
Progress In Electromagnetics Research C, Vol. 57, 43–52, 2015

A Modified Real-Valued Feed-Forward Neural Network Low-Pass
Equivalent Behavioral Model for RF Power Amplifiers

Luiza B. Chipansky Freire, Caroline de França, and Eduardo G. de Lima*

Abstract—This work addresses the low-pass equivalent behavioral modeling of radio frequency (RF)
power amplifiers (PAs) for modern wireless communication systems. Similar to a previous approach,
here the PA behavioral modeling is based on two independent real-valued feed-forward artificial neural
networks (ANNs). A careful analysis is first presented to show that the nonlinear training algorithm for
the previous ANN-based approach can be easily trapped into local minima, especially for the ANN that
estimates the polar angle component of a complex-valued signal. Then, a modified ANN-based model
is proposed to eliminate the local minimum problem, in this way significantly improving the modeling
accuracy. Indeed, in the proposed model the two real-valued ANNs are responsible for estimating
the in-phase and quadrature components of a complex-valued base-band signal. When applied to the
behavioral modeling of a GaN HEMT class AB PA, the proposed ANN-based model reduces normalized
mean-square error (NMSE) by up to 2.2 dB, in comparison with the previous ANN-based model having
an equal number of network parameters.

1. INTRODUCTION

Linearity is an obligatory requirement in modern cellular systems [1]. Indeed, the providers of cellular
services can only comply with the agreed high data rates and acceptable levels of quality if rigorous
linearity specifications are completely satisfied. The frequency spectrum is shared among a large set
of completely different applications, and therefore, the bandwidth allocated to cellular systems is very
narrow. In this context, a fundamental concern is the adoption of a strategy to allow for an efficient use
of the bandwidth, in the sense of achieving higher data rates in the fixed available bandwidth. Actually,
a significant augment in the rate of data transmission is possible if, besides the phase, the amplitude
of a radio frequency (RF) carrier signal is also allowed to be changed as a function of the information
signal [2]. However, an amplitude modulated RF carrier demands for linearity. While the information
signal preserves its bandwidth when applied to a linear operator, the same is not true when it is subject
to a nonlinear operator. This is because nonlinear operators can give rise to non-negligible contributions
at frequencies not excited by the applied input information signal. As a consequence, the bandwidth
of an amplitude modulated RF carrier signal can be widened after the signal is processed thought any
nonlinearity. The bandwidth widening dramatically deteriorates the system quality because neighbor
users will interfere with each other.

The traditional design of highly linear wireless transmitters critically impacts the overall power
efficiency of the system [3]. In particular, power amplifiers (PAs) based on semiconductor transistors
polarized in class A, AB or B are linear only when driven at lower power levels. On the other hand, to
optimize its power efficiency, the PA must operate near its maximum power, at strong gain compression,
producing non-negligible nonlinear distortions. Therefore, to comply with the linearity requirements,
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the PA efficiency is very poor. This has serious consequences, especially because the PA is the circuit
that consumes the largest amount of energy in the wireless communication system. Thus, a lot of effort
is been pushed toward high efficiency, especially for extending the battery autonomy in handsets and
relaxing the demand for heat dissipation in base-stations [4, 5].

To obtain high efficiency at the same time keeping the linearity within mandatory thresholds, a
common approach is to include, in the transmitter chain, a linearization scheme known in literature
as digital base-band predistortion (DPD) [6]. An accurate model for the PA, which relates complex-
valued envelope signals and is capable of predicting nonlinear dynamic behaviors observed in PAs with
reduced computational cost, is essential to designing a DPD that works properly [7–13]. A real-valued
feed-forward artificial neural network (ANN), when excited by the same complex-valued envelope signal
applied to the PA input and after proper supervised training, can mimic the PA dynamic nonlinear
behaviors and, in this way, generate a complex-valued envelope signal very close to the measured PA
output signal [10].

In literature, great efforts have been spent to obtain more accurate predictions for the PA complex-
valued output envelope based on real-valued ANNs with fewer network parameters (weights and
biases) [10–13]. For such purpose, the strategy followed in [10–12] was to change the real-valued signals
applied as ANN inputs. In fact, for applying real-valued ANNs to the low-pass equivalent PA behavioral
modeling, complex-valued signals must be first transformed into real-valued signals to only then be
applied to the ANN inputs. In particular, a decomposition based on amplitude and phase difference
components [12] was reported to produce a better compromise than the traditional Cartesian [10] and
polar [11] decompositions. Additionally, [13] reported the advantages of using two independent ANNs
(of single output) with respect to the use of a unique ANN having two outputs. Moreover, for applying
real-valued ANNs to the low-pass equivalent PA behavioral modeling, real-valued signals at the ANN
outputs must be somehow combined to obtain a complex-valued estimation. However, the impacts on
modeling accuracy of constructing one complex-valued signal from two real-valued signals estimated
by the ANNs were not investigated in [10–13]. The novelties of this work are the following. First, it
identifies the main impacts that the choice for the mapping from two real-valued to one complex-valued
signals can have on modeling accuracy. Second, it is observed that the choices for such mapping made
by previous approaches can critically affect the modeling accuracy because the ANN training algorithm
can be easily trapped into local minima. Third, it proposes an alternative mapping that has the
advantage of turning the ANN training algorithm less susceptible to the local minimum problem, and
therefore, can produce a better trade-off between modeling accuracy and computational complexity. In
other words, here a novel strategy is adopted to further improve the modeling accuracy of feed-forward
ANNs. Specifically, the main contribution of this work is to propose a behavioral model that differs
from the previous approach of [13] by the real-valued signals that must be estimated by the ANNs.
In fact, in the proposed model, the ANNs are trained to estimate the real and imaginary parts of a
complex-valued base-band signal.

This work is organized as follows. Section 2 describes low-pass equivalent PA behavioral modeling,
and Section 3 briefly reviews feed-forward ANNs. Section 4 introduces the modified ANN-based model,
and its advantages over previous approaches are carefully investigated, with particular attention to the
local minima problem in the ANN training algorithm. Experimental data reported in Section 5 show
that a better trade-off between model fidelity and number of network parameters is achieved by the
novel approach. Conclusions are given in Section 6.

2. LOW-PASS EQUIVALENT POWER AMPLIFIER BEHAVIORAL MODELING

Let a PA be excited by the band-pass signal:

x = � [x̃ exp (jωCt)] = ax cos (ωCt + θx) , (1)

where ωC is the carrier frequency on the order of GHz, x̃ the complex-valued envelope signal having a
bandwidth of several MHz, ax the amplitude component of x̃, and θx the polar angle component of x̃.
When a PA is operated at strong compression gain and near saturation, nonlinear intermodulation (at
the vicinity of ωC) and harmonic distortions are generated. The PA output matching network reduces
the contributions at harmonic frequencies of ωC to negligible levels, and thus, the measured signal at
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the PA output can be accurately written as:

y = � [ỹ exp (jωCt)] = ay cos (ωCt + θy) , (2)

where ỹ is the complex-valued output envelope signal, ay the amplitude component of ỹ, and θy the
polar angle component of ỹ. The nonlinear intermodulation distortions introduced by the PA are not
attenuated by the output matching network and can be clearly observed in measurements performed
at the PA output. Therefore, an accurate PA behavioral model has to map the output signal as a
nonlinear function of the input signal. Additionally, non-ideal frequency responses of the bias circuit
and the input and output matching networks give rise to dynamic effects that have a significant impact
on the measured signal at the PA output [7]. In order to take into account dynamic effects, a non-
recursive discrete-time model must calculate the PA output signal at the instantaneous time sample
as a function of the PA input signal at instantaneous and previous time samples. Two different PA
behavioral models are available, differing from each other by the kind of input and output signals
handled by them [7]. In a band-pass model, the band-pass output at the instantaneous time sample (n)
is given by:

y(n) = fBP [x(n), x(n − 1), . . . , x (n − MBP )] , (3)

where fBP indicates an arbitrary band-pass nonlinear operator, and MBP is the number of previous
samples required by the band-pass model. In a low-pass equivalent model, the complex-valued envelope
output at the instantaneous time sample (n) is computed using:

ỹ(n) = fLPE [x̃(n), x̃(n − 1), . . . , x̃(n − MLPE )] , (4)

where fLPE indicates an arbitrary low-pass equivalent nonlinear operator and MLPE the number of
previous samples required by the low-pass equivalent model. Observe that a band-pass model describes
the relationship between the band-pass signals x and y, while in a low-pass equivalent model only the
relation between x̃ and ỹ is obtained.

To improve the modeling accuracy, the instantaneous output sample must be formulated as a
function of the input applied at instantaneous and previous samples up to the longest memory effect
intended to be represented by the model. Independent of the particular choice between a band-pass
and a low-pass equivalent model, the memory length must be set to a same value on the order of
the reciprocal of the envelope bandwidth (on the MHz range) to take into account long-term memory
effects attributed to non ideal frequency response of the bias circuit [7]. Nevertheless, the time interval
between two consecutive samples changes drastically based on the choice between a band-pass and a
low-pass equivalent model. Indeed, the maximum allowed sampling interval must comply with the
Nyquist criterion [14]. While the maximum frequency that must be handled by a band-pass model
is equal to several harmonics of ωC (on the GHz range), the low-pass equivalent model deals with
signals having much lower bandwidths (on the order of the envelope bandwidth). Hence, to provide
similar model fidelity, the band-pass model requires a much higher number of computations than the
low-pass equivalent one. In fact, the huge amount of additional computations performed by a band-
pass model only provides a clear picture of the frequency spectrum, as explained in the following. If a
continuous-time signal is uniformly sampled in time, its original frequency-domain content is replicated
in frequency at integer multiples of the sampling frequency. In a band-pass model, the replicas are
separated to each other by a large distance, on the order of several harmonics of ωC , and therefore, one
can easily distinguish between in-band and out-of-band contributions by a simple visual inspection of the
frequency spectrum. Conversely, in a low-pass equivalent model, due to the reduced sampling frequency,
the fundamental and harmonic bands are superimposed to each other in the frequency-domain, e.g., all
the bands are centered around the zero frequency. As a consequence, a frequency spectrum analysis
over a low-pass equivalent model is no longer enough to distinguish between in-band (at the vicinity
of ωC) and out-of-band (at harmonic frequencies of ωC) contributions. Once out-of-band contributions
are not observed at the PA output, the use of a low-pass equivalent model that produces out-of-band
contributions will perform useless computations that, however, can be responsible for a considerable
fraction of the computational cost of a model. A computationally efficient low-pass equivalent model
that performs only useful calculations must, therefore, generate only in-band contributions, which is
mathematically equivalent to state that the integer number one that multiplies the carrier frequency
(ωC) is forbidden to be changed [12, 15].
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3. REAL-VALUED FEED-FORWARD NEURAL NETWORKS

Figures 1(a) and 1(b) show the block diagrams of the two largely employed real-valued feed-forward
artificial neural networks: the three-layer perceptron (TLP) and the radial-basis function (RBF) [16].
Observe that in Figures 1(a) and 1(b), the networks have E inputs, S outputs and R neurons in the
hidden layer.
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Figure 1. Block diagram of neural networks: (a) three-layer perceptron and (b) radial basis function.

A major difference between a TLP and an RBF is observed in the input layer, whereas the TLP
input signals are manipulated by

ur = bI
r +

E∑
e=1

wr,eine, (5)

the RBF input signals are modified according to

ur = bI
r

√√√√ E∑
e=1

(ine − wr,e)
2. (6)

In (5) and (6), wr,e (with r = 1, 2, . . . , R and e = 1, 2, . . . , E) are the input weights, and bI
r (with

r = 1, 2, . . . , R) are the input biases. In the hidden layer, each signal ur (with r = 1, 2, . . . , R) is
applied to a nonlinear operator FNL. Indeed, the hyperbolic tangent sigmoid function

zr = FNL(ur) =
2

1 + exp (−2ur)
− 1, (7)

is the common choice for TLP-based networks, while the Gaussian function
zr = FNL(ur) = exp

(−u2
r

)
, (8)

is more commonly found in RBF-based networks.
The output layer is exactly the same for both TLP and RBF. For instance, the S network outputs

(out1, out2, . . . , outS) are given by:

outs = bO
s +

R∑
r=1

hs,rzr, (9)

where hs,r (with r = 1, 2, . . . , R and s = 1, 2, . . . , S) are the output weights, and bO
s (with

s = 1, 2, . . . , S) are the output biases.
To obtain the network parameters wr,e, bI

r , hs,r and bO
s , a supervised training algorithm must

be used in order to minimize the mean square error between desired and estimated outputs. Back-
propagation [16] and orthogonal least-squares [17] are the standard algorithms for TLP and RBF
trainings, respectively.
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4. THEORETICAL DEVELOPMENT

Low-pass equivalent PA behavioral models discussed in Section 2 relate complex-valued envelope signals.
Feed-forward ANNs addressed in Section 3 can only process real-valued signals. Therefore, in order to
apply real-valued ANNs to the low-pass equivalent PA behavioral modeling, complex-valued signals must
be first transformed into real-valued signals to only then be applied to the ANN inputs. Moreover, real-
valued signals at the ANN outputs must be somehow combined to obtain a complex-valued estimation
for the output envelope.

In [12], it was observed that the conversion from complex-valued into real-valued signals has a
significant impact on the accuracy and computational complexity of a low-pass equivalent model.
Traditionally, a complex-valued input envelope x̃ can be decomposed into amplitude (ax) and polar
angle (θx) components, according to

x̃ = ax exp (jθx) , (10)

or, equivalently, into real (�x) and imaginary (�x) parts,

x̃ = �x + j�x, (11)

where �x = ax cos(θx) and �x = ax sin(θx). If the rectangular (10) or polar (11) decompositions are
employed to obtain the ANN real-valued inputs, out-of-band contributions are generated by the low-
pass equivalent model. However, according to Section 2, a computationally efficient low-pass equivalent
behavioral model must generate only in-band contributions. Once the polar angle component θx is
related to the carrier frequency ωC by (ωCt+θx), in order to preserve the 1ωCt, the θx cannot be directly
applied as an ANN input. In fact, if θx is used as an ANN input, nonlinear activation functions in the
hidden layer of an ANN can change the value of the integer number that multiplies ωC . Furthermore,
the real (�x) and imaginary (�x) components cannot be directly applied as ANN inputs, once they are
also dependent on θx. Therefore, only the amplitude (ax) component can be directly applied as an ANN
input, because ax is independent from θx, in this way having no relationship with ωC . To compensate
for memory effects, in [12] the instantaneous (n) and previous (up to the memory length M ) samples of
the input amplitude are applied as ANN inputs, e.g., ax(n−m), with m from 0 to M. However, applying
only amplitude components as ANN inputs severely deteriorates the modeling accuracy [12]. In other
words, the ANN inputs must somehow sense the present and past samples of θx in order to provide
accurate predictions of phase-modulation-to-amplitude-modulation (PM-AM) and phase-modulation-
to-phase-modulation (PM-PM) conversions. The strategy introduced in [12] was to purposely modify
the polar angle components prior to their application as ANN inputs, in a way that their relationship
with ωC is completely eliminated. For that purpose, the difference between polar angle components at
two consecutive time instants was first calculated, then the sine and cosine were evaluated, and finally,
the resulting values, at instantaneous and past samples were applied as independent ANN inputs, e.g.,
sin[θx(n − m1) − θx(n − m1 − 1)] and cos[θx(n − m1) − θx(n − m1 − 1)], with m1 from 0 to (M + 1).

By using the ANN inputs introduced in [12], independent of the ANN architecture (TLP or RBF),
only real-valued base-band (0ωCt) signals are available at the ANN outputs. Therefore, additional
computations must be performed to estimate the complex-valued in-band (1ωCt) envelope signal at the
PA output. Indeed, the real-valued ANN estimations have to be first condensed into a single complex-
valued base-band signal. Then, a complex-valued base-band signal (centered at zero frequency) must be
shifted in frequency to the in-band (centered at ωC). According to [12], the frequency shifting operation
can be done by

ỹ = s̃ exp (jθx) , (12)

where s̃ is a complex-valued base-band signal centered at zero frequency, θx the polar angle component
of the complex-valued input envelope, and ỹ the complex-valued in-band output envelope. Concerning
the conversion from real-valued into complex-valued signals, in [12] a polar decomposition was adopted.
In particular, the two real-valued outputs (as and θs) of a single ANN are assumed as the amplitude
and polar angle components of the base-band complex-valued signal s̃, according to:

s̃ = as exp (jθs) . (13)

In [13], a polar decomposition was also used to perform the mapping from real-valued into complex-
valued signals, but now the real-valued amplitude (as) and polar angle (θs) components of s̃ are estimated
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Figure 2. Nonlinear transfer characteristics measured on a GaN HEMT class AB PA excited by a
WCDMA signal: (a) amplitude of s̃ as a function of the instantaneous input amplitude, (b) polar angle
of s̃ as a function of the instantaneous input amplitude.

by two independent ANNs. In fact, it was observed in [13] that the use of ANNs having single output
provides a better trade-off between modeling error and number of network parameters. Nevertheless,
in [12, 13], the impact of the conversion from real-valued into complex-valued signals on the accuracy
and computational complexity of a low-pass equivalent model was not addressed. In fact, the choice
for polar decomposition in the conversion from real-valued to complex-valued signals has no connection
with the fulfillment of the band-pass constraint.

Now, it is investigated whether the conversion from two real-valued signals into one complex-valued,
performed over the ANN outputs, has any effect on the accuracy and computational complexity of a
model. The polar decomposition applied in [12, 13] is first investigated. To that purpose, based on data
measured on a GaN HEMT class AB PA excited by a WCDMA signal, Figures 2(a) and 2(b) show the
amplitude (as) and polar angle (θs) components of the base-band complex-valued signal s̃, respectively,
as a function of the amplitude (ax) of the input envelope.

The nonlinear transfer characteristics shown in Figure 2 are, indeed, the nonlinear mappings that
each ANN of [13] is intended to mimic. Observe that a single value of the instantaneous input amplitude
produces different outputs at distinct time instants. The scattering pattern indicates that the nonlinear
mappings are not static, in this way clearly illustrating the presence of memory effects. As a consequence,
the instantaneous output depends either on previous samples of the input amplitude (dynamic AM-
AM and AM-PM conversions) or on previous samples of the input polar angle (PM-AM and PM-
PM conversions). From Figure 2(a), notice that for each value of the input amplitude, the vertical
displacement (due to the scattering) is essentially constant at all input amplitude levels. However, from
Figure 2(b), a remarkable widening of the vertical displacement is observed at very low input amplitude
levels. More important, while θs achieves values not larger than 0.2 radians at high input amplitude
levels, extremely large values for θs (around 0.6 radians) are observed at input amplitude levels near
zero. The huge spreading in θs values at very low input amplitudes can have a catastrophic impact on
the identification of the ANN weights and biases. The reasoning is as follows. In the training of an
ANN, the network parameters are chosen in order to minimize the mean square error (MSE ) between
desired and estimated outputs, according to

MSE =
1
N

N∑
n=1

∣∣∣outdes
s (n) − outest

s (n)
∣∣∣2, (14)

where N is the total number of samples, outdess the desired output, and outests the output estimated
by the ANN. The nonlinear training algorithm for the ANN that estimates the polar angle θs can be
trapped into local minima, specially those local minima that provide excellent estimations for θs at very
low input amplitudes at the cost of deteriorating the estimations at large input amplitudes. For instance,
in the MSE computation a 1% error in a sample at very low input amplitude having θs equal to 0.6
radians is equivalent to a 5% error in a sample at high input amplitude having θs equal to 0.12 radians.
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Notwithstanding, the amount of θs deviations at low input amplitude levels is further accentuated by
measurement noise.

In summary, the choice for polar decomposition in the conversion from two real-valued signals into
one complex-valued signal done in [12, 13] can give rise to non optimal ANN training.

Now, attention is turned to the application of the Cartesian (or rectangular) decomposition
to implement the transformation from two real-valued signals into one complex-valued signal. For
that purpose, the base-band complex-valued signal s̃ is now constructed from two real-valued signals
according to

s̃ = �s + j�s, (15)

where �s and �s represent the real and imaginary parts of the complex-valued signal s̃, respectively.
Using the same data measured on a GaN HEMT class AB PA excited by a WCDMA signal, Figures 3(a)
and 3(b) show the real (�s) and imaginary (�s) components of the base-band complex-valued signal
s̃, respectively, as a function of the amplitude (ax) of the input envelope. Observe that the vertical
displacement (due to the scattering) is approximately uniform at all input levels for the two nonlinear
transfer characteristics shown in Figure 3. In other words, the huge spreading in θs values at very
low input amplitudes, clearly observable in Figure 2(b), has no visible consequences on the transfer
characteristics shown in Figure 3. Even though �s and �s are dependent on θs, at very low amplitude
levels their values are primarily determined by the amplitude information as. Indeed, �s = as cos(θs)
and �s = as sin(θs), and the multiplication of a number close to zero by any number is still a number close
to zero. Such information is highly valuable and will be exploited in the sequence for the development
of a novel ANN-based low-pass equivalent model. It is worth mentioning that, although Figures 2 and 3
were obtained from a class AB PA, similar behaviors are also expected for PAs operating in different
classes (A, B, C, etc.).

The ANN-based low-pass equivalent model proposed in this work is addressed. Figure 4(a) shows
a block diagram of the two independent real-valued feed-forward neural network model previously
introduced in [13]. A block diagram of the model proposed in this work is shown in Figure 4(b). Observe
that Figure 4(b) differs from Figure 4(a) only by the real-valued signals that must be estimated by the
ANNs. In particular, in the proposed model a Cartesian decomposition is used to perform the conversion
from two real-valued signals into one complex-valued signal. Hence, according to Figure 4(b), one ANN
estimates the instantaneous sample of the real part (�s) of the base-band complex-valued signal s̃,
while another ANN estimates the instantaneous sample of the imaginary part (�s) of s̃. Based on the
discussion presented in this section, it is expected that the proposed model, in comparison with the
previous approach of [13] in a scenario of same number of network parameters, can provide a superior
modeling accuracy. Specifically, in the proposed model there is one ANN to map the nonlinear transfer
characteristic shown in Figure 3(a) and one ANN to map the nonlinear transfer characteristic shown in
Figure 3(b). Therefore, the training algorithms for both ANNs of Figure 4(b) are less susceptible to be
trapped into local minima than the training algorithm for the ANN that estimates θs in Figure 4(a).
Finally, it is worth mentioning that the fulfillment of the band-pass constraint is guaranteed in both
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Figure 3. Nonlinear transfer characteristics measured on a GaN HEMT class AB PA excited by a
WCDMA signal: (a) real part of s̃ as a function of the instantaneous input amplitude, (b) imaginary
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Figure 4. Block diagram of ANN-based PA behavioral models: (a) previous [13] and (b) proposed.

Table 1. NMSE results in dB as a function of the number of network parameters.

Number of parameters 38 47 56 65 74 83 92 101 110 119

previous [13] −39.9 −40.6 −41.0 −41.6 −42.1 −42.5 −42.7 −43.0 −43.2 −43.3

proposed −40.8 −41.6 −42.2 −43.0 −43.8 −44.4 −44.8 −45.2 −45.3 −45.5

low-pass equivalent models shown in Figure 4. Indeed, it is the selection of ANN real-valued inputs
done in Figure 4 that avoids the generation of out-of-band contributions.

5. EXPERIMENTAL VALIDATION

In this section, the accuracies of the proposed ANN-based model of Figure 4(b) and the previous ANN-
based model of Figure 4(a) are compared. To that purpose, a Rohde & Schwarz FSQ vector signal
analyzer (VSA) was used to measure discrete-time input-output data sampled at 61.44 MHz from a
GaN HEMT class AB PA, excited by a double-carrier WCDMA signal having a bandwidth of 8.84 MHz
and centered at 900 MHz, for a PA average output power of 26 dBm.

One part of the measured input-output data was used to train, by the back-propagation
algorithm [16], the two ANN-based low-pass equivalent behavioral models shown in Figure 4, having the
TLP architecture of Figure 1(a) with the hyperbolic tangent sigmoid activation function given by (7).
The memory length was fixed in M = 2, but the number of neurons in the hidden layer of the ANNs
was varied in order to change the number of network parameters.

The remaining measured input-output data was used to evaluate the normalized mean-square error
(NMSE), as defined in [18], between measured and estimated complex-valued output envelopes. Figure 5
and Table 1 show the NMSE as a function of the number of network parameters. Observe that, in case
of same number of network parameters, the proposed model of Figure 4(b) is more accurate than the
previous approach of Figure 4(a). Indeed, the largest difference between the proposed and previous
approaches, quantified by a NMSE difference of 2.2 dB, is achieved if both ANN-based models have
101 real-valued network parameters. Figure 5 and Table 1 confirm that the training algorithms for the
proposed model are less susceptible to be trapped into local minima.

Additional confirmations of the quality of the output signal estimated by the proposed model
are provided by the power spectral densities (PSDs) shown in Figure 6, the amplitude-to-amplitude
(AM-AM) conversions shown in Figure 7 and the amplitude-to-phase (AM-PM) conversions shown in
Figure 8. Specifically, in Figures 6, 7 and 8 measured data are compared to data estimated by the
proposed model of Figure 4(b) having 110 network parameters. Hence, Figures 6, 7 and 8 clearly show,
in different ways, the extremely high accuracy of the proposed model having 110 network parameters.
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Figure 5. NMSE results as a function of the
number of network parameters. The GaN HEMT
class AB PA is modeled by TLPs having M = 2
and a variable number of neurons in the hidden
layer.
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Figure 6. Power spectral densities of the
measured and estimated PA output signals. The
GaN HEMT class AB PA is modeled by the
proposed TLP having M = 2 and 110 network
parameters.
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Figure 7. Measured and estimated normalized
AM-AM conversions. The GaN HEMT class AB
PA is modeled by the proposed TLP having M =
2 and 110 network parameters.
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Figure 8. Measured and estimated AM-PM
conversions. The GaN HEMT class AB PA is
modeled by the proposed TLP having M = 2 and
110 network parameters.

6. CONCLUSIONS

This work proposes an ANN-based low-pass equivalent PA behavioral model that can be seen as a
modified version of a previous ANN-based approach. In one hand, the ANN real-valued inputs are
the same in both previous and modified models in order to guarantee that only in-band contributions
(centered at ωC) are generated by the low-pass equivalent PA behavioral model. On the other hand,
the ANN real-valued outputs in the modified model are different from the ANN outputs in the previous
approach in order to attenuate the problem of local minima in the ANN training algorithm. The higher
accuracy provided by the modified model than the previous approach of same computational complexity
is confirmed by a very significant reduction in modeling error, quantified by improvements in NMSE up
to 2.2 dB when applied to fit data measured on a GaN HEMT class AB PA.
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