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A Robust Augmented Combination of Digital Predistortion and
Crest Factor Reduction for RF Power Amplifiers
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Abstract—This paper proposes a robust combination of digital predistortion (DPD) and crest factor
reduction (CFR) for radio frequency (RF) power amplifiers (PAs). It is constructed using the
architecture of CFR-DPD connected with a compensation module (CM). The compensation module
is introduced to achieve mutual compensation between the output signals of CFR and DPD, and this
can reduce the damage to the signal by CFR. The combination of CFR-DPD-CM provides the means
to exploit margins in the transmitter performance, allowing the tradeoff among peak-to-average power
ratio (PAPR), adjacent channel power ratio (ACPR) and error vector magnitude (EVM). The proposed
combination of CFR-DPD-CM is assessed using a GaN Class-F PA driven by two modulated signals
(a 4-carrier OFDM signal and a WCDMA 1001 signal with 20-MHz bandwidth), and a GaN Doherty
PA driven by a 15-MHz long-term evolution (LTE) signal. The experimental results show that when
the CFR reduces the PAPR about 4 dB, applying the proposed combination of CFR-DPD-CM, the
average reduction of ACPR is 5.12 dB, and the average reduction of EVM is 1.26% compared with the
conventional architecture of CFR-DPD.

1. INTRODUCTION

In modern wireless communication infrastructure, radio frequency power amplifiers (PAs) are one of
the most critical and expensive subsystems. In 3G and 4G wireless communication standards, PAs are
designed to meet stringent linearity and high efficiency requirements [1–3]. The main signals used in
modern communication systems often carry more information, such as wideband code division multiple
access (WCDMA) signal, orthogonal frequency-division multiplexing (OFDM) signal, and long-term
evolution (LTE) signal. However, these signals are non-constant envelope modulate and are always
with high peak-to-average power ratio (PAPR). Hence, the power amplifier needs to operate at lower
power levels, relatively far away from the region of saturated, which means that the power must be
backed-off to ensure the amplifier operating in the linear region. However, the efficiency of the amplifier
will be greatly reduced.

To overcome this problem, several methods have been proposed in the literature [4–7]. The main
approach is reducing the PAPR, but a peak reduction of the complex baseband signal is generally at
the expense of additional distortions. In recent years, some scholars have proposed the technique of
combining the crest factor reduction (CFR) and digital predistortion (DPD) [8–17], which will make
considerable improvement in both efficiency and linearity. In [14], a synergetic CFR and DPD design
is discussed, which uses a structure similar to the situation in Figure 1. The author in [17] applied the
CFR post to the DPD to reduce the PAPR of the predistorted signal.

Figure 1 illustrates the generic CFR and DPD scheme, where x(n) is the input signal to the CFR
unit, and the output signal of DPD feeds the power amplifier to produce the output signal y(n). This
system will create unrecoverable damage to the EVM, and the linearization performance will be worse

Received 23 March 2015, Accepted 5 June 2015, Scheduled 15 June 2015
* Corresponding author: Jingmei Zhao (jingmeizhao@126.com).
1 Beijing Key Laboratory of Work Safety Intelligent Monitoring, Beijing University of Posts and Telecommunications, China. 2 School
of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, China.



182 Zhao et al.

CFR DPD PA

1/G

+

Parameter
identification

−

x(n) x     (n)clip x       (n)DPD y(n)

e(n)

ˆ
DPDx      (n)

Σ

Figure 1. Typical use of CFR with DPD.

than the situation with DPD applied only [20]. Hence, reducing the PAPR and at the same time
ensuring good performance of EVM and ACPR is very significant.

In this paper, based on the peak clipping algorithm and predistortion technique, a robust
and accurate architecture termed as CFR-DPD-CM is proposed. Compared with the conventional
architecture of CFR-DPD, the combination of CFR-DPD-CM adds a compensation module, used to
optimize the output signals from CFR and DPD. Hence, the overall system has a high performance
in improving the distortions of in-band and out-of-band. Moreover, we give the detailed algorithm for
system identification. Thorough comparisons have also been given between conventional technique and
the proposed technique. The comparison results fully illustrate that the combination of CFR-DPD-
CM is superior to the conventional architecture of CFR-DPD. In Section 2, the crest factor reduction,
digital predistortion techniques and the relationship between them are introduced. Section 3 presents
the identification algorithm of the CFR-DPD-CM architecture. Section 4 gives the experimental results
of a wideband PA and a Doherty PA. Finally, a conclusion is given in Section 5.

2. CFR AND DPD TECHNIQUES

2.1. Crest Factor Reduction

In the design and linearization systems of power amplifiers, the CFR technique is widely used to reduce
the PAPR of multiband modulated signals. Clipping works by intentionally limiting a signal, so that
the amplitude is limited to a maximum value with in a desired range. It allows additional gain at the
output and makes it possible to operate the PA closer to its 1-dB compression point, which increases
its efficiency. This paper applies polar clipping method [6], which can mitigate the clipping noise
significantly and is described by formula as follows

xclip =
{

xn |xn| ≤ A
A exp(j arg(xn)) |xn| > A

(1)

where xn is the input signal, xclip the clipped output signal, A a clipping threshold, and arg(·) the
seeking phase. The clipping ratio (CR) is defined as

CR = 20 log
A

σ
dB (2)

where σ is the root mean square (RMS) of the input signal power. Because the process of limit
is nonlinear, the system which includes CFR will create in-band distortion and out-of-band spectral
regrowth. After clipping, the clipped output signal often requires filtering to mitigate the impact on
the out-of-band spectral regrowth.

2.2. Digital Predistortion

Digital predistortion is one of the most promising linearization techniques that can lead to more efficient
and cost effective of PA. In this paper, digital predistortion is achieved using the well-known Memory
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Polynomial (MP) model and indirect learning architecture [18]. We define the DPD module without a
preceding CFR module as follows

y(n) =
K∑

k=1

M∑
m=0

hkmx(n − m) |x(n − m)|k−1 (3)

where x(n) and y(n) are the input and the output signals of the MP model respectively, and K is the
nonlinearity order. The model includes only odd-order terms. M is the finite memory length of the
model, and hkm are the complex DPD coefficients. Since y(n) is linear with parameters hkm, we define
a new sequence

ukm = x(n − m) |x(n − m)|k−1 (4)

We can rewrite (3) in matrix form as

y = Uh (5)

y = [y(0), . . . , y(N − 1)]T , U = [u10, . . . ,uK0, . . . ,u1M , . . . ,uKM ], ukm = [ukm(0), . . . , ukm(N − 1)]T ,
and h = [h10, . . . , hK0, . . . , h1M , . . . , hKM ]T , N is the number of input signal. The least-squares (LS) [19]
solution for (5) is

ĥ =
(
UHU

)−1
UHy (6)

where (·)H denotes the complex conjugate transpose.

2.3. Relationship between CFR and DPD

Although the technologies of CFR and DPD are researched separately in the past, there are some
intrinsical links between them. Such a relationship is shown in Figure 2.

From Figure 2 we can see that after clipping, the PAPR is decreased from PAPRIN to PAPRCFR.
Meanwhile, the operation zone of the output power is pushed higher. In other words, combining CFR
and DPD pushes the operation region of the PA near its 1-dB compression point. References [20–22]
presented the research of the effects by CFR in DPD systems, and the experimental results validate
that the introduction of CFR will bring a few drawbacks to the system.

3. PROPOSED APPROACH DESCRIPTION

In order to alleviate the drawbacks of the traditional combination of CFR and DPD, it is augmented
through additional parameters of a compensation module (CM). The CM sub-block is for the mutual
compensation of CFR and DPD. As shown in Figure 3, one may further notice that CFR and DPD
with the compensation module are interoperable.
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From Figure 3, assuming that the input and output signals of CFR are x(n) and xclip(n), the output
signal of DPD is xDPD(n). For the sake of simplicity, x(n), xclip(n) and xDPD(n) are represented by
xn, xclip and xDPD . The average power of the clipped signal is

Pclip = E
{
|xclip|2

}
= 1 − e−γ2

(7)

where γ = A/
√

δ is the limiting ratio, δ = E{|xn|2} the average power of the input signal, and E[ ] the
expected value. Here, the clipped output signal is equal to the one in Formula (1), and it can be written
by the superimposed of the input signal and the limiting non-linear disturbances [6] as follows

xclip = αxn + dn (8)

where α is the complex attenuation coefficient of the clipped signal and is given as follows

α =
E

{
xH

n xclip

}
E {xH

n xn} (9)

dn is a random variables, with zero mean and being independent identically distributed. The variance
is

E
{
|dn|2

}
= δ ·

(
1 − e−γ2 − α2

)
(10)

Similar to Equation (8), xDPD is also written as follows

xDPD = q · xclip + sn (11)

where q is the complex attenuation coefficient of the predistorter’s input signal and is given as follows

q =
E

{
xH

clipxDPD

}

E
{

xH
clipxclip

} (12)

where sn is the nonlinear distortion that generated by the predistorter. Substituting (8) into (11), we
can obtain the relationship between the input signal and predistorted signal. Here, we consider the
three modules of CFR, DPD and CM as a local system, and the equation can be written as

xDPD = q · α · xn + q · dn + sn = η · xn + gn (13)

where η and gn are the attenuation coefficient and interference of the local system as mentioned above
respectively, and η can be defined by

η =
E

{
xH

n xDPD

}
E {xH

n xn} (14)

With respect to the signals’ peaks, DPD tends to increase peaks in order to compensate the
compression caused by the power amplifier, and it can be seen as an extension applied to the input
signal, while CFR tends to reduce peaks to achieve the target PAPR. In some sense, they have a
reciprocal relationship.

In the proposed system of CFR-DPD-CM, clipping parameters are set by the compensation module.
The clipping parameters mainly refer to the threshold, target PAPR, EVM index, etc. The procedure
to implement compensation of CFR and DPD is briefly summarized as follows:

(1) According to the practical requirements, preset the clipping parameters;
(2) Distribute the clipping parameters to CFR and DPD via compensation module;
(3) Based on the clipping parameters, CFR and DPD will correct the results xclip and xDPD,

determined from (1) and (11), then give the correct values back to the compensation module;
(4) The compensation module continues to analyze and optimize the results, and repeat the process

until the results conform to the objectives’ requirements;
(5) Ultimately, return the final optimal results to the CFR and DPD, stop issuing the clipping

parameters, and enter the circulatory system of predistortion.
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As in Figure 3, the output signal of DPD is assumed as follows

xDPD(n) =
K∑

k=1

M∑
m=0

hkmxclip(n − m) |xclip(n − m)|k−1 (15)

K × (M + 1) is the number of coefficients for aligned signal and envelope. When the system achieves
convergence state, it should have

xDPD (n) =
K∑

k=1

M∑
m=0

hkm
y(n − m)

G

∣∣∣∣y(n − m)
G

∣∣∣∣
k−1

(16)

where G is the linear gain of the system, and we define a new sequence as follows

u(n) =
M∑

m=0

y(n − m)
G

∣∣∣∣y(n − m)
G

∣∣∣∣
k−1

(17)

Equation (16) can be rewritten in matrix form as (18), and the LS solution for it is given in (19)

xDPD = Uh (18)

h =
(
UHU

)−1
UHxDPD (19)

The estimation error is written as

e(n) = xDPD(n) − x̂DPD(n) (20)

In the same way, the LS estimate of the DPD coefficient error is

Δh =
(
UHU

)−1
UHen (21)

where Δh = [Δh10, . . . ,ΔhK0, . . . ,Δh1M , . . . ,ΔhKM ]T , xDPD = [xDPD(0), . . . , xDPD (N − 1)]T , and
en = [e(0), . . . , e(N − 1)]T the updated DPD coefficients can be written as

hi+1 = hi − λDPDΔh (22)

where i indicates the iteration number, and λDPD is the relaxation constant. If λDPD = 1 and h0 = 0,
the algorithm converges to the LS solution (19) in one step. For λDPD < 1, there is some memory
introduced, which constrains how much h can change from one block to the next, and updating the
coefficients is repeated, further reducing the output distortion.

4. EXPERIMENTAL RESULTS AND DISCUSSION

In order to validate the effectiveness of the proposed architecture of CFR-DPD-CM for different PAs,
a 30 W Class F wideband PA (Vds = 28 V, Vgs = 5 V) operating at a frequency range from 2.6 GHz to
2.7 GHz and a 40 W GaN Doherty PA (DPA, Vds = 28 V, Vgs = −2.7 V) operating at 2.65 GHz were
tested. The test bench for generating the RF input and output signals to the PA is shown in Figure 4.
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Figure 4. Test bench for the experiment.
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It consists of a vector signal generator (VSG, Agilent MXG N5182A), a vector signal analyzer (VSA,
Agilent PXA N9030A), a RF PA, a 40 dB attenuator, and a computer running MATLAB software. The
VSG and VSA were phase locked with the 10 MHz reference clock.

The connections between the MATLAB code and the MXG/PXA use functions available from the
Agilent Download Assistant. The digital baseband signal was generated in the computer and processed
by the local system of CFR-DPD-CM, then downloaded over an Ethernet connection to the VSG,
which will up-convert to RF to drive the PA. After that, the output signal of the PA was attenuated
and sent to the VSA. After down-converted and demodulated, the output signal was captured by the
MATLAB software. The captured signal was time aligned with its corresponding input signal for further
behavioral modeling. A memory polynomial such as (3) is used to behavioral modeling, nonlinearity
order (K = [3, 5, 7]), and the memory depth (M = 3).

In the following three experiments, the Class F wideband PA was driven by a 4-carrier OFDM
signal which comprised four 5-MHz channels, and a 20-MHz WCDMA 1001 signal. The modulation
scheme used in the above two signals was 16 quadrature amplitude modulated (16-QAM). The GaN
Doherty PA was driven by a 15-MHz LTE signal modulated with 64-QAM. The center frequency of
each signal is 2.65 GHz.

Regarding the effects of the signals peak controller on the in-band error, the EVM, which presents
a measure of the average constellation errors, is defined as

EVM =

√√√√√√√√√√

N−1∑
n=0

∣∣∣r−→(n) − m
−→
(n)

∣∣∣2

N−1∑
n=0

∣∣∣r−→(n)
∣∣∣2

∗ 100% (23)

where r(n) and m(n) are the reference signal and test signal, respectively. PAPR is also an important
index defined as the ratio of the highest signal peak power to its average power value and can be
expressed as

PAPR (dB) = 10 log10

max
0≤n≤N−1

{
|xn|2

}

E
0≤n≤N−1

{
|xn|2

} (24)

4.1. Class F Wideband PA with OFDM Signal

In the first experiment, we employed a 20-MHz 4-carrier OFDM signal to drive the Class F wideband
PA. The out-of-band distortion is measured by ACPR. The in-band distortion is measured by EVM
determined in (23), and the PAPR of the input signal is about 11.21 dB. In the 4-carrier OFDM
signal test, a total of 100,000 samples were captured at the input and output of the PA with 100 MHz
sampling rate, whereas 8000 samples were used for synchronization and model extraction employing the
LS algorithm.

Let us present the parameters for the CFR-DPD-CM structure implemented using the
compensation. The threshold A of the CFR is set to 2.1 times of the average power and the index
of the EVM set to 2.2%. Figure 5 shows the measured spectra of the PA’s output signal for the cases
of DPD off, combination of CFR-DPD, combination of CFR-DPD-CM, and DPD only. When applied
the proposed combination of CFR-DPD-CM, the value of ACPR has improved about 18 dB, which is
significantly better than the conventional structure of CFR-DPD.

Figure 6 shows the complementary cumulative distribution function (CCDF) of the input signal,
clipped signal, predistorted signal, and output signal, represented by X-in, X-CFR, X-DPD, and y,
respectively. From Figure 6, CFR reduces the PAPR of the input signal from 11.21 dB to 7.11 dB. After
processing through DPD and the compensation module, the PAPR have a little increase about 0.8 dB.
So far, CFR and DPD have reached their optimal situations. Meanwhile, the tradeoff between them is
more conducive to the performance of linearization and EVM. Furthermore, we can note that the input
signal is clipped first and then processed through DPD, so the value of X-DPD is smaller than X-in.
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Figure 5. PA output spectrum with the 4-carrier
OFDM signal.
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Figure 6. CCDF plots under the structure of
CFR-DPD-CM with the OFDM signal.

Table 1. Comparison results under the OFDM signal.

Combined Output EVM ACPR (dBc)
approaches PAPR (dB) (%) −5MHz 5MHz
DPD OFF 9.33 5.42 −34.9 −34.5
CFR-DPD 7.02 3.45 −47.6 −47.1
DPD Only 11.84 1.99 −52.5 −53.1

CFR-DPD-CM 7.23 2.13 −52.3 −52.7

Measurements of the PA output include the output PAPR, EVM, and ACPR. Table 1 lists the
measurements for different conditions when the OFDM signal is applied. We can see that under the
condition of CFR-DPD-CM, it has reduced the output PAPR by 4.61 dB and slightly increased the EVM
about 0.14 percentage points compared to the case of DPD applied in isolation. However, compared to
the combination of CFR-DPD, it has reduced the EVM about 1.32 percentage points, reduced ACPR
about 5 dB. Meanwhile, PAPR has a slight increase, as expected.

4.2. Class F Wideband PA with WCDMA Signal

In order to further verify the performance of the proposed approach, the second example employs a
WCDMA signal with 1001-carrier configuration, which comprises two 5-MHz wide carriers, and the
PAPR of the signal is about 10.12 dB.

When the Class F wideband PA was driven by the 20-MHz WCDMA 1001 signal, the spectrum
performance for the cases of no linearization, both CFR and DPD, the combination of CFR-DPD-CM,
and DPD only are shown in Figure 7. It is obvious that the combination of CFR-DPD-CM and DPD
only can implement better linearization effectiveness of RF PA than the combination of CFR-DPD.
Figure 8 shows the CCDF of the input signal x(n), clipped signal xclip(n), the predistorted signal
xDPD(n), and output signal y(n) when the proposed approach of CFR-DPD-CM is applied. From
Figure 8, the combination of CFR-DPD-CM has reduced the PAPR of the input signal by 3.42 dB, and
the variation characteristics are similar to the cases in Figure 6.

Table 2 shows the output PAPR, EVM and ACPR of the PA in the cases of DPD off, both CFR
and DPD, DPD only, and the combination of CFR-DPD-CM. It is obvious that employing a WCDMA
signal to drive the Class F PA can also get the anticipated effect.

In order to be clearly aware of the changes in the values of PAPR, EVM and ACPR with different
output powers, Table 3 shows the specific circumstances of them. From Table 3, we can see that with
the output power increase, the PAPR will gradually reduce, meanwhile the value of the EVM generally
shows an increasing trend.
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Figure 7. PA output spectrum with the
WCDMA 1001 signal.
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Figure 8. CCDF plots under the structure of
CFR-DPD-CM with the WCDMA signal.

Table 2. Comparison results under the WCDMA signal.

Combined Output EVM ACPR (dBc)
approaches PAPR (dB) (%) −5MHz 5MHz
DPD OFF 8.52 5.02 −34.8 −34.2
CFR-DPD 6.73 3.12 −47.6 −47.8
DPD Only 10.71 1.95 −52.8 −52.9

CFR-DPD-CM 6.85 2.04 −52.5 −52.2

Table 3. Measurements for the WCDMA signal when the combination of CFR-DPD-CM is applied.

Pout Output EVM ACPR (dBc)
(dBm) PAPR (dB) (%) −5 MHz 5 MHz
33.0 6.23 3.11 −50.7 −50.6
32.0 6.85 2.04 −52.5 −52.2
31.0 7.36 1.97 −53.2 −52.8
30.0 8.05 1.85 −55.4 −54.9

4.3. GaN Doherty PA with LTE Signal

Our proposed technique can work for the amplifiers in different classes, and it can also work for higher
modulation level such as 32-QAM and 64-QAM which are often applied in the latest 3G and 4G signals.
In this experiment, we have employed a typical amplifier of GaN Doherty PA, which was driven by a
15-MHz LTE signal which modulated with 64-QAM, and the LTE signal has a PAPR of 11.18 dB.

Figure 9 presents the output spectra under different cases of no linearization, combination of
CFR-DPD, combination of CFR-DPD-CM, and DPD only. From Figure 9, it can be seen that the
linearization performance of the proposed technique is much better than the combination of CFR-DPD.
Figure 10 shows the CCDF for different cases when the proposed CFR-DPD-CM is applied. According
to Figure 10, CFR reduces the PAPR of the input signal by 3.66 dB, which is beneficial because the
transistors within the output region of the PAs are stressed less.

Table 4 summarizes the output PAPR, EVM, and measured ACPR, as well as the corresponding
combined approaches. Table 5 shows the comparison of the conventional CFR-DPD techniques and
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Figure 9. PA output spectrum with the 15-MHz
LTE signal.
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Figure 10. CCDF plots under the structure of
CFR-DPD-CM with the LTE signal.

Table 4. Comparison results under the LTE signal.

Combined Output EVM ACPR (dBc)
approaches PAPR (dB) (%) −5MHz 5MHz
DPD OFF 9.27 5.36 −35.2 −35.1
CFR-DPD 7.14 3.37 −52.3 −51.8
DPD Only 11.79 1.91 −58.2 −57.7

CFR-DPD-CM 7.31 1.98 −57.8 −57.4

Table 5. Comparison results with conventional CFR-DPD techniques and proposed CFR-DPD-CM
technique.

Conventional
CFR-DPD in [14]

Conventional
CFR-DPD in [17]

Proposed
CFR-DPD-CM

PAE (%) 46.28 46.56 46.73
ACPR (dBc) −52.5/ − 51.7 −53.1/ − 52.3 −57.8/ − 57.4
Power (dBm) 38.45 38.69 38.71

EVM (%) 3.52 3.07 1.98

the proposed CFR-DPD-CM technique in terms of the performance of power-added efficiency (PAE),
ACPR, average output power, and EVM. Furthermore, they have used the same device and the same
excitation signal. According to Table 5, lower ACPR and EVM can be acquired using the proposed
CFR-DPD-CM technique, without sacrificing the performance of PAE and output power.

5. CONCLUSION

This paper has proposed a robust and accurate combination of CFR-DPD-CM for linearization of RF
PA when using signals which have high PAPR. It applies the compensation module to optimize the
signals from CFR and DPD. The proposed architecture of CFR-DPD-CM has been proved to be one of
the most attractive candidates for improving the performance of the DPD system. The measurements
using a GaN Class F wideband PA and a GaN Doherty PA validate the theory. All the results have
shown that the architecture of CFR-DPD-CM outperforms the conventional architecture of CFR-DPD
in terms of linearity and accuracy.
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12. Nader, C., P. Händel, and N. Björsell, “Peak-to-average power reduction of OFDM signals by convex
optimization: Experimental validation and performance optimization,” IEEE Trans. Instrum.
Meas., Vol. 60, No. 2, 473–479, 2011.

13. Nader, C., P. N. Landin, W. V. Moer, N. Björsell, P. Händel, and D. Rönnow, “Peak-power
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