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Relativistic Bateman-Hillion Solutions for the Electromagnetic

4-Potential in Hermite-Gaussian Beams

Robert Ducharme*

Abstract—The electromagnetic field equations are solved to give the 4-potential in Hermite-Gaussian
beams as a function of both the 4-positions of the beam waist and each point in the field. These
solutions are the sums of products of position-dependent complex 4-vectors and modified Bateman-
Hillion functions. It is assumed that the time difference between the beam waist and each other point
is equal to the distance between the points divided by the speed of light. This method is shown to
generate solutions that preserve their forms under Lorentz transformations that also correspond to the
well known paraxial solutions for the case of nearly parallel beams.

1. INTRODUCTION

Bateman [1] discovered a class of exact solutions to the linear wave equation over a hundred years ago.
Hillion [2, 3] later complexified these solutions for application to wave packet and wave beam problems.

The purpose of this paper is to present exact Bateman-Hillion related solutions to the
electromagnetic field equations for the 4-potential Aμ(xν , x

r
ν) in Hermite-Gaussian beams where xν

and xr
ν denote the 4-positions (μ, ν = 0, 1, 2, 3) of a point in the field and the waist of the beam

respectively. It is further intended to demonstrate the usage of these solutions in calculating the field
properties for continuous wave sources [4, 5].

A review of the literature on wave beams for both the continuous wave and pulsed [6] cases can
be found in [7]. This review provides a lot of historical context for the current paper as it discusses
Bateman type solutions in relationship to other mathematical approaches [8, 9]. In addition to the
predominately linear methods treated in [7] there is also an interesting and practical body of work
relating to the transmission of optical pulses in nonlinear dispersive media [10, 11].

The origin of the coordinate system for a beam is usually at the center of the waist. It follows that
the spatial coordinates xr

i (i = 1, 2.3) of this point are zeroed out but translating the beam will make
them explicit. For relativistic solutions, it must be recognized xr

i is part of a 4-vector such that the
4-potential is also dependent on the time coordinate xr

0.
The fact that Aμ depends on two 4-position vectors creates a problem familiar from the treatment

of two interacting relativistic particles [12, 13] that the field cannot evolve in two independent time
coordinates. The known solution to be applied here is to use Dirac delta function notation to impose
a relationship between the relative space-time coordinates. One notable application of this idea,
in classical electrodynamics, is the derivation of the Liénard-Wiechert potentials [14] for the field
experienced at one point owing to the presence of a point charge at another. In this case, it is assumed
that the time difference between the points is equal to the distance between them divided by the speed
of light.

The field equations for the 4-potential Aμ comprising Maxwell’s equations and the Lorenz gauge
condition are presented in Section 2. It is assumed that Aμ for a Gaussian beam can be expressed as
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the product aμ(xμ)Ψ(xμ) where aμ(xμ) is a complex 4-vector and Ψ is a Bateman-Hillion function. The
exact form of Aμ is determined on inserting the trial product form into the field equations.

The solution method for Gaussian beams is generalized in section 3 to determine the 4-potentials
for all modes of Hermite-Gaussian beams. The difference for the higher modes is they must be expanded
in up to three products of complex vectors and Bateman-Hillion functions. The notation for expressing
the solutions is made concise through the use of ladder operators for raising and lowering the beam
mode.

The behavior of the exact solutions for Hermite-Gaussian beams is investigated under Lorentz
transformations in Section 4. It is shown that for a relativistic observer moving parallel to the axis of
the beam that wavelength and frequency of the radiation appear Doppler shifted as is to be expected.
It is further confirmed that the solutions for all the beam modes are form preserving under Lorentz
transformations and therefore fully relativistic.

It is conventional in treating paraxial beams to assume time-harmonic solutions and neglect the
second order axial derivative term in the wave equation. In Section 5 it is shown that an equivalent
method is to start from the exact 4-potentials in the beam and restrict the time separation between
the waist of the beam and other points in the field to equal the axial distance between the points
divided by the speed of light. The clear assumption here being the beam is parallel enough for the axial
displacement of a point in the beam from the waist to be a good approximation to the total distance
from the waist.

One practical motivation for investigating Bateman-Hillion solutions for beam potentials is to go
beyond the paraxial approximation. It is proposed in Section 5 that progress may well be possible
using a more general form of the constraint condition on the relative coordinates though a detailed
investigation of this approach remains as a problem for the future.

2. GAUSSIAN BEAMS

Electromagnetic radiation [14] can be represented using a 4-potential Aμ(xν) where μ, ν = 0, 1, 2, 3 and
xμ = (xi, ct) is position in Minkowski space. The classical field equations for Aμ consist of Maxwell’s
equations

∂2Aμ

∂x2
1

+
∂2Aμ

∂x2
2

+
∂2Aμ

∂x2
3

− 1
c2

∂2Aμ

∂t2
= 0 (1)

and the Lorenz gauge condition

∂A1

∂x1
+

∂A2

∂x2
+

∂A3

∂x3
+

1
c

∂A0

∂t
= 0 (2)

where c is the velocity of light. It will be assumed that Aμ also depends on the 4-position coordinates
xr

ν = (xr
i , ct

r) of the beam waist. The superscript r is used since xr
ν will eventually be interpreted as

retarded coordinates but xμ and xr
ν can be treated as independent for now.

The objective of this section is to find an exact circularly polarized Gaussian solution Aβ00
μ to the

field Equations (1) and (2) for a beam moving in the x3-direction. It will be assumed that this takes
the Bateman inspired form

Aβ00
μ = aβ00

μ (ξ1, ξ2, ξ3 + cτ)Φ00 (ξ1, ξ2, ξ3 + cτ) exp [ı (k3x3 − ωt)] (3)

where
ξi = xi − xr

i , τ = t − tr (4)

denote relative coordinates, aβ00
μ is the complex position-dependent unit vector

aβ00
μ (xν) =

1√
2

⎛
⎜⎜⎜⎜⎝

1
ıβ

aβ00
3 (ξ1, ξ2, ξ3 + cτ)

aβ00
0 (ξ1, ξ2, ξ3 + cτ)

⎞
⎟⎟⎟⎟⎠ (5)
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Φ00 is a scalar function, and β(= ±1) is the polarization state. It is further notable that the wave
number k3 and the angular frequency ω(= ck3) are both components of a wave vector kμ such that
kμxμ = k3x3 − ωt.

The definition of aβ00
μ as a unit vector implies∣∣∣aβ00

μ

∣∣∣ = 1 +
(
aβ00

3

)2 −
(
aβ00

0

)2
= 1 (6)

giving
aβ00

0 = −aβ00
3 (7)

Equation (6) also admits aβ00
0 = aβ00

3 though only the more analytically convenient aβ00
0 = −aβ00

3 branch
will be developed here.

Inserting Equation (3) into Maxwell’s Equation (1) gives[
∂2

∂x2
1

+
∂2

∂x2
2

+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)](
aβ00

μ Φ00

)
= 0 (8)

having spotted (
∂2

∂x2
3

− 1
c2

∂2

∂t2

)
(aβ00

μ Φ00) = 0 (9)

owing to the dependence of aβ00
3 Φ00 on ξ3 and τ in the linear combination ξ3 + cτ . Similarly, inserting

Equation (3) into the Lorenz gauge condition (2) gives

aβ00
3 =

ı

2k3

(
aβ00

1

Φ00

∂Φ00

∂x1
+

aβ00
2

Φ00

∂Φ00

∂x2

)
(10)

having made use of Equation (7).
The aβ00

1 and aβ00
2 coefficients are constants. It follows that Equation (8) reduces to the form[

∂2

∂x2
1

+
∂2

∂x2
2

+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)]
Φ00 = 0 (11)

for these cases.
Subtracting Equation (11) from Equation (8) for μ = 3 gives[

∂2

∂x2
1

+
∂2

∂x2
2

+
2

Φ00

(
∂Φ00

∂x1

∂

∂x1
+

∂Φ00

∂x2

∂

∂x2

)
+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)]
aβ00

3 = 0 (12)

The next step is therefore to calculate Aβ00
μ from Equations (10), (11) and (12).

Equation (11) has a Gaussian solution in the Bateman-Hillion form

Φ00 =
C00LR

LR + ı1
2 (ξ3 + cτ)

exp
[

ık3(ξ2
1 + ξ2

2)
ξ3 + cτ − ı2LR

]
(13)

where C00 and LR are constants. Putting this result into Equation (10) gives

aβ00
3 = −aβ00

1 ξ1 + aβ00
2 ξ2

ξ3 + cτ − ı2LR
(14)

Equations (13) and (14) now generate the derivatives(
∂2

∂x2
1

+
∂2

∂x2
2

)
aβ00

3 = 0 (15)

2
Φ00

(
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∂

∂x1
+

∂Φ00
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∂

∂x2

)
aβ00

3 = −4ık3
aβ00

1 ξ1 + aβ00
2 ξ2

(ξ3 + τ − ı2LR)2
(16)

2ık3

(
∂

∂x3
+

1
c

∂

∂t

)
aβ00

3 = 4ık3
aβ00

1 ξ1 + aβ00
2 ξ2

(ξ3 + τ − ı2LR)2
(17)
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confirming Φ00 and a00
003 satisfy (12) exactly. This implies the trial solution (3) has worked giving

Aβ00
μ =

C00LR√
2

⎛
⎜⎜⎜⎝

1
βı

ξ1+βıξ2
2ıLR−ξ3−cτ
−ξ1−βıξ2

2ıLR−ξ3−cτ

⎞
⎟⎟⎟⎠

exp
[

ık3(ξ2
1+ξ2

2)
ξ3+cτ−ı2LR

+ ı (k3x3 − ωt)
]

LR + ı1
2 (ξ3 + cτ)

(18)

to be an exact solution of Maxwell’s Equation (1) and Lorenz gauge condition (2) for the electromagnetic
4-potential in a Gaussian mode laser beam.

3. HERMITE-GAUSSIAN BEAMS

The calculation of the 4-potential Aβmn
μ in Hermite-Gaussian beams for values the m and n integers

greater than zero is similar to the calculation of Aβ00
μ in Section 2 except that it will be necessary to

start from a more complicated trial solution of the form

Amn
μ =

∑
p

∑
q

aβmn
μpq (ξ1, ξ2, ξ3 + cτ) Φpq(ξ1, ξ2, ξ3 + cτ) exp [ı(k3x3 − ωt)] (19)

where aβmn
μpq is the complex position-dependent vector and p and q are positive integers. In

correspondence to the Gaussian beam case, it will be assumed that∑
p

∑
q

(
|apq

mn1|2 + |apq
mn2|2 + |apq

mn3|2 − |apq
mn0|2

)
= 1 (20)

and
aβmn

1pq = δmpδnq, aβmn
2pq = ıβδmpδnq, aβmn

3pq = aβmn
0pq (21)

where δmp is the Kronecker delta.
Inserting Equation (19) into Maxwell’s Equation (1) gives[

∂2

∂x2
1

+
∂2

∂x2
2

+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)]
Φmn = 0 (22)

for μ = 1 or μ = 2; and∑
p

∑
q

[
∂2

∂x2
1

+
∂2

∂x2
2

+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)](
aβmn

3pq Φpq

)
= 0 (23)

for μ = 3. Similarly, inserting Equation (19) into the Lorenz gauge condition (2) gives∑
p

∑
q

aβmn
3pq Φpq =

ı

2k3

(
aβ

1

∂Φmn

∂x1
+ aβ

2

∂Φmn

∂x2

)
(24)

having put aβ
1 = aβmn

1mn , aβ
2 = aβmn

2mn and made use of Equation (21).
Subtracting Equation (22) from Equation (23) gives

∑
p

∑
q

⎡
⎣j=2∑

j=1

(
∂2

∂x2
j

+
2

Φpq

∂Φpq

∂xj

∂

∂xj

)
+ 2ık3

(
∂

∂x3
+

1
c

∂

∂t

)⎤⎦ aβmn
3pq = 0 (25)

The next step is therefore to calculate Aβmn
μ from Equations (22), (24) and (25).

The wave Equation (22) is exact but still an analogue of the paraxial wave equation. It can therefore
be solved for a complete orthonormal basis set of Hermite-Gaussian functions [4]. These take the form

Φmn =
Cmnw0

w
Hm

(√
2ξ1

w

)
Hn

(√
2ξ2

w

)
exp

[
ık3

(
ξ2
1 + ξ2

2

)
ξ3 + cτ − 2ıLR

− ıgmn

]
(26)
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where

w (ξ3, t) = w0

√
1 +

(
ξ3 + cτ

2LR

)2

(27)

is the radius of the laser spot and

gmn(ξ3, t) = (1 + m + n) arctan
(

ξ3 + cτ

2LR

)
(28)

is the Gouy phase. Additionally, w0 = w(0) is the radius of the beam waist, LR = 1
2k3w

2
0 is the Rayleigh

range and Hm and Hn are Hermite polynomials.
Inserting Equation (26) into Equation (24) gives

∑
p

∑
q

(
aβmn

3pq Φpq

)
=

−
(
aβ

1 ξ1 + aβ
2ξ2

)
Φmn − w0

(
aβ

1

√
mΦm−1n + aβ

2

√
nΦmn−1

)
ξ3 + cτ − 2ıLR

(29)

having used the following expressions [15]:

∂

∂x
Hmn(ξ) = 2mHm−1n(ξ), (30)

exp
[
−ı arctan

(
ξ3 + cτ

2LR

)]
= −ı

ξ3 + cτ + 2ıLR√
(ξ3 + cτ)2 + 4L2

R

(31)

and Cm−1n =
√

2mCmn. Here, it is understood Φm−1n = 0 if m = 0 and Φmn−1 = 0 if n = 0.
Reading off the aβmn

3pq coefficients from Equation (29) gives

aβmn
3mn = − aβ

1 ξ1 + aβ
2ξ2

ξ3 + cτ − 2ıLR
(32)

aβmn
3m−1n = − aβ

1w0
√

m

ξ3 + cτ − 2ıLR
(33)

aβmn
3mn−1 = − aβ

2w0
√

n

ξ3 + cτ − 2ıLR
(34)

It is now readily confirmed that Equation (26) alongside the coefficients (32) through (34) satisfy
Equation (25) using the following derivatives:
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1
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=
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√
m
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1
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√
m

(ξ3 + cτ − 2ıLR)2
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1
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This implies the trial solution (19) has been successful giving

Aβmn
μ =

1√
2

⎛
⎜⎜⎜⎝

1
ıβ

ξ1+α̂1+ıβ(ξ2+α̂2)
2ıLR−ξ3−cτ

−ξ1−α̂1−ıβ(ξ2+α̂2)
2ıLR−ξ3−cτ

⎞
⎟⎟⎟⎠Φmn(ξ1, ξ2, ξ3 + cτ) exp(ık3x3 − ıωt) (41)

where

α̂1Φmn =
(

ξ3 + cτ − 2ıLR

k3

∂

∂x1
− 2ıξ1

)
Φmn =

√
mw0Φm−1n (42)

α̂2Φmn =
(

ξ3 + cτ − 2ıLR

k3

∂

∂x2
− 2ıξ2

)
Φmn =

√
nw0Φmn−1 (43)

are lowering operators. Equation (41) is therefore an exact solution to Maxwell’s Equation (1) and the
Lorenz gauge condition (2) for the electromagnetic 4-potential in a Hermite-Gaussian mode laser beam.

4. LORENTZ TRANSFORMATIONS

The electromagnetic 4-potential Aβmn
μ (xν) has been determined in Equation (41) to be an exact solution

of five simultaneous manifestly covariant classical electromagnetic field Equations (1) and (2). The task
ahead is to confirm these solutions are form preserving under Lorentz transformations.

A 4-vector qμ is relativistic if it preserves its form under the Lorentz transformation equations:

q′i = qi + γ
vi

c

(
γ

1 + γ

vjqj

c
− q0

)
(44)

q′0 = γ
(
q0 − vjqj

c

)
(45)

[14] where vi is the relative velocity between any two inertial reference frames and γ = (1− v2/c2)−1/2.
For current purposes qμ belongs to the set of position xμ, relative position ξμ, wave vector kμ and
4-potential Aβmn

μ .
To confirm the Hermite-Gaussian beam solutions are fully relativistic it will be necessary to

investigate the Lorentz transformation of number of different quantities including the phase factor,
the Gaussian function, the Hermite functions, the Gouy phase and the position-dependent complex
4-vector. For brevity, the analysis will be limited to the case of an observer that is moving parallel to
the axis of the beam.

The product kμxμ is Lorentz covariant implying k′
μx′

μ = kμxμ. This result can also be expressed as

k′
3

(
x′

3 − ct′
)

= k3 (x3 − ct) (46)

where

ck′
3 = ck′

0 = ω′ (47)

k′
3 =

√
c − v

c + v
k3 (48)

This is the relativistic Doppler effect.
The numerator and denominator in the Gaussian component of Equation (26) can be transformed

separately to give

k′
3

(
ξ′21 + ξ′22

)
=
√

c − v

c + v
k3

(
ξ2
1 + ξ2

2

)
(49)

ξ′3 + cτ ′ − 2ıL′
R =

√
c − v

c + v
(ξ3 + cτ − 2ıLR) (50)
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having assumed that

L′
R =

√
c − v

c + v
LR (51)

given LR = 1
2k3w

2
0 and assuming the radius w0 is a Lorentz invariant scalar. Putting these results

together leads to
k′

3

(
ξ′21 + ξ′22

)
ξ′3 + cτ ′ − 2ıL′

R

=
k3

(
ξ2
1 + ξ2

2

)
ξ3 + cτ − 2ıLR

(52)

Equations (49) through (52) can now be used to transform Equation (26) into

Φmn =
Cmnw0

w′ Hm

(√
2ξ′1
w′

)
Hn

(√
2ξ′2
w′

)
exp

[
ık′

3(ξ
′2
1 + ξ′22 )

ξ′3 + cτ ′ − 2ıL′
R

− ıg′mn

]
(53)

where

w′ = w0

√
1 +

(
ξ′3 + cτ ′

2L′
R

)2

= w0

√
1 +

(
ξ3 + ct

2LR

)2

(54)

g′mn

(1 + m + n)
= arctan

(
ξ′3 + cτ ′

2L′
R

)
= arctan

(
ξ3 + cτ

2LR

)
(55)

and Cmn is a Lorentz invariant scalar.
The components of Aβmn

μ transform as

Aβmn′
1 = Aβmn

1 Aβmn′
2 = Aβmn

2 (56)

Aβmn′
3 = γ

(
Aβmn

3 − v

c
Aβmn

0

)
=
√

c − v

c + v
Aβmn

3 (57)

Aβmn′
0 = γ

(
Aβmn

0 − v

c
Aβmn

3

)
=
√

c − v

c + v
Aβmn

0 (58)

having used the equality Aβmn
0 = Aβmn

3 . It follows from taking stock of all of these results that
Equation (41) can be rewritten as

Aβmn′
μ =

1√
2

⎛
⎜⎜⎜⎜⎜⎝

1
ıβ

ξ′1+α̂′
1+ıβ(ξ′2+α̂′

2)
2ıL′

R−ξ′3−cτ ′

−ξ′1+α̂′
1−ıβ(ξ′2+α̂′

2)
2ıL′

R−ξ′3−cτ ′

⎞
⎟⎟⎟⎟⎟⎠Φmn

(
ξ′1, ξ

′
2, ξ

′
3 + cτ ′) exp

(
ık′

3x
′
3 − ıω′t′

)
(59)

where

α̂′
j =

(
ξ′3 + cτ ′ − 2ıL′

R

k′
3

∂

∂x′
j

− 2ıξ′j

)
(60)

and j = 1, 2. On comparing Equations (41) and (59) it is concluded the form of Aβmn
μ is form invariant

under Lorentz transformations and therefore fully relativistic.

5. PARAXIAL BEAMS AND BEYOND

Paraxial beams are well documented in the literature [4, 5]. It is of interest therefore to establish the
connection between the foregoing exact solutions and the standard form solutions:

F βmnP
μν = F βmn0

μν ΦP
mn (ξ1, ξ2, ξ3) exp [ı (k3x3 − ωt)] (61)

where ΦP
mn is the solution of the paraxial wave equation

∂2ΦP
mn

∂x2
1

+
∂2ΦP

mn

∂x2
2

+ 2ık3
∂ΦP

mn

∂x3
= 0 (62)
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F βmnP
μν is the the electromagnetic field tensor, and the components of F βmn0

μν are constants. For
comparison to the literature, note it is conventional to choose the waist of the beam to be the origin of
the coordinate system such that ξi = xi.

Equation (62) gives Hermite-Gaussian solutions of the form

ΦP
mn =

Cmnw0

w
Hm

(√
2ξ1

w

)
Hn

(√
2ξ2

w

)
exp

[
ık3

(
ξ2
1 + ξ2

2

)
2 (ξ3 − ıLR)

− ıgmn

]
(63)

where

w(ξ3) = w0

√
1 +

(
ξ3

LR

)2

(64)

gmn(ξ3) = (1 + m + n) arctan
(

ξ3

LR

)
(65)

It follows that ΦP
mn is related to the exact solution (26) to the full wave equation through the integral

expression

ΦP
mn =

∫ +∞

−∞
Φmn (xμ) δ (ξ3 − cτ) dτ (66)

where δ(ξ3 − cτ) is a Dirac delta function.
It follows that there are two equivalent methods for arriving at the paraxial approximation for

electromagnetic beams. One is the traditional method to neglect the time dependence of Φmn and the
second order axial derivative in the full wave equation. The other is to start from the exact Bateman-
Hillion solution of the full wave equation and restrict it using a delta function that requires phase fronts
to propagate at the speed of light along the axis of the beam.

The delta function method can also be applied to the exact 4-potential (41) to give the paraxial
approximation

AβmnP
μ =

∫ +∞

−∞
Aβmn

μ δ (ξ3 − cτ) dτ (67)

This leads to

AβmnP
μ =

1√
2

⎛
⎜⎜⎜⎜⎝

1
ıβ

ξ1+α̂1+ıβ(ξ2+α̂2)
2(ıLR−ξ3)

−ξ1−α̂1−ıβ(ξ2+α̂2)
2(ıLR−ξ3)

⎞
⎟⎟⎟⎟⎠ΦP

mn (ξ1, ξ2, ξ3) exp (ık3x3 − ıωt) (68)

where
α̂j =

2 (ξ3 − ıLR)
k3

∂

∂xj
− 2ıξj (69)

and j = 1, 2. The relationship between the paraxial field tensor FP
μν and the paraxial 4-potential AβmnP

μ

is

F βmnP
μν =

∂AβmnP
ν

∂xμ
− ∂AβmnP

μ

∂xν
(70)

This gives Equation (61) providing many small terms are neglected including AβmnP
3 and AβmnP

0 .
Finally, it is instructive to compare Equation (68) to the Liénard-Wiechert potentials that describe

the electromagnetic field around a point charge. Specifically, the role of the waist of the beam is
analogous to the location of the charge in the sense both have retarded coordinates of the form (xr

i , t
r)

that have the property of being related to all other points in the field. In the case of the beam potential,
these relationships take the form

xi = xr
i + ξi, t = tr +

ξ3

c
(71)
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It is therefore concluded that AβmnP
μ for paraxial beams is a retarded potential.

For problems beyond the paraxial limit it is proposed to use

ΦS
mn =

∫ +∞

−∞
Φmn (xμ) δ (r − cτ) dτ (72)

where r(=
√

ξ2
1 + ξ2

2 + ξ2
2) replaces ξ3 assuming that the beam evolves from the waist to have spherical

rather than planar phase fronts, though this solution has yet to be studied in detail.

6. SUMMARY

Exact solutions have been derived to the field equations for the electromagnetic 4-potential in Hermite-
Gaussian beams using Bateman-Hillion functions that depend on the relative time between the waist
and other points in the beam. These solutions have been shown to preserve their form under Lorentz
transformations. It has also been shown that there are two equivalent methods to obtain the 4-potentials
in paraxial beams. One is to simplify the field equations into paraxial form and solve them directly.
The other is to start from the exact 4-potential in the beams and restrict the relative time between the
waist and other points in the beam to equal the axial distance between them divided by the speed of
light.

In order to go beyond the paraxial approximation it has been proposed to calculate the relative
time between the waist and other points in the field in terms of the total distance between them instead
of using just axial component of distance. A detailed investigation of this approach, however, remains
as a problem for the future.
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