadrature rule given in [2].

The matrix equation in (2) is solved using the least squares QR(LSQR) method [3]. The LSQR
method is a preferred iterative method for the solution of highly ill-conditioned systems [4]. The LSQR
solution is carried out in Fortran90 by adapting the module named “zlsqrmodule.f90” [5]. The Fortran90
codes are compiled by the GNU Fortran compiler gfortran-4.7.
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3. RESULTS

The integrals in (15) are first computed fully numerically using a 79 point Gaussian quadrature rule
for the triangle given in [6]. Then, they are computed using the semi-analytical method. The source
reconstruction is performed for both of the fully numerical and semi-analytical solution schemes. The
programs written for the solution of the source reconstruction problem are in Fortran90 language. The
compiler is the GNU Fortran compiler gfortran-4.7. The matrix vector products have been carried out
using automatically tuned linear algebra software (ATLAS) with a linear algebra package (LAPACK).
The operation frequency is 1GHz. The medium is the free space. The source reconstruction plane is
a square of side 0.3 m. The original source is at the center of the square. The square is meshed using
NX 9.0 with a mesh side of λ/

√
300. The electric field data is obtained on the surface of a hemisphere

with radius of 1m and center coinciding with the center of the square. The current reconstruction is
made at centroids of the mesh elements which are triangles shown in Fig. 2.

In Fig. 3, the magnitudes of the x and z components of the current density reconstructed by means
of the fully numerical procedure are shown. It can be observed that the x component of the source
tends to concentrate at the center of the source reconstruction plane. The average magnitude of the
z component is small compared to that of the x component. This result is expected since the original
source has only an x component.

In Fig. 4, the magnitudes of the x and z components of the current density reconstructed by
means of the semi-analytical procedure are displayed. A behavior similar to the results of the fully
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Figure 3. The reconstructed current magnitudes for the fully numerical procedure.
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semi-analytical procedures. (a) The error in reconstructed Eθ. (b) The error in reconstructed Eφ.
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Figure 6. The plots of the error in the reconstructed near field components for the fully numerical
and the semi-analytical procedures. (a) The error in the reconstructed near Eθ. (a) The error in the
reconstructed near Eφ.

numerical procedure is observed in these results. Hence, the semi-analytical procedure works well in
the reconstruction of the original source.

As a further verification, the electric field of the reconstructed current is calculated as a function of
the distance and compared to the field due to the original source. The error made is defined as follows:

error =

√√√√√√
M∑
i=1

|computedi − actuali|2

M
(29)

where computedi is the ith element of the computed field vector and actuali is the ith element of
the actual field vector. M is the number of field sampling points. In Fig. 5, the error made in the
reconstructed electric field components are displayed for the fully numerical procedure and the semi-
analytical procedure. It is observed that the errors are close to each other. Hence, it is again verified
that the semi-analytical procedure performs well. In Fig. 6, for a better comparison for the near field
prediction, the plot of the error in the reconstructed field components are drawn versus the radius of
the reconstruction surface as r is increased from 1.25 m to 2 m with an increment of 0.025 m. From the
Fig. 6, it can observed that the semi-analytical approach performs well in the prediction of the very
near field as well.
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4. CONCLUSION

In this article, a simple semi-analytical method is proposed to calculate the entries of the moments matrix
obtained by the discretization of a mixed potential integral equation. The semi-analytical method is
shown to work well. The method makes use of a differentiation property of the scalar Green’s function
and the structure of the mesh elements forming the source reconstruction plane. Since the method
enables a partial analytical calculation in the integrals of the moments matrix entries, the accuracy
of the moments matrix elements can be increased more easily using the semi-analytical method. The
method is applicable to any integral equation solved using the method of moments with point matching.
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