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JRDF Algorithm for Joint Range-DOA-Frequency Estimation
of Mixed Near-Field and Far-Field Sources

Fulai Liu1, 2, *, Jian Ma1, 2, and Ruiyan Du1, 2

Abstract—This paper presents an effective joint range-DOA-frequency (JRDF) estimation method
based on fourth-order cumulants for multiple mixed near-field sources and far-field sources impinging
on a symmetric uniform linear array, named as JRDF algorithm. Making use of the proposed method,
range-DOA-frequency can be effectively estimated by the same eigen-pair of a defined “information
matrix” constructed by two fourth-order cumulant matrices. Compared with the related works, the
proposed method can provide superior performance, such as higher estimation accuracy, without the
procedure of parameter search or parameter matching. Simulation results are presented to demonstrate
the efficacy of the proposed approach.

1. INTRODUCTION

Source localization from noisy observations is one of the fundamental problems in array signal processing,
such as sonar, radar, seismic exploration system and microphone arrays [1]. Therefore, it has received
a significant amount of attention, and a number of algorithms have been developed to deal with far-
field sources (FFSs) [2–5] or near-field sources (NFSs) [6–9]. For FFSs (beyond Fresnel zone) scenario,
the wavefronts are usually approximated as planar, thus only DOA parameter needs to be estimated
when the carrier frequency is known. Otherwise, for the NFSs (in Fresnel zone), as the wavefronts are
spherical, both DOA and range parameters should be estimated when the carrier frequency is known
as a priori. In some practical applications, the signals received at an array may be the mixture of
NFSs and FFSs, for example, when using microphone arrays to localize speakers’ localizations, each
speaker may be in near-field (NF) or far-field (FF) since speakers’ positions keep changing. So the pure
NF source localization and pure FF source localization algorithm may encounter problems in localizing
mixed NFSs and FFSs.

Recently, several high resolution methods have been presented to resolve the parameter estimation
problem for the mixed NFSs and FFSs [10–17]. A two-stage MUSIC algorithm using cumulant is
presented to solve the mixed source localization [10]. Despite its effectiveness, this algorithm has a
high computational burden since it involves multiple eigenvalue decompositions for high order cumulant
matrices and one-dimensional (1-D) MUSIC spectrum peak search. To decrease its computational
burden, an efficient application of MUSIC algorithm based on second order statics is proposed in [11].
It requires neither a multidimensional search nor high-order statics. Unfortunately, this method
has loss of array aperture. Via ESPRIT-Like and polynomial rooting methods, an effective mixed
sources localization algorithm is given in [12]. It can obtain better estimation performance and lower
computational cost. A two-stage matrix differencing algorithm is derived to classify and locate mixed
NF and FF sources [13]. This method not only improves estimation accuracy, but also achieves a more
reasonable classification of the signal types. Du et al. present a space-time matrix to localize mixed

Received 18 May 2015, Accepted 23 July 2015, Scheduled 9 August 2015
* Corresponding author: Fulai Liu (fulailiu@126.com).
1 Engineer Optimization & Smart Antenna Institute, Northeastern University at Qinhuangdao, China. 2 School of Information
Science and Engineering, Northeastern University, Shenyang, China.



40 Liu, Ma, and Du

NFSs and FFSs [14]. By using this method, both the DOAs and ranges of sources can be estimated
by the same eigen-pair of a defined space-time matrix which avoids parameter matching problems. An
improved mixed source localization method based on sparse signal reconstruction is proposed in [15].
This method firstly transforms the time-domain data of array into cumulant domain data to estimate
DOAs, then constructs the mixed overcomplete basis to get the sparse representation of the array output
for range estimation. It can resolve the closely spaced source and provide higher estimation accuracy.
A mixed-order MUSIC algorithm for NF and FF sources localization using a sparse symmetric array is
proposed in [16]. This method constructs a cumulant matrix to estimate DOAs of the mixed sources
by exploiting the special array geometry. Via a crossed array, a three-dimensional (3-D) mixed NF and
FF sources localization algorithm is presented in [17]. As it is based on second order statistics and
requires 1-D search, it has low computational burden. In addition, it is able to avoid parameter pairing
procedure as well.

To decrease the computational burden and avoid parameters pairing, a JRDF estimation algorithm
is proposed to resolve the mixed source localization problem when NFSs and FFSs coexist. The ranges,
DOAs and frequencies of all incoming signal sources can be estimated by the eigen-pair of a defined
“information matrix” based on fourth-order cumulants. The outline of this paper is organized as follows.
Section 2 briefly introduces data model. The JRDF estimation algorithm is described in Section 3.
Section 4 shows several simulation results to verify the performance of the proposed approach. Finally,
Section 5 provides a concluding remark to summarize the paper.

2. DATA MODEL

Consider the receiving system with uniform linear array (ULA) (shown in Fig. 1) which consists of
2N + 1 isotropic sensors. Assume that there are L independent narrowband sources impinging on the
ULA from NF or FF.
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Figure 1. Uniform linear array configuration.

Employ the centre of the array as the phase reference point. Assume that there are L narrowband
sources of interest, with complex baseband representations sl(t), for l = 1, 2, . . . , L. Suppose that the
lth source has a carrier frequency of fl. The signal received at the ith antenna is

xi(t) =
L∑
l=1

sl(t)ej2πfltejτil + ni(t) (−N ≤ i ≤ N) (1)

where xi(t) and ni(t) denote the output and the additive noise output of the ith sensor.
As θl and rl are the DOA and range of the lth source relative to the phase reference point,

respectively, the distance ril from the lth source to the ith sensor is given by a simple application
of the law of cosines

ril =
√
r2l + (id)2 − 2rlid cos

(π
2
− θl

)
−N ≤ i ≤ N (2)

where d denotes the distance between two adjancent sensors.
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The delay τil, which is associate with the lth source signal propagation time between the phase
reference point and the ith sensor, can be expressed as

τil =
2π(ril − rl)

λl
(3)

thus using the Fresnel approximation [18], (3) can be approximated as

τ̂il ≈ i
−2πd
λl

sin(θl) + i2
πd2

λlrl
cos2(θl) (4)

For NFSs, rl is restricted to the Fresnel zone. They must be characterized by both the azimuth
DOA and range, because the wavefronts are spherical. For FFSs, rl is far beyond the Fresnel zone, so we
can treat spherical wavefronts as planar wavefronts (plane-wave approximation) when they propagate
across the array. When this approximation is substituted into (4), the phase of the delay term becomes
a linear function as follows

τ̂il ≈ i
−2πd
λl

sin(θl) (5)

Therefore, FF can be regarded as a special case of the NF.
In addition, the parameters γl and φl are the functions of the azimuth θl and range rl of the lth

source
γl = −2πd

λl
sin(θl) (6)

and

φl =
πd2

λlrl
cos2(θl) (7)

where θl ∈ [−π/2, π/2], rl ∈ [0.62(D2/λl)1/2,+ ∝), D represents the array aperture.
After being sampled with a proper rate fs that satisfies the Nyquist rate, the data sample X(k) at

the receiver is
X(k) = AS(k) + N(k) (k = 1, 2, . . . ,K) (8)

where X(k) = [x−N (k), . . . ,x0(k), . . . ,xN (k)]T is the array output matrix. S(k) =
[s1(k)ejω1k, s2(k)ejω2k, . . . , sL(k)ejωLk]T represents the signal waveform vector. The normalized radian
frequency ωl = 2πfl

fs
. λl = c

fl
= 2πc

ωlfs
. N(k) = [n−N (k), . . . , n0(k), . . . , n+N (k)]T stands for the noise

vector. K stands for the snapshot number. A = [a(θ1, r1),a(θ2, r2), . . . ,a(θL, rL)] is the (2N + 1) × L
array steering matrix of the mixed NFSs and FFSs. The array steering vector can be given as

a(θl, rl) =
[
ej[(−N)γl+(−N)2φl], . . . , ej[(−i)γl+(−i)2φl], 1, ej[iγl+i

2φl], . . . , ej[Nγl+N
2φl]
]T

(9)

where the superscript (·)T stands for the matrix transpose. rl ∈ [0.62(D2/λl)1/2, 2D2/λl] ∪
(2D2/λl,+ ∝).

The common assumptions are listed as follows
(A1) The source signals are mutually independent, non-Gaussian, narrowband stationary processes

with nonzero kurtosis.
(A2) The sensor noise is zero-mean (white or colored) Gaussian signals and independent of the

source signals.
(A3) The array is a ULA with element spacing d � min(λl/4).
(A4) The array is a symmetric array with 2N + 1 sensors and the source number L < 2N + 1 is

assumed.
(A5) The wavelength parameters of the sources are different from each other, that is ωi �= ωj for

i �= j.
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3. ALGORITHM FORMULATION

To develop an efficient joint estimation algorithm, we define a fourth-order cumulant matrix C1, the
(m,n)th element of which is defined as

C1(m,n) = cum
{
x0(k),x∗

0(k),xm−N−1(k),x∗
n−N−1(k)

}
(10)

where the superscript (·)∗ represents the complex conjugate. Substituting (8) into (10) and using the
multilinearity property of cumulant together with the assumptions (A1) and (A2), we can get C1 as
follows

C1(m,n) =
L∑
l=1

c4,sl
ej{(m−n)γl+[(m−N−1)2−(n−N−1)2]φl} =

L∑
l=1

c4,sl
ej{(m−N−1)γl+(m−N−1)2φl}

×
(
ej{(n−N−1)γl+(n−N−1)2φl})∗ (m,n ∈ [1, 2N + 1]) (11)

where c4,sl
= cum{|sl(t)|4} denotes the kurtosis of sl(t). Let C4s = diag{c4,s1 , c4,s2 , . . . , c4,sL

} be a
diagonal matrix composed of the source kurtosis, thus we have

C1 = BC4sBH (12)
B = [b(γ1),b(γ2), . . . ,b(γl), . . . ,b(γL)] (13)

b(γl) =
[
ej[(−N)γl+(−N)2φl], . . . , 1, . . . , ej[Nγl+N

2φl]
]T

(l = 1, . . . , L) (14)

where the superscript (·)H denotes Hermitian transpose.
Since all source signals are assumed to have nonzero kurtosis, C4s is an invertible diagonal matrix.

Additionally, rank(B) = L, hence, C1 is a (2N + 1) × (2N + 1) matrix with rank L.
Furthermore, for different sensor lags, we define

C2(m,n) = cum
{
x0(k + 1),x∗

0(k),xm−N−1(k),x∗
n−N−1(k)

}
(m,n ∈ [1, 2N + 1]) (15)

and under the narrow-band assumption, we have sl(k + 1) ≈ sl(k).
Similar to (12), C2 has the following expression

C2 = BΩC4sBH (16)

and
Ω = diag

{
ejω1, ejω2 , . . . , ejωL

}
(17)

It is easy to know that C2 is also a (2N + 1) × (2N + 1) matrix with rank L.
Let P = diag{ρ1, ρ2, . . . , ρ2N+1} and V = [v1,v2, . . . ,v2N+1] be the eigenvalues and the

corresponding eigenvectors of C1, then we can get

C1 =
2N+1∑
l=1

ρlvlvHl = VPVH = VsPsVH
s + VnPnVH

n (18)

where P = diag{ρ1, ρ2, . . . , ρ2N+1} with ρ1 ≥ ρ2 ≥ . . . ≥ ρL > ρL+1 = . . . = ρ2N+1 = 0.
V = [VsVn]. Vs = [v1,v2, . . . ,vL], Ps = diag{ρ1, ρ2, . . . , ρL}, Vn = [vL+1,vL+2, . . . ,v2N+1] and
Pn = diag{ρL+1, ρL+2, . . . , ρ2N+1}.

Similarly, define C3 as follows

C3 =
L∑
l=1

1
ρl

vlvHl = VsPs
−1VH

s (19)

From (12) and (18), it is easy to know that the signal subspace Vs concides with the range space
of B. Since span{Vs} = span{B}, there must exist a unique invertible matrix T, such that B = VsT.
Therefore, it holds that

VsVH
s B = VsVH

s VsT = VsT = B (20)
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Making use of C2 and C3, define an “information matrix” C (which includes the information of
DOAs, ranges and frequencies) as following

C = C2C3 (21)
Then we have the following Theorem.
Theorem 3.1 . Assume that there are L (near-field or far-field) narrow-band sources, with the

complex baseband representations sl(t)(1 ≤ l ≤ L) such that the lth source has a carrier frequency fl
and arrives a ULA from direction θl, range rl. If there are no same elements on the diagonal of matrix
Ω, then, the L largest nonzero eigenvalues of C are equal to the L elements on the diagonal of matrix
Ω, and the corresponding eigenvectors are equal to the corresponding column vectors of B, namely
CB = BΩ.

Proof : Under the above assumption, it is easy to know that B is a full rank matrix. Furthermore,
we draw a conclusion that rank(B) = rank(C) = L. From (12), (16) and (18)∼(20), the following
equation can be obtained

CB = C2C3B = BΩC4sBHVsP−1
s VH

s B = BΩ
(
BHB

)−1
BH

(
BC4sBH

)
VsP−1

s VH
s B

= BΩ
(
BHB

)−1
BHC1VsP−1

s VH
s B = BΩ

(
BHB

)−1
BH

(
VsPsVH

s

)
VsP−1

s VH
s B

= BΩ
(
BHB

)−1
BHVsVH

s B = BΩ
(
BHB

)−1
BHB = BΩ (22)

where the superscript (·)−1 denotes matrix inverse.
This concludes the proof.
Remarks:
(1) From Theorem 3.1, it can be easily seen that the array response matrix B and the diagonal

matrix Ω can be obtained by computing the eigendecomposition of the “information matrix” C. The
following incoming angle θl, range rl and frequency fl can be estimated by making use of the lth eigen-
pair of the matrix C, that is, the paring of the estimated 3-D parameters is automatically determined.

(2) If there are several sources close in the angle of incidence θ or range r, but there are no same
elements on the diagonal of matrix Ω, then Theorem 3.1 is still true, namely, it can resolve the incoming
rays with very close angles or very close ranges under the aforementioned conditional restriction.

Meanwhile, C can be decomposed into

C =
2N+1∑
l=1

αluluHl = UΛUH = UsΛsUH
s + UnΛnUH

n (23)

where Λ = diag{α1, α2, . . . , α2N+1} with α1 ≥ α2 ≥ . . . ≥ αL > αL+1 = . . . = α2N+1 = 0.
U = [UsUn]. Us = [u1,u2, . . . ,uL], Λs = diag{α1, α2, . . . , αL}, Un = [uL+1,uL+2, . . . ,u2N+1] and
Λn = diag{αL+1, αL+2, . . . , α2N+1}.

From (23), it is easy to see that ejωl and b(γl) (l = 1, 2, . . . , L) are just the eigenvalue and
corresponding eigenvector of C. Based on (13), (14), (22) and (23), fl and b(γl) can be given by

fl =
angle(αl)fs

2π
(24)

and
b(γl) =

ul
ul[N + 1]

(25)

where the angle(·) denotes the phase angle operator.
To facilitate the representation, let bl take the place of b(γl) and the ith element of bl can be

expressed as bl(i), thus from (13) and (14), it has the following form

bl(i) = ej[(−N−1+i)γl+(−N−1+i)2φl] (26)
By using (26), dl(i) and el(i) have the following expression

dl(i) = bl(i+ 1)b∗
l (i)b

∗
l (3)bl(2)

= ej[(−N+i)γl+(−N+i)2φl]e−j[(−N+i−1)γl+(−N+i−1)2φl]

e−j[(−N+2)γl+(−N+2)2φl]ej[(−N+1)γl+(−N+1)2φl] = ej[2(i−2)φl] (27)
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and

el(i) = bl(i+ 1)b∗
l (i)b

∗
l (2N − 1)bl(2N)

= ej[(−N+i)γl+(−N+i)2φl]e−j[(−N+i−1)γl+(−N+i−1)2φl]

e−j[(N−2)γl+(N−2)2φl]ej[(N−1)γl+(N−1)2φl] = ej[2(i−2)φl+2γl] (28)

Based on bl, we can form two 2N -dimensional column vectors as follows

dl =

⎡
⎢⎢⎢⎢⎢⎢⎣

bl(2)b∗
l (1)b

∗
l (3)bl(2)

bl(3)b∗
l (2)b

∗
l (3)bl(2)

...
bl(2N − 1)b∗

l (2N − 2)b∗
l (3)bl(2)

bl(2N)b∗
l (2N − 1)b∗

l (3)bl(2)
bl(2N + 1)b∗

l (2N)b∗
l (3)bl(2)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ej(−2)φl

1
...

ej(4N−8)φl

ej(4N−6)φl

ej(4N−4)φl

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(29)

and

el =

⎡
⎢⎢⎢⎢⎢⎢⎣

bl(2)b∗
l (1)b

∗
l (2N − 1)bl(2N)

bl(3)b∗
l (2)b

∗
l (2N − 1)bl(2N)

...
bl(2N − 1)b∗

l (2N − 2)b∗
l (2N − 1)bl(2N)

bl(2N)b∗
l (2N − 1)b∗

l (2N − 1)bl(2N)
bl(2N + 1)b∗

l (2N)b∗
l (2N − 1)bl(2N)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ej[(−2)φl+2γl]

ej[2γl]

...
ej[(4N−8)φl+2γl]

ej[(4N−6)φl+2γl]

ej[(4N−4)φl+2γl]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(30)

Based on dl and el, {γl, φl} can be given by

γl =
1

4N

2N∑
i=1

el(i)
dl(i)

(31)

and

φl =
1

8N − 4

[
2N−1∑
i=1

arg
(

dl(i+ 1)
dl(i)

)
+

2N−1∑
i=1

arg
(

el(i+ 1)
el(i)

)]
(32)

The wavelength of the lth source λl is easily obtained from fl. According to (6), (7), (31) and (32),
the azimuth and range estimation of the lth source can be in turn expressed as

θl = arcsin
(
−γlλl

2πd

)
(33)

and

rl =
πd2

λlφl
cos2(θl) (34)

In fact, according to (34), we can easily determine that the lth source is a NF or FF one. When
rl ∈ [0.62(D2/λl)1/2, 2D2/λl] (Fresnel region), we can determine that the lth source corresponding to
rl is a NF source. On the contrary, when rl ∈ (2D2/λl,+ ∝), we can determine that the lth source
corresponding to rl is a FF source.

4. SUMMARY OF JRDF

(1) Collect data and conduct two fourth-order cumulant matrices C1 and C2 denoting the estimate Ĉ1

and Ĉ2, respectively.
(2) Compute the eigendecomposition of Ĉ1 and use its L maximum nonzero eigenvalues P̂s =

diag{ρ̂1, . . . , ρ̂L} and the corresponding eigenvectors V̂s to define Ĉ3 according to AIC [19], if L is
unknown.

(3) Define Ĉ by using Ĉ2 and Ĉ3, then compute the eigendecomposition of Ĉ.
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(4) Use the L maximum nonzero eigenvalues Λ̂s and its corresponding eigenvectors Ûs (the eigen-
pairs (α̂l, ûl), l = 1, 2, . . . , L) of Ĉ to estimate the frequency of the lth source f̂l and b̂l by (24) and (25),
respectively.

(5) Estimate d̂l and êl by making use of b̂l from (29) and (30), respectively.
(6) Implement d̂l and êl to estimate γ̂l and φ̂l by (31) and (32), respectively.
(7) The DOA and range estimations of the lth source can be in turn expressed as (33) and (34),

respectively.
(8) Use the range estimation of the lth source r̂l to determine whether the lth source is NFS or

FFS.
Remarks:
(1) It is well known that the accuracy of the results is concerned with array aperture. When

τ 
 1/B (τ = D/c with D denoting the array aperture, c standing for the velocity of electromagnetic
waves, B being the incoming signal’s bandwidth, respectively), as the array aperture becomes larger, the
accuracy of the results gets higher. Moreover, the array aperture is concerned with the number of the
array’s elements and the distance between two adjacent array elements. As the number of the array’s
elements and the distance between two adjacent elements become larger, the accuracy of the results
grows higher. However, when d > λ/4 (d is the distance between two adjacent array elements and λ
equal to the wavelength), although the accuracy of the results improves, it will cause phase ambiguity.
So the distance between two adjacent array elements is set to d = λ/4 .

(2) As the antenna array patterns may not be entirely consistent, it may cause gain-and-phase
errors in the real world. In reality, the elements of the array should be calibrated according to the
existing calibration methods such as active calibration [20] and self-calibration [21], etc.

(3) The source number estimation problem is an important problem in array signal processing, etc.
Generally, the source number estimation is a prior. If the number is unknown, we can use AIC [19]
(Akaike Information Criteria) and GDE [22] (Gerschgorin’s Disk Estimation) to detect the number of
the incoming signals. However, this paper mainly focuses on the joint range-DOA-frequency estimation
problem. The source number estimation problem may be beyond the scope of this paper.

5. COMPUTATIONAL COMPLEXITY

We briefly investigate the computational complexity of the proposed algorithm. The computational
complexity of the proposed algorithm mainly includes: (1) fourth-order cumulants matrix construction
of two P × P matrixes C1 and C2, respectively, of orders O(9P 2) (where P = 2N + 1, Q = 4N + 1);
(2) the eigendecomposition (EVD) of two P × P matrixes C1 and C, respectively, of orders O(4/3P 3).
Table 1 presents the complexity of the proposed method and the methods in [10]. For comparison, the
method in [10] and the proposed method are named as TSMUSIC and JRDF, respectively.

Table 1. Comparison of the computational complexity of the proposed algorithm with TSMUSIC.

Algorithms construction of matrix EVD peak search
JRDF twice O(9P 2) twice O(4/3P 3) without

TSMUSIC ones O(9P 2) ones O(4/3P 3) ones
ones O(9Q2) ones O(4/3Q3)

6. SIMULATION RESULTS

In this section, several simulation results are provided to illustrate the performance of JRDF. Consider
a ULA composed of 5 sensors with quarter-wavelength spacing. The input signal-to-noise ratio (SNR)
is defined as 10 log 10(σ2

s/σ
2
n), where σ2

s denotes the power of signal source and σ2
n stands for the noise

power. The sampling rate is 20 MHz. Two equal-power, statistically independent narrow-band sources,
respectively with center frequency 2.0 and 3.0 MHz (i.e., ω1 = 0.2π rad/s, λ1 = 150, ω2 = 0.3π rad/s and
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λ2 = 100), radiate on the array. For comparison, we simultaneously execute the algorithm in [10] and
the related CRB [23] (see Appendix for details) in the following experiments and figures. The frequency,
DOA and range estimates are scaled in units of MHz, degree and wavelength. Assume that there are
one NFS and one FFS and they are located at (10◦, λ1) and (20◦, 45λ2). The number of snapshots
is N = 100. And the performance of these algorithms is measured by the estimated root mean-square
error (RMSE) of 400 independent Monte Carlo runs. The RMSEf , RMSEθ and RMSEr are defined as
follows ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RMSEf =

√√√√E

[
L∑
l=1

(
fl − f̂l

)2
]

RMSEθ =

√√√√E

[
L∑
l=1

(
θl − θ̂l

)2
]

RMSEr =

√√√√E

[
L∑
l=1

(rl − r̂l)
2

]
(35)

where f̂l, θ̂l and r̂l are the estimate of fl, θl and rl, for l = 1, 2, . . . , L.
Figures 2, 3 and 4 give RMSEf curves with SNR from −15 to 15 dB. The solid line stands for the

RMSE curve of the proposed method. The dotted line represents the RMSE curve of TSMUSIC. The
dotted and dash line shows the RMSE curve of the related CRB. Fig. 2 shows that JRDF estimation
algorithm has high frequency estimation accuracy. By contrast, TSMUSIC method assumes that the
carrier frequency is known as a priori. From Figs. 3 and 4, we can note that the proposed method
outperforms TSMUSIC method in frequency, DOA and range estimates. In addition, the proposed
method shows a more satisfactory performance than TSMUSIC and the RMSEs are reasonably close to
the related CRB.

When SNR is set to 10 dB and the snapshot number varies from 50 to 500, RMSEf curves of
the JRDF and related CRB are shown in Fig. 5. In addition, the RMSEθ and RMSEr curves of the
aforementioned two algorithms and related CRB are shown in Fig. 6 and Fig. 7, respectively. From
Fig. 5, we can know that JRDF estimation algorithm has satisfactory frequency performance. However,
TSMUSIC assumes that the carrier frequency is known as a priori. As shown in Fig. 6 and Fig. 7,
the proposed method has higher estimation accuracy than that of TSMUSIC, and the curves of the
proposed method are closer to the related CRB.
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Figure 2. RMSEf curves versus SNR.
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Figure 3. RMSEθ curves versus SNR.
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Figure 4. RMSEr curves versus SNR.
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Figure 5. RMSEf curves versus snapshot
number.
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7. CONCLUSIONS

In this paper, a JRDF estimation algorithm based on fourth-order cumulants is presented for mixed
sources localization. Eigen-pairs of the defined “information matrix” are used to estimate the ranges,
DOAs and frequencies. So the pairing of the estimated parameters is automatically determined. The
presented approach has a lower computational complexity, but it exhibits superior performance, such
as smaller estimation error and better robustness to SNR change.
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APPENDIX A.

In this appendix, we derive the CRB for the estimated parameters [9].
By virtue of (8), we can get

ni(k) = xi(k) −
L∑
l=1

sl(k)ejωlkej(iγl+i
2φl) (A1)

From (A1), we define the probability density function p(x|ψ) as

p(x|ψ) =
K∏
k=1

N∏
i=−N

1√
2πσ2

e
− 1

2σ2

(
xi(k)−

L∑
l=1

sl(k)e
jωlkej(iγl+i2φl)

)H(
xi(k)−

L∑
l=1

sl(k)e
jωlkej(iγl+i2φl)

)
(A2)

where x = [x(1),x(2), . . . ,x(K)]T and ψ = [ψ1, . . . , ψl, . . . , ψL]T . ψl can be expressed as follows
ψl = [ωl θl rl] (A3)

The natural algorithm of p(x|ψ) can be expressed as

ln(p(x|ψ)) = −1
2
(2N + 1)Kln

(
2πσ2

)

− 1
2σ2

K∑
k=1

N∑
i=−N

(
xi(k) −

L∑
l=1

sl(k)ejωlkej(iγl+i
2φl)

)H
(
xi(k) −

L∑
l=1

sl(k)ejωlkej(iγl+i
2φl)

)
(A4)

Based on (37), (38) and (39), the partial derivative respect to the three elements of ψl for the
near-field or far-field sources can be respectively given by

∂ln(p(x|ψ))
∂ωl

=
1
σ2

K∑
k=1

N∑
i=−N

{
Re
(
jksl(k)ejωlkej(iγl+i

2φl)n∗i (k)
)}

, (A5)

∂ln(p(x|ψ))
∂θl

=
1
σ2

K∑
k=1

N∑
i=−N

{
Re
[
jksl(k)ejωlkej(iγl+i

2φl)

(
−2πdi cos θl

λl
−πd2i2 sin(2θl)

λlrl

)
n∗i (k)

]}
, (A6)

∂ln(p(x|ψ))
∂rl

=
1
σ2

K∑
k=1

N∑
i=−N

{
Re
[
jksl(k)ejωlkej(iγl+i

2φl)

(
−πd

2i2 cos2 θl
r2l

)
n∗i (k)

]}
(A7)

So the partial derivative with respect to ψl for the near-filed and far-field sources can be expressed
as follows

∂ln(p(x|ψ))
∂ψl

=
[
∂ln(p(x|ψ))

∂ωl

∂ln(p(x|ψ))
∂θl

∂ln(p(x|ψ))
∂rl

]T
(A8)

Based on (40)–(43), we obtain ∂ln(p(x|ψ))
∂ψl

for all L sources and then form the following column

vector ∂ln(p(x|ψ))
∂ψ by using ∂ln(p(x|ψ))

∂ψl

∂ln(p(x|ψ))
∂ψ

=
[
∂ln(p(x|ψ))

∂ψ1
. . .

∂ln(p(x|ψ))
∂ψl

. . .
∂ln(p(x|ψ))

∂ψL

]T
(A9)
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Based on (44), we obtain the Fisher information F

F = E

[
∂ln(p(x|ψ))

∂ψ

(
∂ln(p(x|ψ))

∂ψ

)T]
(A10)

So the CRB on the variance of the estimated parameters can be obtained from the related diagonal
elements of the inverse F−1 [20]. In this paper, the Fisher information matrix F is estimated by averaging
the 400 computations of ∂ln(p(x|ψ))

∂ψ (∂ln(p(x|ψ))
∂ψ )T in the 400 independent Monte Carlo runs.
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