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Abstract—In this work, a numerical solution of nonlinear ferromagnetic problems is formulated using
the three-dimensional time-domain finite element method (TDFEM) combined with the inverse Jiles-
Atherton (J-A) vector hysteresis model. After a brief introduction of the J-A constitutive model, the
second-order nonlinear partial differential equation (PDE) is constructed through the magnetic vector
potential in the time domain, which is then discretized by employing the Newmark-β scheme, and
solved by applying the Newton-Raphson method. Different Newton-Raphson schemes are constructed
and compared. The capability of the proposed methods is demonstrated by several numerical examples
including the simulation of the physical demagnetization process, the prediction of the magnetic
remanence in the ferromagnetic material, and the generation of higher-order harmonics.

1. INTRODUCTION

Ferromagnetic compounds are widely used in data storage and processing, electric power generation,
telecommunications, and transducers in smart systems. Magnetic hysteresis and constitutive
nonlinearities are fundamental properties of all ferromagnetic materials, which exhibit nonlinear
behavior where the permeability/susceptibility is a function of the magnetic field intensity. To achieve
optimal material or device performance, the nonlinear hysteresis property of ferromagnetic materials
must be modeled properly in the design process.

To describe the hysteresis property of ferromagnetic materials, many models have been proposed
by physicists and material scientists in the past [1–3], among which the Preisach model [4] and the
Jiles-Atherton (J-A) model [5, 6] are very well known and commonly used. Different variations of these
models have also been developed for different applications [7–10], including the generalizations from the
static to the dynamic model, from the scalar to the vector model, and from the forward to the inverse
model.

Even though the constitutive relations of ferromagnetic compounds have been well established,
numerical modeling to predict the performance of a device made of such materials is still highly
challenging because the overall performance of such a device is determined not only by the material it
is made of, but also by many other factors such as the structure of the device, the external excitation,
the interactions between different parts of the device and between the device and the environment it
is installed in. To correctly model the device and generate reasonable prediction results, numerical
methods have to combine the solution of Maxwell’s equations with advanced hysteresis models. The
capability of numerically simulating complicated structures made of nonlinear materials would provide
an important analysis tool for a deeper insight into the physical and engineering behaviors.
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During the past decades, extensive research was conducted and published on the modeling of the
magnetic nonlinearities. For example, the nonlinear magnetic problems are analyzed using the finite
element method in one dimension [11–13] and two dimensions [14, 15], with the use of scalar hysteresis
models. The vector hysteresis model is combined with a two-dimensional finite element analysis in [16]
for the analysis of a T-joint region problem with a rotating flux excitation. In [17], a 2D vector hysteresis
model is presented and included in a 2D eddy current finite element analysis. However, these research
efforts have only dealt with either scalar hysteresis models or low-dimensional problems (1D or 2D) in
magneto-static or magneto-quasi-static cases.

In order to model a real device, a vector hysteresis modeling combined with a three-dimensional
dynamic finite element analysis is needed. To this end, a three-dimensional vector finite element
method [18] in the frequency domain is developed to deal with nonlinear materials through the
Newton-Raphson method with relaxation factors [19, 20]. The method is further extended by using
a domain decomposition method, the dual-primal finite element tearing and interconnecting (FETI-
DP) method [21–23], to enhance its computational capability [24]. In the meantime, a preliminary
study of the three-dimensional vector finite element method in the time domain is also conducted to
deal with nonlinear materials [25].

The time-domain finite element analysis has two obvious advantages over the frequency-domain
method. The first advantage comes from the convergence issue of the nonlinear solver. In a real
application, there is no straightforward way to choose a good initial guess in the frequency domain that
guarantees the convergence of the nonlinear solver. As a result, the nonlinear method could be unstable
or divergent in solving complicated problems in the frequency domain. In a time-domain nonlinear
solver, the numerical solution at a previous time step can be used as a natural choice for the initial
guess at the successive time step. The convergence of the nonlinear method can always be achieved if the
time-step size is small enough such that the solutions at two successive time steps are sufficiently close.
The second advantage of the time-domain solver is the ability to capture all the physical phenomena
in a real process, such as higher-order harmonic responses, magnetic remanence, and hysteresis losses.
The understanding of these physical processes is beneficial, sometimes critical, to engineering design.
However, there are also several major challenges in the time-domain modeling of nonlinear magnetic
problems. One challenge comes from the fact that nonlinear magnetic devices often operate at very low
frequencies. In such a frequency regime, the well-known low frequency breakdown problem becomes a
big issue to the finite element analysis, which limits its solution accuracy and reduces its computational
efficiency. Another challenge comes from the application of the widely used nonlinear method, the
Newton-Raphson method, where the Jacobian matrix needs to be updated and solved at every Newton
(nonlinear) iteration, which makes the solution very time consuming for large problems.

In this paper, the three-dimensional time-domain finite element method (TDFEM) [18] is employed
and combined with the Newton-Raphson and Newton-like methods to solve magnetic-dynamic problems
with nonlinear ferromagnetic materials modeled by the inverse vector J-A model [9, 10] at relatively
low frequencies. The second-order partial differential equation (PDE) in the time domain is first
formulated, and the nonlinear hysteresis model is incorporated. The resulting nonlinear PDE is then
discretized by employing the Newmark-β scheme, and solved by applying the Newton-Raphson method.
Different approaches of constructing the Newton-Raphson schemes are investigated and compared.
The performances of the proposed methods are investigated and demonstrated through a number of
numerical examples such as the simulation of a physical demagnetization process, the prediction of
magnetic remanence in a ferromagnetic material, and the generation of higher-order harmonics.

2. FERROMAGNETICS AND HYSTERESIS MODELS

As one of the most widely used hysteresis models, the Jiles-Atherton (J-A) model [5, 6] characterizes
magnetic hysteresis through the reversible and irreversible dipole switching mechanisms and energy
losses (domain wall losses) relative to the equilibrium anhysteretic magnetization. The construction
of the J-A model thus includes the characterization of the anhysteretic magnetization Man, the
quantification of the irreversible magnetization Mirr, and the characterization of the reversible
magnetization Mrev. The total magnetization is then defined as M = Mirr + Mrev.
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2.1. Scalar Jiles-Atherton Model

In the J-A model, the magnetic hysteresis is physically attributed to the defects of material which cause
a resistive force acting opposed to the domain wall motion [5]. In the ideal case, where the material is
lossless, the magnetization M is a single-valued function of the magnetic field H. Such an magnetization
is called anhysteretic magnetization Man, and can be described by either the Ising relation [26]

Man(H) = Ms tanh
(

He

a

)
, (1)

or the Langevin relation [27, 28]

Man(H) = Ms

[
coth

(
He

a

)
− a

He

]
. (2)

In the above expressions, Ms is the saturation magnetization of the material, a(T ) = HhT/μ0Tc, where
T is the temperature in Kelvin, Tc is the Curie point of the ferromagnetic compound, Hh is the bias
magnetic field, and He is the effective field experienced by each individual magnetic dipole moment,
which is defined as

He = H + αM, (3)

where α = Hh/μ0Ms is a material dependent constant.
In a real ferromagnetic compound, where loss is present, a change in Mirr will introduce energy loss

proportional to the magnitude of the change

dE = kp |dMirr| , (4)

where kp is the irreversible loss constant in the domain wall models, which is related to the density of
the pinning defects in the material. As a result, the magnetization energy increase comes from the total
energy increase in the lossless case, minus the energy loss∫ t

0
MirrdHe =

∫ t

0
MandHe −

∫ t

0
kp |dMirr| =

∫ t

0

(
Man − kpδ

dMirr

dHe

)
dHe, (5)

where

δ =
{

+1, if dH/dt > 0
−1, if dH/dt < 0.

The irreversible magnetization can therefore be formulated as

dMirr

dHe
=

Man − Mirr

kpδ
. (6)

However, in the case when Man > Mirr and dH/dt < 0, Equation (6) leads to nonphysical negative
slope dMirr/dHe < 0, which contradicts experimental observations. To eliminate such a discrepancy, it
is suggested [29] to assume that when (Man − Mirr) dHe < 0, there is no domain wall displacement and
dMirr = 0. Defining

(x)+ =
{

x, if x > 0
0, if x ≤ 0

(7)

we have

dMirr =
1

kpδ
[(Man − Mirr) dHe]

+ . (8)

The reversible magnetization Mrev is proportional to the difference between Man and Mirr, which
leads to the differential relation that resembles Hooke’s law

dMrev = c (dMan − dMirr) , (9)
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where c is the Kelvin-Voigt damping coefficient, which quantifies the degree of reversibility. The total
magnetization can then be determined as

dM = dMirr + dMrev = (1 − c) dMirr + c dMan =
1 − c

kpδ
[(Man − Mirr) dHe]

+ + c dMan. (10)

Noting that

(1 − c)(Man − Mirr) = Man − [Mirr + c(Man − Mirr)] = Man − [Mirr + Mrev] = Man − M (11)

and defining ζ = ∂Man/∂He, we have

dM =
1

kpδ
[(Man − M) dHe]

+ + c ζ dHe. (12)

Since Man is a function of He, thus a function of H, this yields

dM

dH
= χd

(
M,H,

dH

|dH|
)

, (13)

where χd is the differential susceptibility. It can be found, after some mathematical manipulations, that

χd =
(Man − M) /kpδ + c ζ

1 − α [(Man − M) /kpδ + c ζ]
(14)

when (Man − M) dHe > 0, and

χd =
c ζ

1 − α c ζ
(15)

when (Man − M) dHe ≤ 0. From these differential relations, the magnetization M can be determined
by the value and variation of the magnetic field H.

2.2. Vector Jiles-Atherton Model

The scalar J-A model is able to describe isotropic materials, and can be used in analyzing scalar
problems. In order to characterize anisotropic materials and to be applied in the analysis of three-
dimensional vector problems, a vector model is needed. In this work, the vector generalization of the
J-A model developed in [9] is adopted.

By following a similar physical reasoning, the scalar variables used in the preceding section can be
elevated to vectors and tensors. Specifically, the anhysteretic magnetization can be rewritten in vector
form as

Man (H) = Man (‖ He ‖) He

‖ He ‖ , (16)

in which Man can be described by different relations as in (1) and (2), and He = H + ᾱ · M, where ᾱ
is a tensor elevation of α.

To obtain a model for the vector irreversible magnetization, an auxiliary vector can be defined to
resemble the right-hand side of Eq. (6) as

χ′
f = k̄−1

p · (Man − Mirr) , (17)

where k̄p is the tensor correspondence of kp. In the anisotropic case, k̄p is a 3-by-3 matrix representing
different loss constants in different directions, while in the isotropic case, it reduces to the scalar kp.
If the direction of dMirr is assumed to be parallel to that of χ′

f , and its magnitude can be similarly
determined by χ′

f · dHe, the change of the irreversible magnetization can be expressed as

dMirr = χ′
f ‖ χ′

f ‖−1
(
χ′

f · dHe

)+ (18)

after taking into account the assumption that dMirr = 0 when χ′
f · dHe < 0.

To model the vector reversible magnetization, a direct elevation of Eq. (9) can be used

dMrev = c̄ · (dMan − dMirr) , (19)
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where c̄ is the tensor correspondence of c. Finally, the total vector magnetization can be expressed as

dM = dMirr + dMrev = χ′
f ‖ χf ‖−1

(
χ′

f · dHe

)+ + c̄ · (dMan − dMirr)

= χf ‖ χf ‖−1 (χf · dHe)+ + c̄ · dMan = χf ‖ χf ‖−1 (χf · dHe)+ + c̄ · ζ̄ · dHe, (20)

where χf = k̄−1
p · (Man − M), and ζ̄ = ∂Man/∂He.

Since Man is a function of He, thus a function of H, this yields

dM = χ̄d

(
M,H,

dH
‖dH‖

)
· dH, (21)

where χ̄d is the differential susceptibility tensor. It can be found, after some mathematical
manipulations, that

χ̄d =
[
Ī − χf ‖χf‖−1 χf · ᾱ − c̄ · ζ̄ · ᾱ

]−1 ·
[
χf ‖χf‖−1 χf + c̄ · ζ̄

]
(22)

when χf · dHe > 0, and

χ̄d =
[
Ī − c̄ · ζ̄ · ᾱ]−1 · [c̄ · ζ̄]

(23)
when χf · dHe ≤ 0. From these differential relations, the magnetization M can be determined by the
value and variation of the magnetic field H.

2.3. Inverse Vector Jiles-Atherton Model

In the finite element modeling of magnetic problems, the magnetic flux density B is usually employed
as the unknown quantity. Therefore, it is more convenient to model the magnetization M and the
magnetic field H as functions of the magnetic flux B. Since they are related by

B = μ0 (H + M) , (24)
the hysteresis model (21) can be modified to relate the differential magnetization dM and the differential
magnetic field dH to the differential magnetic flux dB by the inverse J-A model [10] as

dM = ξ̄d
r (B,H) · dB/μ0 (25)

dH = ν̄d
r (B,H) · dB/μ0, (26)

where ξ̄d
r is the relative differential magnetizability tensor and ν̄d

r is the relative differential reluctivity
tensor. It can be found, after some mathematical manipulations, that

ξ̄d
r =

[
Ī + χf ‖χf‖−1 χf · (Ī − ᾱ

)
+ c̄ · ζ̄ · (Ī − ᾱ

)]−1 ·
[
χf ‖χf‖−1 χf + c̄ · ζ̄

]
(27)

when χf · dHe > 0, and

ξ̄d
r =

[
Ī + c̄ · ζ̄ · (Ī − ᾱ

)]−1 · [c̄ · ζ̄]
(28)

when χf · dHe ≤ 0. The differential reluctivity tensor can be obtained by

ν̄d
r = Ī − ξ̄d

r . (29)
From these differential relations, the magnetization M and the magnetic field H can be determined by
the value and variation of the magnetic flux B.

3. NONLINEAR FINITE ELEMENT FORMULATION IN THE TIME DOMAIN

In this section, the TDFEM formulation for linear magnetic problems will first be derived, based
on which the TDFEM formulations for nonlinear magnetic problems will then be constructed and
discussed. The construction of the nonlinear TDFEM formulation will mainly be based on the most
widely used numerical method for solving nonlinear equations, the Newton-Raphson method [30], due
to its quadratic local convergence. Different interpretations to the Newton-Raphson method will lead to
different formulation ideas. The resulting formulations will be compared and discussed. Moreover, the
difference between the Newton-Raphson based nonlinear TDFEM formulations using the scalar and the
vector hysteresis models will be investigated. At the end of this section, a simple fixed point method
for solving the nonlinear TDFEM equation will be presented.
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3.1. Time-Domain Finite Element Formulation for Linear Problems

To construct a TDFEM formulation for linear magnetic problems, we start from Maxwell’s equations
in the time domain

∇×E = − ∂

∂t
B (30)

∇×H =
∂

∂t
D + σE + Jimp. (31)

By using the magnetic vector potential

B = ∇×A (32)

E = − ∂

∂t
A, (33)

the second-order curl-curl equation for the magnetic vector potential

∇×
(

1
μr

∇×A
)

+
εr

c2
0

∂2

∂t2
A +

η0

c0
σ

∂

∂t
A = μ0Jimp (34)

can be obtained, where εr and μr are the relative permittivity and permeability of the material, and
η0 and c0 are the intrinsic impedance and the speed of light in free-space, respectively. Also, Jimp is
the impressed current source, which is usually solenoidal because it is generated by coils in magnetic
problems. As a result, Jimp can be expressed in terms of the impressed current vector potential Timp [31]

Jimp = ∇×Timp, (35)

which is equivalent to enforcing a gauge condition on A.
To discretize the curl-curl vector Equation (34), we first expand the magnetic vector potential

in terms of basis functions Nj , which can be either low-order edge elements [32, 33] or higher-order
hierarchical basis functions [34]

A =
N∑

j=1

aj (t)Nj (r) . (36)

The semi-discrete system can be obtained as

[S] {a} +
1
c2
0

[M ]
∂2

∂t2
{a} +

η0

c0
[G]

∂

∂t
{a} +

1
c0

[A]
∂

∂t
{a} = μ0 {b} , (37)

where

Sij =
∫∫∫

V

1
μr

(∇×Ni) · (∇×Nj) dV (38)

Mij =
∫∫∫

V
εrNi · Nj dV (39)

Gij =
∫∫∫

V
σNi ·Nj dV (40)

Aij =
∫∫

S

1
ηr

(n̂×Ni) · (n̂×Nj) dS (41)

bi =
∫∫∫

V
(∇×Ni) ·Timp dV. (42)

In the above expressions, V is the solution domain, S = ∂V is the boundary of V , and ηr is the relative
impedance on the truncation boundary [35, 36].

The semi-discrete Equation (37) is an ordinary differential equation (ODE), which can be solved
using one of time integration methods. In this work, the well-known Newmark-β method [37–39] is
adopted because of its unconditional stability and second-order accuracy, when β ≥ 1/4. Specifically, in
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the Newmark-β method, a time dependent variable is approximated by the weighted sum of its values
at three consecutive time steps, and its time derivatives are approximated by central difference formulae

{u (t)} = βun+1 + (1 − 2β) un + βun−1 (43)
d
dt

{u (t)} =
1

2Δt

(
un+1 − un−1

)
(44)

d2

dt2
{u (t)} =

1
Δt2

(
un+1 − 2un + un−1

)
. (45)

Application of the Newmark-β method to the ODE in Eq. (37) yields the following fully discrete
system (with β = 1/4){

1
4
c2
0Δt2 [S] + [M ] +

1
2
η0c0Δt [G] +

1
2
c0Δt [A]

}
{a}n+1

= −
{

1
2
c2
0Δt2 [S] − 2 [M ]

}
{a}n −

{
1
4
c2
0Δt2 [S] + [M ] − 1

2
η0c0Δt [G] − 1

2
c0Δt [A]

}
{a}n−1

+η0c0Δt2
(

1
4
{b}n+1 +

1
2
{b}n +

1
4
{b}n−1

)
, (46)

which can be solved step by step from the known solutions at the (n − 1)th and the nth time steps to
the (n + 1)th time step. Once the magnetic vector potential A is obtained at some time step tn+1, the
magnetic flux B and electric field E at the same time step can be calculated using Eqs. (32) and (33).

3.2. Newton-Raphson Method for Nonlinear Equations

For an N dimensional nonlinear problem
f (x) = 0, (47)

where f = [f1, f2, . . . , fN ]T contains N nonlinear functions, and x = [x1, x2, . . . , xN ]T is the N
dimensional unknown vector, the Newton-Raphson method takes the following form

xk+1 = xk − [J (xk)]
−1 f (xk) , (48)

where J is the Jacobian matrix of the nonlinear function f

{J (x)}ij =
∂fi (x)

∂xj
. (49)

The nonlinear function f is also known as the residual since it vanishes at the true solution.
In order to solve the nonlinear Equation (47), an initial guess of solution x0 is first given. At the

kth nonlinear (Newton) step (k = 0, 1, 2, . . .), the Jacobian matrix equation, which is a set of linear
equations, is solved for the incremental vector sk

J (xk) sk = −f (xk) . (50)
The nonlinear solution at the (k + 1)th Newton step is updated by

xk+1 = xk + sk. (51)
The Jacobian matrix equation is then solved again at the (k + 1)th step to find next update to the
nonlinear solution until convergence is achieved. This procedure is known as the Newton iteration.
Apparently, the Newton iteration Eq. (48) has a clear graphical meaning. Take a one-dimensional
problem as an example, the meaning of the Jacobian matrix equation (50) is to draw a tangent line
from the trial solution xk, and find the next estimated solution xk+1 from the intersection with the x
axis. For a higher-dimensional problem, the Jacobian matrix simply stands for the higher-dimensional
tangent surface.

Algebraically, the Newton-Raphson method can also be interpreted from the Taylor series expansion
point of view. Expanding the nonlinear function f in the neighborhood of xk in terms of the Taylor
series and keeping only the zeroth and first order terms, we have

f (xk+1) = f (xk + sk) = f (xk) +
∂f
∂xk

sk + O (
s2
k

)
. (52)
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Since the objective is to make the nonlinear function f vanish, we have

f (xk) +
∂f
∂xk

(xk+1 − xk) = 0, (53)

which leads to

xk+1 = xk −
(

∂f
∂xk

)−1

f (xk) . (54)

Noting the definition of the Jacobian matrix equation (49), the above expression is the same as the
Newton-Raphson method described in Eq. (48).

3.3. Direct Derivative Based Newton-Raphson Scheme for TDFEM

To construct a TDFEM formulation for nonlinear problems, we follow the Newton iteration defined
in Eqs. (48)–(51), which requires the direct derivative of the nonlinear function with respect to the
unknown vector. In this case, The nonlinear function, also known as the residual {r}, is expressed as

{r} = [K]n+1 {a}n+1 + [K]n {a}n + [K]n−1 {a}n−1 − {b̃}, (55)

where

[K]n±1 =
1
4
c2
0Δt2 [S] + [M ] ± 1

2
η0c0Δt [G] ± 1

2
c0Δt [A] (56)

[K]n =
1
2
c2
0Δt2 [S] − 2 [M ] (57)

{b̃} = η0c0Δt2
(

1
4
{b}n+1 +

1
2
{b}n +

1
4
{b}n−1

)
. (58)

Since in the definition of the stiffness matrix [S]

Sij =
∫∫∫

V
νr (∇×Ni) · (∇×Nj) dV, (59)

the relative reluctivity of the material νr = 1/μr is a function of the magnetic flux density, which is a
function of the unknown vector {a}n+1, the residual {r} in Eq. (55) is nonlinear.

3.3.1. Nonlinear TDFEM Formulation with a Scalar Constitutive Model

If the constitutive relation of the ferromagnetic material is described by a scalar relation, such as the
one expressed in Eq. (13), the relative reluctivity is a function of B = ‖B‖

νr = νr (B) . (60)

Since in the TDFEM formulation, the magnetic flux B is expressed by the magnetic vector potential
A, which is expanded in terms of the basis functions in space and the Newmark-β method in time

B = ∇×A =
N∑

j=1

(
1
4
an+1

j +
1
2
an

j +
1
4
an−1

j

)
∇×Nj, (61)

from Eq. (55) it is clear that the partial derivative of ri with respect to an+1
j results in not only the

finite element entry Kn+1
ij , but also several terms involving the partial derivative of a stiffness matrix

element Sik with respect to an+1
j as well. After some mathematical manipulations, the Jacobian matrix

at (n + 1)th time step is obtained as

Jij =
∂ri

∂an+1
j

= Kn+1
ij + c2

0Δt2
∑

k

∂Sik

∂an+1
j

(
1
4
an+1

k +
1
2
an

k +
1
4
an−1

k

)
. (62)
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The partial derivative of the stiffness matrix can be further expressed as

∂Sik

∂an+1
j

=
∫∫∫

V

∂νr (B)
∂an+1

j

(∇×Ni) · (∇×Nk) dV, (63)

where
∂νr (B)
∂an+1

j

=
∂νr (B)

∂B

∂B

∂an+1
j

(64)

by using the chain rule of derivatives. In the above expression
∂B

∂an+1
j

=
1
4

(∇×Nj) · B
B

(65)

∂νr

∂B
=

∂

∂B

(
μ0H

B

)
=

1
B

[
νd
r (B) − νr (B)

]
, (66)

where νd
r is the relative differential reluctivity, and νr is the relative reluctivity. They can be obtained

from the nonlinear constitutive relation of the material described in Section 2.1.
Substituting Eqs. (63)–(66) back into Eq. (62), we obtain

Jij = Kn+1
ij + c2

0Δt2
∑

k

{ ∫∫∫
V

1
B

[
νd
r (B) − νr (B)

] [
1
4

(∇×Nj) · B
B

]
[(∇×Ni) · (∇×Nk)] dV

(
1
4
an+1

k +
1
2
an

k +
1
4
an−1

k

)}
. (67)

Interchanging the summation and the integration and noting
∑

k

∇×Nk

(
1
4
an+1

k +
1
2
an

k +
1
4
an−1

k

)
= B, (68)

Equation (67) is reduced to

Jij = Kn+1
ij +

1
4
c2
0Δt2

∫∫∫
V

(
νd
r − νr

) [
(∇×Ni) · B

B

] [
(∇×Nj) · B

B

]
dV. (69)

Since the second term in Eq. (69) is related to the derivative of the stiffness matrix, we define the
incremental stiffness matrix [ΔS] as

ΔSij =
∫∫∫

V

(
νd
r − νr

) [
(∇×Ni) · B

B

] [
(∇×Nj) · B

B

]
dV (70)

and the summation of [S] and [ΔS] as

[SJ] = [S] + [ΔS] . (71)

The Jacobian matrix can be written as

[J ] =
1
4
c2
0Δt2[SJ] + [M ] +

1
2
η0c0Δt [G] +

1
2
c0Δt [A] , (72)

which is the final expression for the Jacobian matrix in the nonlinear TDFEM formulation if the scalar
constitutive relation is used.

3.3.2. Nonlinear TDFEM Formulation with a Vector Constitutive Model

If the constitutive relation of the ferromagnetic material is described by a vector relation, such as those
expressed in Eqs. (21), (25), and (26), the relative reluctivity in the stiffness matrix [S] becomes a
tensor; hence,

Sij =
∫∫∫

V
(∇×Ni) · ν̄r (B) · (∇×Nj) dV. (73)
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The Jacobian matrix at the (n + 1)th time step is obtained similarly as in Eq. (62). The difference
in the formulations between using the scalar and the vector constitutive relations occurs in the partial
derivative of the stiffness matrix

∂Sik

∂an+1
j

=
∫∫∫

V
(∇×Ni) · ∂ν̄r (B)

∂an+1
j

· (∇×Nk) dV. (74)

Application of the chain rule of derivatives yields
∂ν̄r (B)
∂an+1

j

=
∂ν̄r

∂B
· ∂B
∂an+1

j

. (75)

In the above expression
∂B

∂an+1
j

=
1
4
∇×Nj. (76)

The Jacobian matrix therefore becomes

Jij = Kn+1
ij + c2

0Δt2
∑

k

∂Sik

∂an+1
j

(
1
4
an+1

k +
1
2
an

k +
1
4
an−1

k

)

= Kn+1
ij + c2

0Δt2
∑

k

∫∫∫
V

(∇×Ni) · ∂ν̄r

∂B
· 1
4

(∇×Nj) · (∇×Nk) dV

(
1
4
an+1

k +
1
2
an

k +
1
4
an−1

k

)

= Kn+1
ij +

1
4
c2
0Δt2

∫∫∫
V

(∇×Ni) · ∂ν̄r

∂B
· (∇×Nj) ·B dV = Kn+1

ij +
1
4
c2
0Δt2ΔSij. (77)

Unfortunately, ∂ν̄r/∂B cannot be obtained in a straightforward manner. To achieve its explicit
expression, on one hand we expand H in terms of Taylor series (ignore the higher-order terms)

H (B2) = H (B1 + ΔB) = H (B1) +
∂H
∂B1

· ΔB = H (B1) + ν̄d (B1) · ΔB, (78)

where ν̄d = ν̄d
r /μ0 = ν̄d

r ν0 is the differential reluctivity tensor. On the other hand, we can also express
H as

H (B2) = ν̄ (B2) · B2 =
[
ν̄ (B1) +

∂ν̄

∂B1
· ΔB

]
· (B1 + ΔB)

= ν̄ (B1)·B1+ν̄ (B1)·ΔB+
∂ν̄

∂B1
·ΔB·B1 = H (B1)+ν̄ (B1)·ΔB+

∂ν̄

∂B1
·ΔB·B1, (79)

where ν̄ = ν̄r/μ0 = ν̄rν0 is the reluctivity tensor. Comparing Eqs. (78) and (79), it is clear that

ν̄d
r (B1) · ΔB = ν̄r (B1) · ΔB +

∂ν̄r

∂B1
· ΔB ·B1. (80)

Noting that ΔB is the incremental vector sk in the Jacobian matrix equation (50), which is expanded
as

ΔB =
∑

j

∇×Nj Δaj, (81)

we have
∂ν̄r

∂B
· (∇×Nj) ·B =

(
ν̄d

r − ν̄r

)
· (∇×Nj) . (82)

Substituting Eq. (82) back into Eq. (77), the incremental stiffness matrix [ΔS] can be written as

ΔSij =
∫∫∫

V
(∇×Ni) ·

(
ν̄d

r − ν̄r

)
· (∇×Nj) dV (83)

and

SJ
ij = Sij + ΔSij =

∫∫∫
V

(∇×Ni) · ν̄d
r · (∇×Nj) dV. (84)

The Jacobian matrix has the same form as that in Eq. (72). The relative differential reluctivity ν̄d
r can

be obtained from the nonlinear constitutive relation of the material described in Section 2.2.
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3.3.3. Remarks

After the Newton-Raphson scheme of the TDFEM is constructed, the nonlinear equation can be solved
iteratively. Specifically, there are several levels of iteration the solution process goes through in order
to complete the simulation. The top level of iteration is the marching-on-in-time process. At each
time step, the excitation from an external source, in this case Jimp or Timp, is specified, which results
in a nonlinear equation given by Eq. (46). To solve such a nonlinear equation, the Newton-Raphson
method is used, which leads to the second level of iteration, the Newton iteration. At each Newton step,
an initial guess of solution is given, usually chosen the same as the solution from the preceding time
step. From the initial guess, the nonlinear residual function can be calculated using Eq. (55), and the
Jacobian matrix can be assembled using either Eq. (72) or Eq. (84). The Jacobian matrix equation is
then solved for the incremental vector using either a direct or an iterative linear solver (the third level
of iteration), and the estimated solution is updated using Eq. (51). The Newton iteration terminates
upon the convergence of the estimated solution, and the solution process proceeds to the next time step.

It can be seen from the above description that the total computational cost comes from the
multiplication of three parts, which are the total number of time steps, the average number of Newton
iterations at each time step, and the computational cost for solving the linear problem (the Jacobian
matrix equation). The most time-consuming part of the method is the construction and the solution
of the Jacobian matrix equation. To construct the Jacobian matrix equation, the Jacobian matrix has
to be assembled and solved at each Newton step, which involves one matrix assembly and one matrix
solution. Besides the Jacobian matrix, the nonlinear residual function has to be updated as well. In
the direct derivative based Newton-Raphson scheme, in order to update the nonlinear residual function,
the stiffness matrix Eq. (59) has to be assembled repeatedly because the value of νr is constantly
changing. The solution of the Jacobian matrix equation is even more computationally expensive. Since
the Jacobian matrix is being updated at every Newton iteration, to solve it with a direct solver such as
the LU decomposition [30], the matrix needs to be factorized repeatedly. Similarly, to solve the Jacobian
matrix equation with an iterative solver such as GMRes [40] or BiCGstab [41], a good preconditioner
such as the incomplete LU (ILU) [42] or the sparse approximate inverse (SAI) [43] preconditioner needs
to be constructed repeatedly based on the latest Jacobian matrix.

Another comment needs to be made is that if the Jacobian matrix is constructed accurately, and
the initial guess is chosen sufficiently close to the true solution, the convergence of the Newton-Raphson
method is quadratic. However, it should also be noted that the objective here is to make the nonlinear
residual function (55) vanish. Therefore, even if the Jacobian matrix is not constructed precisely, as long
as it contains the information of the tangent plane, the nonlinear problem can still converge, but likely
with a slower rate. This argument paves the way for other nonlinear solvers that use the approximation
of the Jacobian matrix, such as Broyden’s method, which will be discussed in a later paper.

3.4. Polarization Technique Based Newton-Raphson Scheme for TDFEM

Another approach of constructing the Newton-Raphson scheme for the TDFEM is to use the idea of
Taylor series expansion Eqs. (52)–(54). To this end, the polarization method [44] is first adopted to
separate the magnetic field into the linear and the nonlinear parts

H = νrν0B = νrν0∇×A = νopt
r ν0B + R = νopt

r ν0∇×A + R (A) , (85)

where νopt
r is a constant, which can be chosen as

(
νmin
r + νmax

r

)
/2 for instance. In this case, the curl-curl

equation becomes

∇×[
νopt
r ∇×A + μ0R (A)

]
+

εr

c2
0

∂2

∂t2
A +

η0

c0
σ

∂

∂t
A = μ0∇×Timp. (86)

By treating R as an unknown quantity and going through the same discretization process as the one
described in Section 3.1, the following nonlinear matrix equation can be obtained

[Kp]
n+1 {a}n+1 + [Kp]n {a}n + [Kp]

n−1 {a}n−1 + {R} = {b̃}, (87)
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where [Kp]n+1, [Kp]n, and [Kp]n−1 have the same form as those in Eqs. (56)–(57), with the difference
being the definition of the stiffness matrix [Sp]

Sp,ij =
∫∫∫

V
νopt
r (∇×Ni) · (∇×Nj) dV. (88)

Note that the [Kp] matrices are now no longer functions of the unknown vector {a}n+1. The nonlinearity
occurs in

Ri = μ0c
2
0Δt2

∫∫∫
V

Ni · (∇×R) dV = μ0c
2
0Δt2

∫∫∫
V

(∇×Ni) · R dV, (89)

where R is a nonlinear function of the vector potential A. The temporal and spatial discretization
yields

R (A) = R
(

1
4
An+1+

1
2
An+

1
4
An−1

)
= R

⎛
⎝ N∑

j=1

{
1
4
an+1

j +
1
2
an

j +
1
4
an−1

j

}
Nj

⎞
⎠ = R

(
{a}n+1

)
, (90)

and the nonlinear residual function can be expressed as

{r} = [Kp]
n+1 {a}n+1 + [Kp]n {a}n + [Kp]

n−1 {a}n−1 + {R} − {b̃}. (91)

3.4.1. Nonlinear TDFEM Formulation with a Scalar Constitutive Model

If the constitutive relation of the ferromagnetic material is described by a scalar relation νr = νr (B),
the nonlinear part of the magnetic field can be written as

R =
[
νr (B) − νopt

r

]
ν0B. (92)

The Taylor series expansion of Eq. (91) requires the Taylor series expansion of the nonlinear quantity
R

R
(
{a}n+1 + {δa}

)
= R

(
{a}n+1

)
+

N∑
j=1

∂R
∂an+1

j

δaj , (93)

where
∂R

∂an+1
j

=
∂

∂an+1
j

[(
νr − νopt

r

)
ν0B

]
=

∂νr

∂an+1
j

ν0B +
(
νr − νopt

r

)
ν0

∂B
∂an+1

j

=
∂νr

∂B

∂B

∂an+1
j

ν0B +
(
νr − νopt

r

)
ν0

∂B
∂an+1

j

. (94)

From Eqs. (65), (66), and (76), it can be obtained that

∂R
∂an+1

j

=
1
4
ν0

(
νd
r − νr

) B
B

[
(∇×Nj) · B

B

]
+

1
4
ν0

(
νr − νopt

r

)∇×Nj. (95)

By substituting Eq. (95) back into Eq. (93), and then into Eq. (89), the Taylor series expansion of
the nonlinear residual function {r} can be obtained as{

r
(
{a}n+1 + {δa}

)}
=

{
r
(
{a}n+1

)}
+ [J ] {δa}

= [Kp]n+1
(
{a}n+1 + {δa}

)
+ [Kp]n {a}n + [Kp]

n−1 {a}n−1

+
{

R
(
{a}n+1

)}
+

N∑
j=1

∂ {R}
∂an+1

j

δaj − {b̃}. (96)

By enforcing the left-hand side of the above expression to be zero, the Newton-Raphson scheme can be
derived as

[J ] {δa} = −{r} , (97)
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where

{r} = [Kp]n+1 {a}n+1 + [Kp]n {a}n + [Kp]n−1 {a}n−1 +
{
R

(
{a}n+1

)}
− {b̃} (98)

Jij = Kn+1
p,ij +

∂Ri

∂an+1
j

(99)

and
∂Ri

∂an+1
j

= μ0c
2
0Δt2

∫∫∫
V

(∇×Ni) · ∂R
∂an+1

j

dV

=
1
4
c2
0Δt2

∫∫∫
V

(
νd
r − νr

)[
(∇×Ni) · B

B

] [
(∇×Nj) · B

B

]
dV

+
1
4
c2
0Δt2

∫∫∫
V

(
νr − νopt

r

)
(∇×Ni) · (∇×Nj) dV. (100)

Using the definition of the stiffness matrix [S] in Eq. (59), the definition of the stiffness matrix [Sp] in
Eq. (88), and the definition of the incremental stiffness matrix [ΔS] in Eq. (70)

∂Ri

∂an+1
j

=
1
4
c2
0Δt2 (Sij − Sp,ij + ΔSij) , (101)

we have

[J ] = [Kp]
n+1 +

1
4
c2
0Δt2 ([S] − [Sp] + [ΔS]) =

1
4
c2
0Δt2[SJ] + [M ] +

1
2
η0c0Δt [G] +

1
2
c0Δt [A] , (102)

which is the same as Eq. (72). However, it should be noted that although the Jacobian matrix is the
same as that in Section 3.3.1, the residual vectors {r} in these two methods are different, which will
result in a different computational efficiency. This will be elaborated in Section 3.4.3.

3.4.2. Nonlinear TDFEM Formulation with a Vector Constitutive Model

If the constitutive relation of the ferromagnetic material is described by a vector relation, the nonlinear
part of the magnetic field has to be written as

R =
[
ν̄r (B) − νopt

r Ī
] · ν0B, (103)

where Ī is the unit tensor. In the Taylor series expansion of Eq. (93),

∂R
∂an+1

j

=
∂

∂an+1
j

[(
ν̄r − νopt

r Ī
) · ν0B

]
=

∂ν̄r

∂an+1
j

· ν0B +
(
ν̄r − νopt

r Ī
) · ν0

∂B
∂an+1

j

=
∂ν̄r

∂B
· ∂B
∂an+1

j

· ν0B +
(
ν̄r − νopt

r Ī
) · ν0

∂B
∂an+1

j

=
1
4
ν0

∂ν̄r

∂B
· (∇×Nj) ·B +

1
4
ν0

(
ν̄r − νopt

r Ī
) · (∇×Nj) . (104)

The application of Eq. (82) yields

∂R
∂an+1

j

=
1
4
ν0

(
ν̄d

r − ν̄r

)
· (∇×Nj) +

1
4
ν0

(
ν̄r − νopt

r Ī
) · (∇×Nj) =

1
4
ν0

(
ν̄d

r − νopt
r Ī

)
· (∇×Nj) . (105)

Following the same process as described in the preceding section, we have
∂Ri

∂an+1
j

= μ0c
2
0Δt2

∫∫∫
V

(∇×Ni)· ∂R
∂an+1

j

dV =
1
4
c2
0Δt2

∫∫∫
V

(∇×Ni)·
(
ν̄d

r − νopt
r Ī

)
·(∇×Nj) dV (106)

and hence,

[J ] = [Kp]n+1 +
1
4
c2
0Δt2

(
[SJ] − [Sp]

)
=

1
4
c2
0Δt2[SJ] + [M ] +

1
2
η0c0Δt [G] +

1
2
c0Δt [A] , (107)
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which is the same as that in Section 3.3.2. However, as mentioned in the previous section, the residual
vectors {r} in these two methods are expressed differently, which will result in a different computational
efficiency. This will be elaborated in Section 3.4.3.

Another approach to deriving the Jacobian matrix is to expand the nonlinear term R directly into
Taylor series

R (B + ΔB) ≈ R (B) +
∂R
∂B

· ΔB = R (B) +
∂

∂B

(
H − νopt

r ν0B
) · ΔB

= R (B) +
(
ν̄d

r − νopt
r Ī

)
· ν0ΔB. (108)

Since B = ∇×A, we have ΔB = ∇×ΔA; therefore,

R (A + ΔA) ≈ R (A) +
(
ν̄d

r − νopt
r Ī

)
· ν0∇×ΔA. (109)

With the same small incremental field ΔA, the magnetic field can be expressed as

H (A + ΔA) = νopt
r ν0∇×(A + ΔA) + R (A + ΔA)

≈ νopt
r ν0∇×(A + ΔA) + R (A) +

(
ν̄d

r − νopt
r Ī

)
· ν0∇×ΔA

= ν0ν
opt
r ∇×A + R (A) + ν0ν̄

d
r · ∇×ΔA. (110)

As a result,

∇×H (A + ΔA) = ν0∇×
(
ν̄d

r ∇×ΔA
)

+ ν0∇×(
νopt
r ∇×A

)
+ ∇×R, (111)

which can be substituted back into the curl-curl Equation (34) to obtain the Newton-Raphson scheme.

3.4.3. Remarks

The solution process of the nonlinear TDFEM is the same as that described in Section 3.3.3. The
difference here, as mentioned before, is the way by which the residual vector {r} is evaluated. In the
direct derivative based Newton-Raphson scheme, the residual is evaluated as

{r} = [K]n+1 {a}n+1 + [K]n {a}n + [K]n−1 {a}n−1 − {b̃}, (112)

whereas in the polarization technique based Newton-Raphson scheme, it is evaluated as

{r} = [Kp]
n+1 {a}n+1 + [Kp]n {a}n + [Kp]

n−1 {a}n−1 + {R} − {b̃}. (113)

Apparently, in order to evaluate {r} using Eq. (112), the [K] matrices need to be updated, which involve
the evaluation of the stiffness matrix Eq. (59) or Eq. (73). The matrix-vector products [K]n+1 {a}n+1,
[K]n {a}n, and [K]n−1 {a}n−1 are then performed and {r} is finally calculated. At every Newton step
in the Newton iteration process, this evaluation usually has to be done more than once, if the relaxation
method or the safe-guarding method is adopted to accelerate the convergence of the Newton-Raphson
method. In contrast, to evaluate {r} using Eq. (113), only the vector {R} needs to be updated and one
matrix-vector product [Kp]

n+1 {a}n+1 needs to be performed because the stiffness matrix [Sp] Eq. (88)
involved in the expression is not a function of the unknown vector {a}n+1. As a result, the polarization
technique based method is expected to have a better computational efficiency than the direct derivative
based method. If the residuals expressed in Eqs. (112) and (113) are examined more carefully, it can
be seen that since

Ri = μ0c
2
0Δt2

∫∫∫
V

(∇×Ni) ·R dV = c2
0Δt2

∫∫∫
V

(∇×Ni) ·
[
ν̄r (B) − νopt

r Ī
] · B dV

= c2
0Δt2

∫∫∫
V

(∇×Ni) ·
[
ν̄r (B) − νopt

r Ī
] · (∇×Nj) dV

(
1
4
{a}n+1+

1
2
{a}n+

1
4
{a}n−1

)
, (114)

the stiffness matrix related terms in Eq. (112) can be rewritten as

c2
0Δt2 [S]

(
1
4
{a}n+1+

1
2
{a}n+

1
4
{a}n−1

)
= c2

0Δt2 [Sp]
(

1
4
{a}n+1+

1
2
{a}n+

1
4
{a}n−1

)
+{R} , (115)
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which are those in Eq. (113). From the above derivation, it is obvious that although the residual
vectors {r} are evaluated in different ways in both formulations, they are actually the same. Since
the Jacobian matrices in both formulations are also the same, the Newton-Raphson schemes for the
TDFEM formulations introduced in Sections 3.3 and 3.4 are identical. Furthermore, it is also clear that
the value of νopt

r does not affect the final formulation, and therefore, it can be safely chosen to be 0 in
the Newton-Raphson formulation.

3.5. Polarization Technique Based Fixed-Point Scheme for TDFEM

A simple fixed-point method can be constructed based on the polarization technique. Applying Eq.
(85), Maxwell’s Equation (31) becomes

∇×H = ∇×(
νopt
r ν0B + R

)
= ∇×(

νopt
r ν0∇×A

)
+ ∇×R

=
∂

∂t
D + σE + Jimp = −ε

∂2

∂t2
A− σ

∂

∂t
A + Jimp, (116)

where A can be solved with a fixed-point iteration

∇×(
νopt
r ∇×A

)
+

εr

c2
0

∂2

∂t2
A +

η0

c0
σ

∂

∂t
A = μ0Jimp − μ0∇×R. (117)

The above formulation is almost the same as that in Eq. (86), and the only difference is that the nonlinear
term −μ0∇×R is now moved to the right-hand side. Such a difference will result in a different solution
strategy. Specifically, to solve Eq. (117) with a fixed-point iteration, the following steps are performed.

(i) At time step n, set up the initial guess An
0 = An−1;

(ii) At the kth fixed-point iteration (k = 0, 1, 2, . . .), calculate Bn
k = ∇×An

k , and evaluate Hn
k using

the constitutive model described in Section 2;
(iii) Calculate the nonlinear term with Rn

k = Hn
k − νopt

r ν0Bn
k , and update right-hand side of the FEM

system;
(iv) Solve the linear FEM system for An

k+1;
(v) If converged, n := n + 1, go to step 1; otherwise, k := k + 1, go to step 2.

Similar to the Newton-Raphson scheme, the total computational cost of the fixed-point scheme
also comes from the multiplication of three parts, which are the total number of time steps, the average
number of fixed-point iterations at each time step, and the computational cost for solving the linear
fixed-point problem. Since the system matrix resulting from Eq. (117) is not a function of the unknown
vector, it only needs to be factorized once during the entire solution process. However, the convergence
of the fixed-point iteration is approximately linear, which would result in a higher computational cost
if strong nonlinearity is involved.

4. NUMERICAL EXAMPLES

In this section, several examples are given to demonstrate the capability of the proposed methods.
The applications in the simulation of magnetic hysteresis and the prediction of higher-order harmonic
generation are presented. The accurate and efficient numerical solution of the nonlinear formulation
will be discussed separately in another paper. The models used in this section are adopted from several
benchmark problems from the “testing electromagnetic analysis methods” (TEAM) workshop [45].

4.1. TEAM Problem 10

The TEAM workshop problem 10 is first considered. Shown in Fig. 1 is the problem setting, where a
racetrack coil is placed between two steel channels and a flat steel plate is inserted in between of these
two channels. The structure of the coil is shown in Fig. 1(a) with its geometrical sizes labeled. The
geometry and dimension of the steel plate and channels are shown in Fig. 1(b). It should be noted
that there is a very small air gap between the center plate and the channels, which is only 0.5 mm.
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(a) (b)

Figure 1. Problem setting and dimensions of TEAM problem 10. (a) Racetrack coil. (b) Steel channels
and center plate.

(a) (b)

Figure 2. Problem setup for TEAM problem 10. (a) Constitutive relation curve. (b) Current
excitation.

Such an air gap would allow some leakage of magnetic flux, and therefore, in the discretization of the
geometry, the gap should be discretized with sufficient spatial resolution in order for the leakage to be
captured. The steel channels and the center plate are made of ferromagnetic material, which have a
relative permittivity of εr = 1.0, a conductivity of σ = 7.505 × 106 S/m, and their permeability is given
by the nonlinear B-H relation through measurement data as shown in Fig. 2(a), where the dots are the
discrete data from measurement, and the curve is a continuous model obtained from curve fitting.

The racetrack coil has 162 turns in total. When it is turned on, the current flowing in the coil
increases gradually from 0A to a maximum value of Im, which can be expressed mathematically as

I0 =
{

0 (t < 0)
Im

(
1 − e−t/τ

)
(t ≥ 0) (118)

where τ is a parameter that controls how fast the current increases. The impressed current is shown in
Fig. 2(b) as a function of time with Im = 5.64 A, and τ = 0.05 s.

The magnetic flux density B is recorded along line L1 indicated in Fig. 3(a), as a function of
position. The proposed nonlinear solver is used to advance time from 0 to that when a steady state
is achieved. The problem is solved by setting Im = 5.64 A and Im = 18.52 A, respectively, and the
results are presented in Fig. 3(b) and compared with those obtained by a static solver [24]. Excellent
agreement is achieved. Next, the magnitude of the averaged magnetic flux in areas S1, S2, and S3 are
shown as a function of time in Figs. 3(c) and 3(d). The numerical results are obtained by using the
Newton-Raphson method as well as the fixed-point method, as discussed in Section 3. Compared with
the measurement results, good agreement is achieved.
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(a) (b)

(c) (d)

Figure 3. Numerical results of TEAM problem 10 with a static current excitation. (a) Observation
areas on the steel channels. (b) Magnetic flux density along the observation line L1 at steady state. (c)
Average magnetic flux density versus time in the observation areas S1 and S3. (d) Average magnetic
flux density versus time in the observation area S2.

4.2. Hysteresis Modeling

To investigate the modeling of the magnetic hysteresis using the inverse Jiles-Atherton vector model
introduced in Section 2.3, we consider the magnetic problem involved in the demagnetization process
and solve it with the Newton-Raphson scheme proposed in Section 3.4.

4.2.1. Demagnetization Process and Magnetic Remanence

Sometimes it is necessary to demagnetize or re-magnetize a magnetic device if its magnetic property
has been distorted by heat, large magnetic fields, or stress. Failure in demagnetization would cause the
remanent magnetic field, which may affect the normal operation of the device, or interfere with other
electronic equipments. One way to remove the magnetization from a device is to apply an oscillating
field with a reducing amplitude to it, causing the magnetic dipoles in the magnet to flip back and forth
and eventually get neutralized.

To demonstrate the capability of the proposed method in solving magnetic hysteresis problems, the
nonlinear magnetization and demagnetization process is simulated. The model is adopted from TEAM
workshop problem 10 [46], with an excitation current designed as

I0 =
{

Im sin (2πf0t) 1−t
Tm

(0 ≤ t ≤ Tm)
0 (otherwise) ,

(119)

where Im = 2.5 A, f0 = 10 Hz, Tm = 0.4 s, and the coil is assumed to have 100 turns. The coil current is
shown in Fig. 4(a), from which it can be seen that the current is turned on from 0A, increasing to its
maximum where the structure is magnetized. It is then oscillating at a frequency of 10 Hz, while the
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(a) (b)

Figure 4. Problem setting of the simulation of a demagnetization process. (a) The time profile of
the coil current excitation. (b) A typical hysteresis loop of a demagnetization process using Langevin
relation.

(a) (b)

(c) (d)

Figure 5. Numerical results of the nonlinear demagnetization problem solved by the nonlinear TDFEM
with a Newton-Raphson scheme. (a) Observation points on the steel channels. (b)–(d) Demagnetization
process and magnetic remanence (small inserts) at the three observation points P1–P3.

amplitude of its envelope is decreasing linearly. After the current fails back to 0 A at 0.4 s, it stays at
0A for another 0.1 s for the magnetic response of the structure to be stabilized.

To model the ferromagnetic material, the inverse J-A model with its anhysteretic property described
by the Langevin relation is used. The model parameters are chosen as Ms = 1.3 × 106 A/m,
a = 25.3 A/m, kp = 66.6 A/m, α = 0, and c = 0.2. In Fig. 4(b), a typical hysteresis loop of a
demagnetization process using this set of parameters is shown.

The magnetization M and magnetic field H at three different observation points (P1, P2, and
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P3) in Fig. 5(a) are recorded, and the demagnetization process and magnetic remanence are shown in
Figs. 5(b)–5(d). From the figures, it can be seen that among these three sampling locations, only the
steel at point P1 located at the center of the center plate has been fully saturated by the externally
applied current. The steel at the other two locations are not fully saturated. Clearly, the hysteresis
histories and the magnetic remanence at different points are different due to the structure of the channel
and the way it is excited. This example demonstrates successfully the capability and importance of the
proposed method in the simulation and design of a ferromagnetic device. From this simulation and the
results shown in Figs. 5(b)–5(d) and their inserts, it can be suggested that in order to obtain a better
demagnetization result, it is better for the entire structure to be fully saturated first, then decrease the
applied field with a slower rate such that more cycles are applied to the structure and smaller minor
hysteresis loops can be formed, which eventually results in a smaller remanence.

4.2.2. Generation of Higher-order Harmonics

A well-known consequence of nonlinearity is the generation of higher-order harmonics in a dynamic
problem. Here, we investigate such a phenomenon using the model adopted from TEAM workshop
problem 32 [47], where a three-limbed ferromagnetic core is considered. As shown in Fig. 6, the
core is made of five layers of 0.48-mm-thick Fe-Si 3.2%wt laminations, having a conductivity of
σ = 1.78 × 106 S/m. Two 90-turn windings are placed on the external limbs to supply excitations. In
this problem, the excitation current flowing in each winding is a sinusoidal function with a magnitude
of 1.15 A and a frequency of 10 Hz. The Fe-Si material is modeled by the inverse J-A model with the
Langevin anhysteretic relation. The model parameters are chosen as Ms = 1.168×106 A/m, a = 60 A/m,
kp = 130 A/m, α = 10−4, and c = 0.2.

With the 10-Hz sinusoidal current excitation, the magnetic flux density is solved and shown in
Fig. 7. From this figure, it can be seen clearly that the magnetic flux flowing in the core follows
the right-hand rule. The field singularities can also be observed at the corners of the structure. The
magnetization M and magnetic field H at two observation points are recorded. One is at the center of
the center limb and the other one is at the center of the right limb. The hysteresis loops at these two
locations are shown in Fig. 8, from which different hysteresis behavior can be observed. The magnetic
flux B at these two observation locations are also recorded and shown in Fig. 9 as a function of time.

To demonstrate the generation of higher-order harmonics, the magnetic flux results in the time
domain are converted into the frequency domain using the Fourier transform. The power spectrum of
the excitation current and the corresponding magnetic flux are shown in Fig. 10. From these figures, it
is very clear that the input current has a power concentrating at 10 Hz, as expected. The magnetic flux,
as a nonlinear response, contains a power spectrum distributing not only at the fundamental frequency
of 10 Hz, but also at higher-order harmonics of 30 Hz, 50 Hz, 70 Hz, etc., with a decreasing power
magnitude, which indicates that the higher-order harmonics are captured accurately. This example

Figure 6. Problem setting and dimensions of the ferromagnetic core in TEAM problem 32.
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Figure 7. Magnetic flux density distribution on the ferromagnetic core (only one fourth is shown due
to symmetry). The magnitude and three components of the B vector are shown.

(a) (b)

Figure 8. Numerical results of TEAM problem 32 solved by the nonlinear TDFEM with a Newton-
Raphson scheme and inverse J-A hysteresis model. (a) Hysteresis loop observed at the center of the
center limb. (b) Hysteresis loop observed at the center of the right limb.

(a) (b)

Figure 9. Numerical results of TEAM problem 32 solved by the nonlinear TDFEM with a Newton-
Raphson scheme and inverse J-A hysteresis model. (a) Magnetic flux density versus time at the center
of the center limb. (b) Magnetic flux density versus time at the center of the right limb.
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(a) (b)

Figure 10. Power spectrum distribution of the excitation current and the responding magnetic flux at
(a) the center limb and (b) the right limb.

demonstrates successfully the capability of the proposed nonlinear time domain solver in predicting the
nonlinear behavior of a ferromagnetic device.

Note that for time-harmonic nonlinear problems, the harmonic balance method [48] can be employed
to solve for higher-order harmonics with a frequency-domain solver. However, when the problem is not
time harmonic, such a method cannot be applied because the response will have a continuous spectrum
distribution. One example would be the demagnetization process discussed in the preceding section.
As a result, the time-domain nonlinear solver is much more versatile.

5. CONCLUSION

In this work, a numerical solution to nonlinear magnetic problems was formulated with a full-wave
time-domain finite element method in three dimensions. Nonlinear magnetic hysteresis models were first
introduced. The vector curl-curl equation was then formulated in the time domain with the magnetic
vector potential employed as the unknown function. Both Newton-Raphson and fixed-point methods
were explored and the corresponding formulations were constructed. The capability of these formulations
were demonstrated through several well-acknowledged numerical examples. The applications in the
simulation of magnetic hysteresis and demagnetization process were shown, and the prediction of the
harmonic generation was also demonstrated.
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