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A Novel Wavenumber Domain Algorithm for Bistatic SAR Imaging
Based on Equivalent Monostatic Model

Zongliang Wu*, Xiaoling Zhang, and Xiliang Wu

Abstract—Compared with traditional monostatic synthetic aperture radar (SAR), bistatic SAR
(BiSAR) has stronger advantages in terms of anti-interference and anti-strike abilities. However, the
complex system structure of BiSAR brings new difficulties to imaging processing. In order to make the
imaging algorithms of traditional monostatic SAR apply to BiSAR imaging as well, this paper proposes
an equivalent monostatic model for BiSAR. This model mainly provides two benefits: (1) The equivalent
monostatic range history has the form of hyperbolic function; (2) The equivalent monostatic velocity of
any scattering point in the observed scene, with respect to the radar platform, is not only the same but
also invariant with the equivalent monostatic range. Due to the above benefits, a novel wavenumber
domain algorithm (WDA) is further proposed for BiSAR imaging. Finally, the experimental results
demonstrate that the proposed algorithm is effective and feasible.

1. INTRODUCTION

At present, bistatic synthetic aperture radar (BiSAR) is widely used in practice. Relative to traditional
monostatic SAR, BiSAR can obtain more abundant scattering information for imaging targets, and it
also has stronger anti-interference and anti-strike abilities. However, the complex system structure of
BiSAR brings new challenges to imaging processing. Compared with other conventional SAR imaging
algorithms, such as range-Doppler algorithm (RDA) [1–3] and chirp scaling algorithm (CSA) [4–6],
wavenumber domain algorithm (WDA) [7–9] can perform accurate imaging for all squint angles and
all aperture lengths, so long as the range history can be denoted as the hyperbolic function, and the
radial velocity, with respect to the radar platform, is invariant with the range. When applying WDA
to BiSAR imaging, the prior condition is to acquire the accurate two-dimensional (2D) spectrum.

Owing to the fact that the range history of BiSAR is no longer the form of hyperbolic function, it
is not available to employ the principle of stationary phase (POSP) to directly deduce the analytical 2D
spectrum of BiSAR. Based on the principle of least squares [10, 11], this paper proposes an equivalent
monostatic range history model for BiSAR. This model is referred to as the equivalent monostatic SAR.
It mainly has two advantages: on the one hand, the range history of the equivalent monostatic SAR can
be expressed in the form of hyperbolic function; on the other hand, the radial velocity of the equivalent
monostatic SAR is fixed and invariant with the equivalent monostatic range. For the above advantages,
the 2D spectrum of BiSAR can be computed conveniently. Ultimately, according to the computed 2D
spectrum, a novel WDA is proposed for BiSAR imaging.

2. EQUIVALENT MONOSTATIC MODEL FOR BISAR

The geometric structure of BiSAR is depicted in Fig. 1, where X-Y-Z denotes the reference coordinate
system, and O is the coordinate origin; the subscripts T and R represent the transmitter and receiver,
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Figure 1. The geometric structure of BiSAR.

respectively; u denotes the slow-time; assume that Ω denotes the observed scene, and P(P ∈ Ω) is a
scattering point. When u = 0, the spatial locations of the transmitter and receiver are expressed as{

P0T = [x0T y0T zT]T

P0R = [x0R y0R zR]T
(1)

The velocity vectors of the transmitter and receiver are defined as{
VT = [vxT vyT 0]T

VR = [vxR vyR 0]T
(2)

According to Eq. (1) and Eq. (2), it is easy to calculate the locations of the transmitter and receiver at
slow-time u, namely {

PT (u) = P0T + VT · u
PR (u) = P0R + VR · u (3)

where −T/2 ≤ u≤ T/2 (T denotes the synthetic aperture time).
Assume that the scattering point P is located at P = [x y z]T, so the range histories of the

transmitter and receiver with respect to P are obtained by⎧⎨
⎩

RT (u;P) = ‖PT (u) − P‖ =
√

‖VT‖2 · u2 + 2VT
T (P0T − P) · u + ‖P0T − P‖2

RR (u;P) = ‖PR (u) − P‖ =
√

‖VR‖2 · u2 + 2VT
R (P0R − P) · u + ‖P0R − P‖2

(4)

where ‖·‖ denotes the 2-norm of vector. Via Eq. (4), the range history R (u;P) of BiSAR is as follows:

R (u;P) = RT (u;P) + RR (u;P)

=
√
‖VT‖2 · u2 + 2VT

T (P0T − P) · u + ‖P0T − P‖2

+
√
‖VR‖2 · u2 + 2VT

R (P0R − P) · u + ‖P0R − P‖2 (5)

From Eq. (5), the range history of BiSAR has the form of double square root (DSR), and it is much
different from that of traditional monostatic SAR (The range history of traditional monostatic SAR has
the form of hyperbolic function).
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For monostatic SAR, its transmitter and receiver are both identical, thus they have the same
position and velocity vector:

P0T = P0R = P0 (6)

VT = VR = V (7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), we can acquire the range history RMono (u;P) of monostatic
SAR.

RMono (u;P) = 2
√

‖V‖2 · u2 + 2VT (P0 − P) · u + ‖P0 − P‖2 (8)

It is obvious that Eq. (8) has the form of hyperbolic function. Let f (u; b0, b1, b2) denote the general
hyperbolic function, then we have

f (u; b0, b1, b2) =
√

b0 + b1 · u + b2 · u2 (9)

where b0, b1 and b2 are the undetermined parameters of f (u; b0, b1, b2).
Next, f (u; b0, b1, b2) and R (u;P) are uniformly sampled on the interval −T/2 ≤ u≤ T/2. The

sampling period is the pulse repetition time. {uj}N
j=1 denote the total sampling points of u that is

continuous, where N is the number of these sampling points. Through the above sampling method,
f (u; b0, b1, b2) and R (u;P) can be rewritten in discrete form:

f (uj; b0, b1, b2) =
√

b0 + b1 · uj + b2 · u2
j (1 ≤ j ≤ N) (10)

R (uj ;P) = RT (uj ;P) + RR (uj ;P) (1 ≤ j ≤ N) (11)

Via Eq. (11), the vector R (P) = [R (u1;P) R (u2;P) · · · R (uN ;P)]T can be obtained, which is
called the range history vector of BiSAR.

Based on Eqs. (10) and (11), we build the following equation system:
U · b = c (12)

where b = [b0 b1 b2]
T, c =

[
R2 (u1;P) R2 (u2;P) · · · R2 (uN ;P)

]T, U =

⎡
⎢⎢⎣

1 u1 u2
1

1 u2 u2
2

...
...

...
1 uN u2

N

⎤
⎥⎥⎦ (U is

a Vandermonde matrix). By solving Eq. (12), the least squares solution of b = [b0 b1 b2]
T can be

acquired by
b =

[
UHU

]−1
UHc (13)

where
[
UHU

]−1denotes the inverse matrix of UHU, and
[
UHU

]−1 UH denotes the pseudo-inverse
matrix of U.

The concrete formulas in regard to b0, b1 and b2 are given below.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 =
N∑

j=1

α0,jR
2 (uj ;P)

b1 =
N∑

j=1

α1,jR
2 (uj ;P)

b2 =
N∑

j=1

α2,jR
2 (uj ;P)

(14)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0,j =
2∑

q=0

β0,qu
q
j

α1,j =
2∑

q=0

β1,qu
q
j

α2,j =
2∑

q=0

β2,qu
q
j

(15)

In Eq. (15), q = 0, 1, 2; β0,q is the element of
[
UHU

]−1 at the first row and the (q + 1)th column; β1,q is
the element of

[
UHU

]−1 at the second row and the (q + 1)th column; β2,q is the element of
[
UHU

]−1 at
the third row and the (q + 1)th column. Since U is a Vandermonde matrix,

[
UHU

]−1 must exist. The
parameters b0, b1 and b2 obtained by Eq. (14) and Eq. (15) are optimal in the sense of least squares.

Then combining Eq. (8) with Eq. (9), the equivalent monostatic range history R̂Mono (u;P) for
BiSAR is represented as

R̂Mono (u;P) = 2
√

r2
0 (P) − 2V r0 (P) sin θ (P) · u + V 2 · u2 (16)

The mathematic model defined by Eq. (16) is referred to as the equivalent monostatic SAR, and
R̂Mono (u;P) is called the range history of the equivalent monostatic SAR. In Eq. (16), V is the equivalent
monostatic velocity; r0 (P) is the initial range of the equivalent monostatic SAR; θ (P) is the initial
squint angle of the equivalent monostatic SAR. V , r0 (P) and θ (P) have the following expressions:

V =
1
2

√√√√ N∑
j=1

α2,jR2 (uj ;O) (17)

r0 (P) =
1
2

√√√√ N∑
j=1

α0,jR2 (uj ;P) (18)

θ (P) = arcsin

⎛
⎜⎜⎜⎜⎜⎝−

N∑
j=1

α1,jR
2 (uj ;P)

8V r0 (P)

⎞
⎟⎟⎟⎟⎟⎠ (19)

From Eqs. (16) and (17), the range history R̂Mono (u;P) of the equivalent monostatic SAR has the
form of hyperbolic function, and the equivalent monostatic velocity V is a constant invariant with
R̂Mono (u;P). These results will be helpful for deriving the 2D spectrum of BiSAR.

The approximation error e (u;P) of R̂Mono (u;P) is defined by

e (u;P) = R̂Mono (u;P) − R (u;P) (20)

According to e (u;P), we can obtain the following constraints [12]:

max
−T/2≤u≤T/2

P∈Ω

|e (u;P)| ≤ λ

4
(21)

where |e (u;P)| denotes the absolute value of e (u;P), and λ denotes the wavelength of the carrier wave.
If the scattering point P satisfies Eq. (21), e (u;P) has little influence on the final imaging result, which
can be neglected. In other words, when Eq. (21) is satisfied, the equivalent monostatic SAR model
is accurate. So long as all scattering points in the observed scene Ω satisfy Eq. (21), BiSAR can be
transformed into the equivalent monostatic SAR. Further, we are able to use the imaging algorithms of
traditional monostatic SAR to focus the echo data of BiSAR.



Progress In Electromagnetics Research M, Vol. 45, 2016 117

3. NOVEL WAVENUMBER DOMAIN ALGORITHM FOR BISAR IMAGING

Based on the information in the previous section, the range history R̂Mono (u;P) (see Eq. (16)) has the
form of hyperbolic function, and the equivalent monostatic velocity V (see Eq. (17)) is independent of
R̂Mono (u;P). These conclusions are in favor of using wavenumber domain algorithm (WDA) to achieve
imaging. In this section, a novel WDA is proposed for BiSAR imaging.

Similar to traditional monostatic SAR, we directly provide the 2D spectrum S (f, fu) of the
equivalent monostatic SAR. Although this 2D spectrum is similar with that of traditional monostaitc
SAR, some important parameters need to be redefined. S (f, fu) is expressed as

S (f, fu) =
∫
Ω

σ (P) exp

(
−j4π

rb (P)
c

√
(fc + f)2 − c2f2

u

4V 2
− j2π

x (P)
V

fu

)
dP (22)

where f is the frequency corresponding to the fast-time, called fast-frequency; fu is the frequency
corresponding to the slow-time, called slow-frequency; Ω is the observed scene; σ (P) denotes
the backscattering coefficient of the scattering point P; c denotes the propagation speed of the
electromagnetic wave; fc denotes the carrier frequency; V is the equivalent monostatic velocity; rb (P)
and x (P) are as follows:

rb (P) = r0 (P) cos θ (P) (23)

x (P) = r0 (P) sin θ (P) (24)

where r0 (P) and θ (P) (see Eq. (18) and Eq. (19)) are the initial range and initial squint angle of the
equivalent monostatic SAR, respectively.

The reference function Sref (f, fu) is defined by

Sref (f, fu) = exp

(
−j4π

rb (O)
c

√
(fc + f)2 − c2f2

u

4V 2
− j2π

x (O)
V

fu

)
(25)

where O is the coordinate origin. Then multiplying S (f, fu) with the conjugate of Sref (f, fu), the 2D
spectrum SRFM (f, fu) is acquired.

SRFM (f, fu) = S (f, fu) S∗
ref (f, fu)

=
∫
Ω

σ (P) exp

(
−j4π

Δrb (P)
c

√
(fc + f)2 − c2f2

u

4V 2
− j2π

Δx (P)
V

fu

)
dP (26)

where S∗
ref (f, fu) denotes the conjugate of Sref (f, fu); Δrb (P) and Δx (P) have the following

expressions:
Δrb (P) = rb (P) − rb (O) (27)

Δx (P) = x (P) − x (O) (28)

Next, we employ Stolt transform [12] to handle Eq. (26), that is, a new fast-frequency f ′ is redefined.

f ′ =

√
(fc + f)2 − c2f2

u

4V 2
− fc (29)

From Eq. (29), the 2D spectrum SRFM (f, fu) is rewritten as

S′
RFM

(
f ′, fu

)
=

∫
Ω

σ (P) exp
(
−j4π

Δrb (P)
c

(
fc + f ′)− j2π

Δx (P)
V

fu

)
dP (30)

Once S′
RFM (f ′, fu) is obtained, the imaging processing can be carried out. Firstly, S′

RFM (f ′, fu) is
resampled with respect to the fast-frequency f ′. Secondly, we take the operation of inverse fast Fourier
transform (IFFT) successively on the fast-frequency f ′ and slow-frequency fu. After accomplishing the
two steps, a focused BiSAR image can be gotten.

In order to evaluate the focusing level of the novel WDA proposed by this paper, a concept of the
matching ratio is introduced below. Similar to the generating method of the range history vector R (P)of
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BiSAR in Section 2, the vectors R̂Mono (P) =
[
R̂Mono (u1;P) R̂Mono (u2;P) · · · R̂Mono (uN ;P)

]T

and e (P) = [e (u1;P) e (u2;P) · · · e (uN ;P)]T can be acquired respectively by uniformly sampling
R̂Mono (u;P) and e (u;P) on the interval −T/2 ≤ u≤ T/2. R̂Mono (P) is called the range history vector
of the equivalent monostatic SAR, and e (P) is called the approximation error vector.

According to the vectors e (P), R̂Mono (P) and R (P), Eq. (21) is rewritten in the discrete form:

max
1≤j≤N
P∈Ω

|e (uj;P)| = max
1≤j≤N
P∈Ω

∣∣∣R̂Mono (uj ;P) − R (uj ;P)
∣∣∣ ≤ λ

4
(31)

where e (uj ;P) and R̂Mono (uj;P)−R (uj;P) are the j-th component of em (P) and R̂Mono (P)−R (P),
respectively. Owing to Eq. (31), the following constraints can be obtained.∣∣∣R̂Mono (uj;P) − R (uj ;P)

∣∣∣ ≤ λ

4
(1 ≤ j ≤ N) (32)

In this section, Nα (P) denotes the number of the components of R̂Mono (P)−R (P)that satisfy Eq. (32).
Since N is the number of the total components of R̂Mono (P)−R (P), the matching ratio α (P) between
R̂Mono (P) and R (P) is defined as α (P) = Nα (P)/N (α (P) ∈ [0, 1]).

The focusing process of WDA is essentially the coherent accumulation of pulse. For the scattering
point P, when α (P) = 1, all pulses have realized correct accumulation via the novel WDA during a
synthetic aperture time. Therefore, when α (P) = 1, the novel WDA has achieved accurate focusing
for P, at this time R̂Mono (P) and R (P) reach complete matching. Via the matching ratio α (P),
we can conclude: for the scattering point P, the focusing performance of the novel WDA becomes
worse and worse as α (P) decreases. The matching ratio can be regarded as a performance parameter
used for evaluating the focusing level of the novel WDA. In the next section, simulation and practical
experiment data of BiSAR are introduced to validate the effectiveness and correctness of the proposed
imaging algorithm.

4. IMAGING EXPERIMENTS

4.1. Simulation Experiment

In this subsection, we design a simulation experiment to examine the novel WDA proposed by this
paper. The simulation parameters used for BiSAR are listed in Table 1. In the observed scene, there
are 5 scattering points, whose locations are shown in Fig. 2. Using the novel WDA to deal with the
scene in Fig. 2, the imaging result is depicted in Fig. 3. Compared with Fig. 2, it is obvious that all the
scattering points in Fig. 3 have been focused at the correct positions.

Through further calculation, the matching ratio of each scattering point in Fig. 3 is equal to 1,
so the novel WDA has realized accurate focusing for all scattering points in Fig. 3. The simulation
experiment verifies the novel WDA can well handle the echo data of BiSAR.

Table 1. Simulation parameters for BiSAR.

Simulation parameters Transmitter Receiver
Initial position (Km) (−0.5,−8, 8) (−0.1,−3, 3)

Platform velocity (m/s) (100, 0, 0) (50, 100, 0)
Carrier frequency (GHz) 10

Sampling frequency (MHz) 200
Range bandwidth (MHz) 150

Pulse width (us) 2
Pulse repetition frequency (Hz) 1000
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Figure 2. The locations of the scattering points.
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Figure 3. The imaging result of the simulation
data from the novel WDA.

4.2. Practical Experiment

In order to further validate the imaging effect of the novel WDA, we employ the practical experiment
data of airborne BiSAR. The system parameters used for airborne BiSAR are listed in Table 2. In this
subsection, the practical experiment data are first focused by back projection algorithm (BPA) [13–15],
and the corresponding imaging result is shown in Fig. 4. It is important to note that BPA is considered
to have the best focusing performance in SAR imaging field. Then, the imaging result for the novel
WDA is depicted in Fig. 5.

Figure 4. The imaging result of the practical
experiment data from BPA.

Figure 5. The imaging result of the practical
experiment data from the novel WDA.

Through further computation, the matching ratio of each scattering point in Fig. 5 is equal to 1,
so the novel WDA has achieved accurate focusing for all scattering points in Fig. 5. Observing Fig. 4
and Fig. 5, it is clear that the novel WDA has almost the same imaging effect with BPA. However, their
computation complexities are different. Let I (P) denote SAR image of the scattering point P. Assume
that the size of I (P) and the size of received data are both N × N . The complexity of BPA is about
O

(
N3

)
, but that of the novel WDA is only O

(
N2 log2 N

)
. This practical experiment shows that the

novel WDA can well deal with the measured data in practice, and it also verifies the effectiveness and
correctness of our novel algorithm.
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Table 2. System parameters for airborne BiSAR.

System parameters Transmitter Receiver
Initial position (m) (125,−965, 300) (−125,−715, 300)

Platform velocity (m/s) (151.3958/3.6, 0, 0)
Carrier frequency (GHz) 9.618

Sampling frequency (MHz) 120
Range bandwidth (MHz) 80

Pulse width (us) 20
Pulse repetition frequency (Hz) 500

5. CONCLUSION

In this paper, we first propose an equivalent monostatic model for BiSAR. Based on this model, a novel
imaging algorithm for BiSAR in wavenumber domain is further established. Because of solving system of
linear equations can be easily carried out in mathematics, the proposed algorithm has strong operability
in practice. It makes us handle the echo data of BiSAR in the manner of traditional monostatic SAR.
The imaging results of simulation and practical experiment have validated that the proposed algorithm
can well focus the echo data of BiSAR, and meanwhile its computation complexity is lower than back
projection algorithm. In addition, the equivalent monostatic model can be also extended to other BiSAR
imaging algorithms.
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