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Target Detection in Compound-Gaussian Clutter
with Adaptive OFDM Radar

Yang Xia*, Zhiyong Song, Zaiqi Lu, and Qiang Fu

Abstract—This paper mainly deals with the problem of target detection in compound-Gaussian clutter
with orthogonal frequency division multiplexing (OFDM) radar. First, the OFDM measurement model
is developed to compound-Gaussian clutter by taking advantage of frequency diversity of OFDM radar
waveform and we devise a generalized likelihood rate test (GLRT) detector where the target scattering
coefficients and clutter covariance matrix are unknown. Then, we propose an adaptive waveform design
scheme based on maximizing Mahalanobis distance of the distributions under two hypothesises to
improve the detection performance. Finally, the effectiveness of the proposed detector as well as the
adaptive waveform design method is demonstrated via numerical examples.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) was originally proposed as a digital modulation
technique in communication fields and later on introduced into radar community [1, 2]. The first
investigations on the suitability of multicarrier waveforms for radar applications were published in
2000 by Levanon [3]. As a new broadband radar signal, OFDM has drawn much attention due
to the flexibly available spectral resources, good ambiguity function (AF) and frequency diversity
characteristic [4, 5]. The frequency diversity provides additional information that enhances targets
detection from background clutter, especially in multipath scenarios [6]. A large amount of research
works have been done on OFDM radar such as target detection and tracking [7], direction of arrival
(DOA) estimation [8] and synthetic aperture radar (SAR) imaging [9], etc.

The target detection problem with OFDM radar has attracted considerable attention recently.
Focusing on the issue of moving target detection in the presence of multipath reflections, an optimized
detection algorithm with OFDM radar was proposed in [10], where the spatial and frequency diversities
are exploited. The problem of target detection in multipath scenarios is reformulated as sparse spectrum
estimation and the spectral parameters of OFDM radar waveform are optimized based on multi-objective
optimization (MOO) technique to improve the detection performance [11]. The performances of
generalized likelihood ratio test (GLRT) detector with OFDM radar in non-Gaussian clutter (including
Log-normal, Weibull and K-compound distribution) were investigated in [12, 13] and target fluctuations
were also taken into consideration.

In real clutter environments, the distribution of clutter usually deviates from the Gaussian
assumption especially in high-resolution radar or low grazing angle scenario. Instead, a compound-
Gaussian model is adopted which is the product of a temporally slow-changing texture component and
a locally fast-changing speckle component [14].

In this paper, we address the problem of target detection in compound-Gaussian clutter with OFDM
radar. Since the target scattering coefficients and clutter covariance are unknown, a GLRT detector
is developed where the unknown parameters are replaced with their maximum likelihood estimates
(MLEs). Based on maximizing Mahalanobis distance of the distributions under two hypothesises, an

Received 20 October 2015, Accepted 11 December 2015, Scheduled 19 December 2015
* Corresponding author: Yang Xia (xiayang@nudt.edu.cn).
The authors are with the ATR Key Laboratory, National University of Defense Technology, Changsha 410073, P. R. China.



92 Xia et al.

adaptive waveform design method is proposed to improve the detection performance. Several numerical
examples are provided to evaluate performance of the proposed detector and the adaptive waveform
design method.

2. PROBLEM FORMULATION

2.1. Measurement Model

We consider a monostatic radar employing an OFDM signaling system, which simultaneously transmits
N subcarriers. The time duration of a single pulse is tb and the subcarrier spacing is Δf . To keep
orthogonal between different subcarriers, Δf is the reciprocal of tb. The complex envelop of a single
pulse can be represented as

s(t) =
N−1∑
n=0

wnej2π(f0+nΔf)t, 0 ≤ t ≤ tb (1)

where f0 is the carrier frequency and w = [w0, w1, . . . , wN−1]T represent the complex weights
transmitted over different subcarriers and satisfying

∑N−1
n=0 |wn|2 = 1. The total bandwidth is B = NΔf .

Considering a moving target with relative velocity v at a distance R from the radar, the geometry
of this scenario is shown in Figure 1. The received signal corresponding to the n-th subchannel can be
written as

yn(t) = sn(γ(t − τ)) + cn(t) (2)
where γ = 1+β represents the stretching or compressing in time of the reflected signal, and β = 2〈v,u〉/c
is the Doppler spreading factor. u and c denote the unit direction of arrival (DOA) vector and the
propagation speed, respectively; τ is the roundtrip delay; cn(t) represents the background clutter
corresponding to the n-th subchannel. Substituting (1) into (2) yields

yn(t) = wnxne−j2πfnγτej2πfnβt + cn(t) (3)
where fn = f0 + nΔf and xn denotes the target scattering coefficient corresponding to the n-th
subcarrier. We incorporate information of the known range cell (denoted by the roundtrip delay τ)
by substituting t = τ +mTr (m = 0, 1, . . . ,M −1), where Tr and M denote the pulse repetition interval
(PRI) and pulse number within one coherent processing interval (CPI) respectively. Hence, the received
signal can be written as

yn(m) = wnxnφn(m) + cn(m) (4)
where

φn(m) = e−j2πfnτej2πfnβmTr (5)
Stacking the measurements of all subchannels into an N × 1 vector, we get

y(m) = WΦ(m)x + c(m) (6)
where

v

R
x

y

u

Figure 1. Schematic representation of moving target detection scenario.
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• y(m) = [y0(m), y1(m), . . . , yN−1(m)]T .

• W = diag(w0, w1, . . . , wN−1) is an N ×N complex diagonal matrix that represents the transmitted
weights.

• Φ(m) = diag(φ0(m), φ1(m) . . . , φN−1(m)) is an N × N diagonal matrix that contains Doppler
information of the target.

• c(m) = [c0(m), c1(m), . . . , cN−1(m)]T is an N × 1 vector of clutter returns.

Then concatenating all the temporal data into an NM × 1 vector, we obtain

y = Φx + c (7)

where

• y =
[
y(0)T ,y(1)T , . . . ,y(M − 1)T

]T
.

• Φ = [WΦ(0),WΦ(1), . . . ,WΦ(M − 1)]T is an NM × N matrix containing the target Doppler
information over different pulses.

• c =
[
c(0)T , c(1)T , . . . , c(M − 1)T

]T is an NM × 1 vector comprising the clutter returns.

2.2. Statistical Model

In this paper, the clutter is modeled as compound-Gaussian distribution which is the product of texture
and speckle component. The texture is assumed to vary from pulse to pulse while the speckle changes
between different subchannels. More specifically, the clutter is modeled as [15]

c(m) =
√

umgm, m = 0, 1, . . . ,M − 1 (8)

where {um}M−1
m=0 area nonnegative real random process and {gm}M−1

m=0 are complex Gaussian vectors
with known covariance matrix Σ. Thus c is the compound-Gaussian random vector with unknown
covariance matrix

R = E[ccH ] = U ⊗ Σ (9)

where U = diag(u0, u1, . . . , uM−1) which is considered as a deterministic matrix with unknown
parameters {u0, u1, . . . , uM−1}. ⊗ and E[·] denotes Kronecker product and the statistical expectation,
respectively.

3. DETECTOR DESIGN

In this section, we develop a statistic detection test for the OFDM measurement model in Section 2. The
essence of detection is to judge whether a target is present or not in the range cell under test. This is a
classical two-hypothesis detection problem. So, we construct a decision problem to choose between two
possible hypotheses: the null hypothesis (target-free hypothesis) and the alternate hypothesis (target-
present hypothesis), which can be expressed as{ H0 : y = c

H1 : y = Φx + c (10)

In this typical two-hypothesis detection problem, Neyman-Pearson (NP) detector is the optimal
detector which maximizes the probability of detection at a constant probability of false alarm. However,
x and U are unknown in our problem. Therefore, a GLRT detector is adopted and the unknown
parameters are replaced with their MLEs. The detection problem can be denoted as the following
decision

maxx,v,u0,...,uM−1
f(y|H1,x,v, u0, . . . , uM−1)

maxu0,...,uM−1
f(y|H0, u0, . . . , uM−1)

H1
≶
H0

γ (11)

where

• γ is the detection threshold which is dependent on the false alarm rate.
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• f(y|H0, u0, . . . , uM−1) denotes the probability density function (PDF) under H0 hypothesis, which
is

f(y|H0, u0, . . . , uM−1) =
1

πNM det(R)
exp

{−yHR−1y
}

(12)

• f(y|H1, u0, . . . , uM−1,x) denotes the PDF under H1 hypothesis, which is

f(y|H1, u0, . . . , uM−1,x) =
1

πNM det(R)
exp

{−(y − Φx)HR−1(y − Φx)
}

(13)

To determine the MLEs of {u0, u1, . . . , uM−1}, the log-likelihood function of (12) is

lnf(y|H0, u0, . . . , uM−1) = −MN ln π − M ln det(Σ) − N

M−1∑
m=0

um −
M−1∑
m=0

yH(Emm ⊗ Σ−1)y
um

(14)

where Emm denotes the elementary matrix with component e(m,m) = 1 for m = 0, 1, . . . ,M − 1 and
zeros for others.

Taking derivatives of (14) with respect to um and making it equal to zero, we get the MLE of um

under H0

ûm =
yH(Emm ⊗ Σ−1)y

N
(15)

Similarly, the log-likelihood function of (13) is

lnf(y|H1, u0, . . . , uM−1,x) = −MN ln π − M ln det(Σ)

−N

M−1∑
m=0

um −
M−1∑
m=0

(y − Φx)H(Emm ⊗ Σ−1)(y −Φx)
um

(16)

Taking derivatives of (16) with respect to um and making it equal to zero, we get the MLE of um under
H1

ûm =
(y −Φx)H(Emm ⊗ Σ−1)(y − Φx)

N
(17)

The MLE of x can be obtained via

arg min
x

{(y − Φx)HR−1(y − Φx)} (18)

The solution of (18) is [16]
x̂ = (ΦHR−1Φ)−1ΦHR−1y (19)

From (17) and (19) we know that {um}M−1
m=0 and x do not yield close-form MLE expressions. The

usual way to circumvent this drawback is the cyclic maximisation method, which alternately search for
the solution until convergence (see [17] for more details).

Finally, substituting ûm, x̂ under H1 and H0 into (11)–(13), we come up with the following decision
rule

M−1∏
m=0

yH(Emm ⊗ Σ−1)y
(y − Φx)H(Emm ⊗ Σ−1)(y − Φx)

H1
≶
H0

γ (20)

4. ADAPTIVE WAVEFORM DESIGN

In this section, we derive an adaptive waveform design method based on maximizing Mahalanobis
distance of the distributions under two hypotheses to improve the detection performance. Since target
scattering coefficients vary at different subcarriers, we can change the transmitted weights accordingly.
The OFDM measurements under two possible hypotheses are distributed as{ H0 : y ∼ CNNM(0,U ⊗ Σ)

H1 : y ∼ CNNM(Φx,U ⊗ Σ)
(21)
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Mahalanobis distance is a useful tool in multivariate statistical analysis and can be thought as
a metric to measure the similarity between two distributions. It has been widely applied in outlier
detection, data mining, cluster analysis and classification, etc. Besides Mahalanobis distance, there are
also some other distance measures to evaluate the similarity, such as Bhattycharya distance, Hellinger
distance and Kullback-Leibler divergence, etc. However, these measures are defined in terms of integrals
over the distributions and very few are available in closed form.

In our problem, the measurements under two hypotheses are distributed as complex multivariate
normal distribution with the same covariance but different mean values. A standard measure to evaluate
the similarity of two multivariate normal distributions is Mahalanobis distance [18]. Compared with
other distance measures, Mahalanobis distance is more suitable in our problem considering its low
computational complexity. Thus, we choose Mahalanobis distance as the distance measure. It is known
that the larger the Mahalanobis-distance, the further the two distributions are separated and the better
the detection performance [11, 19]. The squared Mahalanobis distance is defined as [20]

d2 = (Φx)H(U ⊗ Σ)−1(Φx) (22)

Since U = diag {u0, u1, . . . , uM−1} and Φ = [WΦ(0),WΦ(1), . . . ,WΦ(M − 1)]T , Equation (22) can
be reformulated as

d2 =
M−1∑
m=0

umxHΦ(m)HWHΣ−1WΦ(m)x (23)

and

xHΦ(m)HWHΣ−1WΦ(m)x = tr
{
xHΦ(m)HWHΣ−1WΦ(m)x

}
= tr

{
Σ−1WΦ(m)xxHΦ(m)HWH

}
(24)

According to the theorem in [9], we have

tr
{
Σ−1WΦ(m)xxHΦ(m)HWH

}
= wH

[
(Φ(m)xxHΦ(m)H)T � Σ−1

]
w (25)

where � denotes Hadamard product. Finally, the optimization problem can be represented as

wopt = arg max
w∈CN

{
wH

[
M−1∑
m=0

um(Φ(m)xxHΦ(m)H)T � Σ−1

]
w

}
subject to wHw = 1 (26)

In (26), wHw = 1 is the energy constraint and the above problem is the well-known Rayleigh
quotient [21]. Thus, the solution of (26) is the eigenvector corresponding to the largest eigenvalue of

[
M−1∑
m=0

um(Φ(m)xxHΦ(m)H)T � Σ−1]. First, a non-optimal w will be transmitted in the first M pulses

and then substituting the MLEs of x̂ and {ûm}M−1
m=0 into (26), the optimal transmit weights wopt are

obtained and transmitted in the next M pulses.

5. NUMERICAL RESULTS

In this section, we present several numerical examples to illustrate performances of the proposed GLRT
detector. Since the close-form expression for detection probability (Pd) and false alarm rate (Pfa) are
difficult to obtain, we resort to Monte Carlo (MC) method which is based on 100/Pfa independent
trials.

We assume that the compound-Gaussian clutter is distributed as K distribution, whose PDF is

f(z) =

√
2v/μ

Γ(v)

(√
2v
μ

z

)v

Kv−1

(√
2v
μ

z

)
(27)

and the texture component follows a gamma distribution with PDF

f(s) =
1

Γ(v)

(
v

μ

)v

sv−1e−v/μsκ(s) (28)
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where Γ(·) is Eulerian Gamma function, κ(·) is unit step function and Kv−1(·) is the modified Bessel
function of second kind with order v − 1. μ and v are the scale and shape parameter, respectively.
Noting that v is related to the spikiness of clutter, the smaller the value of v, the spikier the clutter. If
v → ∞, the K distribution will become Gaussian.

Additionally, the speckle component is assumed to be Gaussian distribution with exponential
correlation structure covariance matrix [22]

[Σ]i,j = ρ|i−j|, for i, j = 0, 1, . . . , N − 1 (29)

where ρ is one-lag correlation coefficient. The signal-to-clutter ratio (SCR) is defined as

SCR =
1
M

(Φx)H(Φx)
E{τ}tr(Σ)

(30)

and the simulation parameters are shown in Table 1.
In the simulation, we choose different subcarriers (N = 1, 3, 5) to demonstrate the influence of

frequency diversity on the detection performance. Though we select only a small number of subcarriers
in the simulation, our method is applicable to a larger number of subcarriers (we have not specified
the value of N in the derivation). From Equation (7) we can see that dimension of the measurement is
NM ×1. As the number of subcarrier increases, the dimension of measurement will grow rapidly and it

Table 1. Parameter settings of the simulations.

Parameters Values Parameters Values
Speed of light c 3 × 108 m/s Bandwidth B 100 MHz

Velocity of target 20 m/s Carrier numbers N 1, 3, 5

Target moving direction random Frequency weights W 1
/√

NIN

Scattering coefficient
matrix of target x

CN (0, 1) Pulse number M 16

Height of radar platform 100 m Pulse repetition interval Tr 2ms
Velocity of radar platform [0 0]T m/s False alarm rate Pfa 10−3

Relative distance between
radar and target

5 km One-lag correlation coefficient ρ 0.9

Height of target 200 m Scale parameter of clutter μ 1
Carrier frequency f0 1 GHz Shape parameter of clutter v 0.5, 1, 100
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Figure 2. Effect of the carrier number on the
detection performance.
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would be difficult to compute. Hence we select a small number of subcarriers to evaluate our algorithm
(in similar literatures, [10] sets N = 2, 4, 6 and [13] sets N = 1, 3, 5).

In Figure 2, we show the effect of carrier number on the detection performance, where Pd is plot
against SCR with different carrier numbers. Parameters used in this simulation include v = 1 and
ρ = 0.9. The curves indicate that performance of the proposed detector is improved with increasing
the number of subcarriers. Specifically, when Pd = 0.9 the performance gap is about 13.4 dB between
N = 1 and N = 3, and about 3.3 dB between N = 3 and N = 5. The results show that the frequency
diversity improves the detection performance in an OFDM radar system.

Figure 3 shows the detection performance with different shape parameters, where N = 3 and
ρ = 0.9. The results show that performance of the GLRT detector is increased with decreasing value of
v. For instance, the performance gap between v = 0.5 and v = 100 is about 6.9 dB when Pd = 0.9. This
is because when v is large enough, the distribution of clutter approaches Gaussian and the detection
performance will become worse due to the clutter model mismatch. In other words,the curves show that
performance of the proposed detector is increased with spikier clutter.

In Figure 4, the effect of correlation coefficient ρ on the detection performance is investigated,
where N = 3 and v = 1. The results indicate that the performance is better with smaller correlation
coefficient. For instance, the performance gap between ρ = 0.2 and ρ = 0.9 is 5.4 dB when Pd = 0.9.
The results indicate the detection performance deceases with the increasing of correlation coefficient.
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Figure 4. Effect of correlation coefficient on the detection performance.
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Figure 5. Detection performance comparison with fixed and adaptive waveform (a) Pd versus SCR
when Pfa = 10−3; (b) Pd versus Pfa when SCR = −10 dB.
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Finally, in Figure 5 we show the detection performance improvement due to the adaptive waveform
design. Parameters used in this simulation include N = 3, 5, ρ = 0.9 and v = 1. Figure 5(a) shows Pd

versus SCR when Pfa = 10−3 while Figure 5(b) shows Pd versus Pfa when SCR = −10 dB. We assume
that equal frequency weights are transmitted in the first M pulses, i.e., w = 1/

√
NI. Then we compute

the optimal values of w through solving (26) for the next M pulses. The results demonstrate that
compared with fixed waveform the detection performance is improved using adaptive waveform design
method proposed in this paper.

6. CONCLUSIONS

In this paper, we developed a GLRT detector for an OFDM radar system in compound-Gaussian clutter
when the target and clutter parameters are unknown. We derived an OFDM radar measurement model
and formulated the detection problem as statistical hypothesis test, where the unknown parameters
are estimated using cyclic maximisation method. We proposed a waveform design method which
adaptively changed the transmitted weights based on Mahalanobis distance. We used MC simulations to
demonstrate the advantage of frequency diversity of an OFDM radar system and detection performance
improvement due to the adaptive waveform design.
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