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Abstract—It has been widely verified that the hybrid finite element - boundary integral - multilevel
fast multipole algorithm (FE-BI-MLFMA) is a general, efficient and accurate method for the analysis
of unbounded electromagnetic problems. A variety of fast methods of FE-BI-MLFMA have been
developed since 1998. In particular, the domain decomposition methods have been applied to FE-
BI-MLFMA and significantly improve the efficiency of FE-BI-MLFMA in recent years. A series of fast
domain decomposition methods (DDMs) of FE-BI-MLFMA have been developed. These fast DDMs
can be roughly classified into two types: Schwarz DDMs and dual-primal finite element tearing and
interconnecting (FETI-DP) DDMs. This paper will first give an overview of the DDMs development
of FE-BI-MLFMA. Then a uniform, consistent, and efficient formulation is presented and discussed
for these fast DDMs of FE-BI-MLFMA. Their computational complexities are analyzed and studied
numerically.

1. INTRODUCTION

The hybrid finite element - boundary integral - multilevel fast multipole algorithm (FE-BI-MLFMA) has
been widely verified to be a powerful numerical technique for computing open region problems, such as
scattering/radiation by objects with complex geometries and inhomogeneous media [1–13]. The method
usually divides the solution domain into inhomogeneous interior and homogeneous exterior regions by
the surface of an object. The field in the interior region is formulated by the finite element method
(FEM), whereas the field in the exterior region is done by the boundary integral equation (BIE). Then
the FE-BI matrix equation of the field in the total solution domain can be established by the field
continuity conditions at the boundary surface. The final FE-BI matrix equation is solved by iterative
solvers, where the key step of matrix-vector multiplication in iterative solvers is accelerated by MLFMA.

Since FE-BI-MLFMA was successfully developed in 1998 [1], a series of works have been made to
further improve the efficiency of FE-BI-MLFMA. These works can be categorized into two groups. One
is to employ higher-order basis functions to reduce the number of unknowns [5–8]; the other is to employ
preconditioners to speed up the convergence of iterative solvers [9–13]. Since the condition number of
the FEM matrix is usually large, the FE-BI matrix is not well-conditioned, sometimes even becomes ill-
conditioned for large and complex objects. Hence, the problem of slow convergence or non-convergence
becomes the bottleneck of FE-BI-MLFMA. Although many preconditioners have been proposed to speed
up the convergence of FE-BI-MLFMA in [5–8], they are not satisfied until the domain decomposition
methods are applied to FE-BI-MLFMA. Because the construction of these preconditioners essentially
requires the inverse of the FEM matrix, the cost of constructing preconditioners for the FE-BI matrix
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equation is expensive. The application of domain decomposition methods (DDMs) fundamentally
reduces the computational complexity of solution to FEM matrix equations.

There are various types of domain decomposition methods [14–17]. Over the past one decade, many
domain decomposition methods have been developed in computational electromagnetics [18–24]. These
domain decomposition methods can be roughly categorized into two types. One is the Schwarz domain
decomposition method (SDDM). This SDDM first requires the inverse of the FEM matrix in each
subdomain, and then performs the iterative solution of the global interface problems established with
the Robin transmission condition (RTC). The other type is the dual-primal finite element tearing and
interconnecting (FETI-DP). FETI-DP first divides the whole solution domain into many subdomains.
These subdomains are separated at the interface between subdomains by the introduced Lagrange
Multiplier (LM) or the cement-elements (CE), but connected at the corners shared by many (more than
two) subdomains. The field in each subdomain is solved and represented by the interface unknowns.
Finally, the matrix equation corresponding to the interface unknowns is solved by iterative solvers [24].
In recent years, these domain decomposition methods have been applied to FE-BI-MLFMA, and many
fast domain decomposition methods have been developed. The SDDM of FE-BI has been developed
in [25, 26]. The conformal FETI-DP DDM of FE-BI-MLFMA has been developed in [27–29] by using
FETI-DP DDM. Based on these studies in [25–29], this paper will present a uniform, consistent, efficient
formulation of FE-BI-MLFMA for conformal/non-conformal Schwarz algorithm, and conformal/non-
conformal FETI-DP. The computational complexities of these fast DDMs are analyzed and studied
numerically.

The rest of the paper is organized as follows. The uniform formulation for fast domain
decomposition algorithms of FE-BI-MLFMA is presented in Section 2. Section 3 studies the
computational complexity of the presented DDM of FE-BI-MLFMA numerically. Conclusions are given
in Section 4.

2. FORMULATION FOR FAST DDMS OF FE-BI-MLFMA

Consider the scattering by an arbitrarily shaped inhomogeneous body. In FE-BI-MLFMA, the solution
region is usually divided into the interior and the exterior regions by the surface of the inhomogeneous
object, denoted here as S [1]. The interior region V is further divided into many subdomains, as shown
in Fig. 1. Suppose the meshes of the surface S in the interior and exterior regions are non-conformal,
Γn,S denotes the interior surface in the nth subdomain, and ΓS,n denotes the exterior surface. The field
in subdomain Vm is formulated into an equivalent variational problem with the functional given by:

F (Em) =
1
2

∫∫∫
Vm

[
(∇× Em) · (μ−1

m,r∇× Em

)− k2
0εm,rEm · Em

]
dV

−jk0Z0

∫∫∫
Vm

Em · JmdV + jk0

∫∫
Γm

(
Em × H̄m

) · n̂mdΓ (1)

where H̄m = Z0Hm, Z0 is the intrinsic impedance in the free-space, k0 the free-space wave number,
and n̂m the outward unit vector normal to Γm. The field in the exterior region is usually formulated
into the following combined field integral equation (CFIE) [1]

πt

(
−1

2
ES + L

(
n̂ × H̄S

)− K (ES × n̂)
)

+ π×
([

−1
2
H̄S + L (ES × n̂) + K

(
n̂ × H̄S

)])
= −πt

(
Ei
)− π×

(
H̄i
)

(2)

where πt(·)n̂ × (·) × n̂ is the surface tangential operator; π×(·)n̂ × (·) is the surface twist tangential
operator; Ei and H̄i are the impressed electromagnetic fields; L and K are the integral-differential
operators defined by

L(X) = −jk0

∫
S

[
I +

1
k2

0

∇∇′·
]
X(r′)G0(r, r′)dS (3)

K(X) =
∫

S
∇G0

(
r, r′

)× X(r′)dS (4)
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Figure 1. Illustration of domain decomposition method of FE-BI-MLFMA.

where I is the identity matrix. The singular point r = r′ is removed in Eq. (4).
To apply DDMs to FE-BI-MLFMA, we need to consider how to connect the field between

interior subdomains, and between interior and exterior regions. There are two kinds of boundary
conditions to connect subdomains, namely the Robin-type transmission condition (RTC) and the
Dirichlet transmission condition (DTC). The RTC can be enforced by two approaches: one is called as
the Lagrange Multiplier-based (LM), the other is called as the cement-element based (CE) [24]. Our
recent study shows that RTC is better than DTC to connect interior subdomains, whereas DTC is better
than RTC to connect interior and exterior regions. The reasons are as follows: (1) the FEM matrix
for each interior subdomain is equivalent to an open system and is immune to the resonant problem
when RTC is used at the interface. In contrast, when DTC is used, the FEM matrix for each interior
subdomain is equivalent to a close system and suffers from the resonant problem; (2) when considering
the connection between the interior FEM and exterior BI regions, the BI itself can be considered as an
infinite higher order RTC to connect the FEM and BI region. Furthermore, because the electromagnetic
field used in the CE approach is more compatible with the field in BI than the Lagrange multipliers
used in the LM approach, the CE approach is better than the LM approach to implement RTC for the
FE-BI system, especially for nonconformal cases. Hence, we employ the following RTC to connect the
field between interior subdomains

απt (Em) + jk0π×
(
H̄m

)
= απt (En) − jk0π×

(
H̄n

)
, (5)

and employ the following DTC to connect field between interior and exterior regions{
πt (Em) = πt (ES)
π×

(
H̄m

)
= −π×

(
H̄S

) (6)

In Eq. (5), the parameter α is complex, usually chosen as jk0 to make the DDM system well posed.
Hence throughout the paper, we let α = jk0. By making use of the connection conditions of Eqs. (5)
and (6), a uniform formulation of various DDMs of FE-BI-MLFMA can be presented as follows.

2.1. Conformal Schwarz DDM

Equations (1) and (5) in the mth subdomain can be discretized by using the conventional FEM as[
Km Bm,bb

(Bm,bb)T Cm,bb

]{
Em

H̄m,b

}
=
{

fm − Bm,sSH̄S

gm,b

}
(7)

where the subscript ‘b’ stands for the interface of the mth subdomain with other subdomains, but does
not include that with the boundary surface of S. The second term of the first line in the right hand
side of Eq. (7) does not exist if the mth subdomain does not connect with the boundary surface of S,
and

[Km] =
∫∫∫

Vm

[(
μ−1

m,r(∇× {Nm}) · (∇× {Nm})T − k2
0εm,r{Nm} · {Nm}T

)]
dV (8)

[Bm,bb] = −jk0

∫∫
Γm,b

{Nm,b} · {Nm,b}T dS, [Bm,sS ] = jk0

∫∫
Γm,s

{NS} · {n̂ × NS}T dS (9)

[Cm,bb] = −jk0

∫∫
Γm,b

{Nm,b} · {Nm,b}T dS (10)

{gm,b} =
∑

n∈neighbor(m)

[Um,mn Vm,mn] {un,b} =
∑

n∈neighbor(m)

[Tm,n] {un,b}, (11)
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with

{un,b} =
{

En,b

H̄n,b

}
, [Um,mn] = −jk0

∫∫
Γm,n

{Nm,b} · {Nn,b}T dS,

[Vm,mn] = jk0

∫∫
Γm,n

{Nm,b} · {Nn,b}T dS (12)

where Nm, NS , Nb are the vector basis functions respectively defined in the interior volume element,
boundary surface element, and interface surface element. {gm,b} denotes the contribution from the
interface unknowns of all neighbors of the mth subdomain. In SDDM, the unknowns in each subdomain
are grouped into the interior and interface unknowns. Thus Eq. (7) can be rewritten as⎡

⎣ Km,ii Km,ib 0
Km,bi Km,bb Bm,bb

(Bm,bb)
T Cm,bb

⎤
⎦
⎧⎨
⎩

Em,i

Em,b

H̄m,b

⎫⎬
⎭ =

⎧⎨
⎩

fm,i − Bm,sSH̄S

fm,b

gm,b

⎫⎬
⎭ (13)

For the sake of clarity, let

{um} =
{

um,i

um,b

}
=

⎧⎨
⎩

Em,i

Em,b

H̄m,b

⎫⎬
⎭ , [Am] =

⎡
⎣ Km,ii Km,ib 0

Km,bi Km,bb Bm,bb

(Bm,bb)
T Cm,bb

⎤
⎦ , (14)

and the projection Boolean matrices [Rm,i], [Rm,b], [Rm,Eb] and [Rm,Hb] satisfy {um,i} = [Rm,i]{um},
{um,b} = [Rm,b]{um}, {Em,b} = [Rm,Eb]{um,b}, {H̄m,b} = [Rm,Hb]{um,b}. Then, {um} can be
represented as

{um} = [Am]−1

(
[Rm,i]T

{
fm,i − Bm,sSH̄S

}
+ [Rm,b]T [Rm,Eb]T {fm,b}

+[Rm,b]T [Rm,Hb]T
∑

n∈neighbor(m)

[Tm,n] {un,b}
)

(15)

Thus, the interface equation only related to the unknowns at interfaces can be obtained as

{um,b} = [Rm,b] [Am]−1

(
[Rm,i]T

{
fm,i − Bm,sSH̄S

}
+ [Rm,b]T [Rm,Eb]T {fm,b}

+[Rm,b]T [Rm,Hb]T
∑

n∈ neighbor(m)

[Tm,n] {un,b}
)

(16)

The other equation related to the unknowns inside each subdomain can be represented as

{um,i} = [Rm,i] [Am]−1

(
[Rm,i]T

{
fm,i − Bm,sSH̄S

}
+ [Rm,b]T [Rm,Eb]T {fm,b}

+[Rm,b]T [Rm,Hb]T
∑

n∈ neighbor(m)

[Tm,n] {un,b}
)

(17)

Assembling Eq. (16) in all subdomains yields

[K̃bb]{ub} + [K̃bS ]{H̄S} = {f̃b} (18)
where

[K̃bb] = [I] −
Ns∑

m=1

⎛
⎝[Rmb]T [Rm,b][Am]−1[Rm,b]T [Rm,Hb]T

∑
n∈ neighbor(m)

[Tm,n] [Rnb]

⎞
⎠

[K̃bS ] =
Ns∑

m=1

[Rm,Hb]T [Rm,b][Am]−1[Rm,i]T [Bm,sS ]

{f̃b} =
Ns∑

m=1

[Rmb]T [Rm,b][Am]−1
(
[Rm,i]T {fm,i} + [Rm,b]T [Rm,Eb]T {fm,b}

)
(19)
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The Boolean matrix of [Rmb] satisfies {um,b} = [Rmb]{ub}.
Equation (2) for the field in the exterior region can also be discretized by the method of moment

(MoM) with the Rao-Wilton-Glisson (RWG) basis function [30] as

[P ]{ES} + [Q]{H̄S} = {fS} (20)

where

Pmn =
1
2

∫
S
gm · (n̂ × gn)dS −

∫
S
gm ·K (gn) dS +

∫
S

(n̂ × gm) · L (gn) dS (21)

Qmn = −1
2

∫
S

(n̂ × gm) · (n̂ × gn)dS +
∫

S
gm · L (gn) dS +

∫
S

(n̂ × gm) ·K (gn) dS (22)

fm =
∫

S
gm · Ei (r) dS +

∫
S

(n̂ × gm) · Hi (r) dS (23)

According to Eq. (6), we have

{ES} = {EF } =
Ns∑

m=1

Em,s =
Ns∑

m=1

[Rm,si]{um,i}

=
Ns∑

m=1

[Rm,si][Rm,i] [Am]−1

(
[Rm,i]T

{
fm,i − Bm,sSH̄S

}
+ [Rm,b]T [Rm,Eb]T {fm,b}

+[Rm,b]T [Rm,Hb]T
∑

n∈neighbor(m)

[Tm,n] {un,b}
)

(24)

Substituting Eq. (24) into Eq. (20), we can obtain another matrix equation as

[K̃Sb]{ub} + [K̃SS]{H̄S} = {f̃S} (25)

where

[K̃Sb] = [P ]
∑

m∈ neighbor(S)

⎛
⎝[Rm,si][Rm,i] [Am]−1 [Rm,b]T [Rm,Hb]T

∑
n∈ neighbor(m)

[Tm,n] [Rnb]

⎞
⎠ (26)

[K̃SS] = [Q] − [P ]
∑

m∈ neighbor(S)

(
[Rm,si][Rm,i] [Am]−1 [Rm,i]T [Bm,sS ]

)
(27)

{f̃S} = {fs} − [P ]
∑

m∈ neighbor(S)

[Rm,si][Rm,i] [Am]−1 ([Rm,i]T {fm,i} + [Rm,b]T [Rm,Eb]T {fm,b}
)

(28)

Equations (18) and (25) form the final matrix equation system. Hence, the original volume problem
is reduced to the surface problem only for the unknowns at the interfaces. It can be efficiently solved
by using iterative solvers such as GMRES with the aid of MLFMA which significantly speeds up the
matrix-vector multiplication of [P ]{ES} and [Q]{H̄S}.

2.2. Non-Conformal Schwarz DDM

When the mesh is non-conformal, the final matrix equation system can be obtained in a similar way as
described in Section 2.1. The difference of implementation between conformal and non-conformal cases
only exists at the interfaces between subdomains. For the interface between interior subdomains, the
implementation of non-conformal cases is essentially the same as that of conformal cases since RTC is
employed here and the unknowns at the interface for each subdomain are different and independent.
It is worth to point out that the integrals in Eqs. (9) and (12) should be more carefully evaluated due
to non-conformal meshes. For the interface between FEM and BI, the following special treatments are
required since DTC is employed here.

Since the meshes between FEM and BI are non-conformal, there is no direct explicit relation of
the electric field at the boundary surface between the FEM and BI domains. To find their relation, we
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impose the Dirichlet transmission condition of Eq. (6) in a weak form. To be more specific, Eq. (6) is
discretized as

[MSS ]{ES} = [NSF ]{EF } (29)

with

[MSS ] =
∫∫

S
{n̂S × NS} · {n̂S × NS}T dS (30)

[NSF ] =
∫∫

S
{n̂S × NS} · {n̂S × NF}T dS (31)

where NF and NS are vector basis functions defined in the meshes of the interior subdomain surface
and boundary surface respectively. Hence, the electric field at the boundary surface can be explicitly
expressed by the electric field at the interior subdomain surface as

{ES} =
[
T SF

] {EF } (32)

where [T SF ] = [MSS ]−1[NSF ]. Substituting Eq. (32) into Eq. (20) yields

[P ]
[
T SF

] {EF } + [Q]
{
H̄S

}
= {fS} (33)

Then for non-conformal cases, Eqs. (26)–(28) are changed to be

[K̃Sb] = [P ][T SF ]
∑

m∈ neighbor(S)

⎛
⎝[Rm,si][Rm,i] [Am]−1 [Rm,b]T [Rm,Hb]T

∑
n∈ neighbor(m)

[Tm,n] [Rnb]

⎞
⎠ (34)

[K̃SS ] = [Q] − [P ][T SF ]
∑

m∈ neighbor(S)

(
[Rm,si][Rm,i] [Am]−1 [Rm,i]T [Bm,sS ]

)
(35)

{f̃S} = {fs}−[P ][T SF ]
∑

m∈ neighbor(S)

[Rm,si][Rm,i][Am]−1

(
[Rm,i]T {fm,i}+[Rm,b]T [Rm,Eb]T {fm,b}

)
(36)

2.3. Conformal FETI-DP DDM

The essential difference of FETI-DP DDM from SDDM is that there is a special ‘global’ corner
preconditioner, which makes the final matrix equation system better conditioned. In FETI-DP DDM,
the unknowns in the mth subdomain are grouped into three categories: interior unknowns, interface
unknowns at the interface, and corner unknowns at the edges shared by more than two subdomains,
noted as {Em,i}, {Em,b}, {Em,c} respectively. Thus Eq. (7) can be written as⎡

⎢⎢⎢⎣
Km,ii Km,ib Km,ic 0
Km,bi Km,bb Km,bc Bm,bb

Km,ci Km,cb Km,cc 0
0 (Bm,bb)T 0 Cm,bb

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Em,i

Em,b

Em,c

H̄m,b

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fm,i − Bm,iSH̄S

fm,b

fm,c − Bm,cSH̄S

gm,b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(37)

where [Bm,iS ] and [Bm,cS ] are the submatrices of [Bm,sS]. After re-ordering the unknowns in each
subdomain, we obtain⎡

⎢⎢⎢⎣
Km,ii Km,ib 0 Km,ic

Km,bi Km,bb Bm,bb Km,bc

0 (Bm,bb)T Cm,bb 0
Km,ci Km,cb 0 Km,cc

⎤
⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

Em,i

Em,b

H̄m,b

Em,c

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fm,i − Bm,iSH̄S

fm,b

gm,b

fm,c − Bm,cSH̄S

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(38)

which can be further written in a compact form as[
Km,rr Km,rc

Km,cr Km,cc

]{
um,r

Em,c

}
=

{
fm,r + (Rm,br)T (Rm,Hb)

T gm,b − (Rm,ir)T Bm,iSH̄S

fm,c − Bm,cSH̄S

}
(39)
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with

[Km,rr] =

⎡
⎢⎣

Km,ii Km,ib 0
Km,bi Km,bb Bm,bb

0 (Bm,bb)T Cm,bb

⎤
⎥⎦ , [Km,rc] =

⎡
⎣ Km,ic

Km,bc

0

⎤
⎦

[Km,cr] =
[

Km,ci Km,cb 0
]
, {um,r} =

{
um,i

um,b

}
=

⎧⎨
⎩

Em,i

Em,b

H̄m,b

⎫⎬
⎭ , {fm,r} =

⎧⎨
⎩

fm,i

fm,b

0

⎫⎬
⎭

(40)

where [Rm,ir], [Rm,br], [Rm,Eb] and [Rm,Hb] are Boolean matrices. The latter two are the same as before,
the first two satisfy

{Em,i} = [Rm,ir]{um,r}, {um,b} = [Rm,br] {um,r} (41)

From Eq. (39), we have

{um,r}=[Km,rr]−1
({fm,r} + [Rm,br]T [Rm,Hb]T {gm,b}−[Rm,ir]T [Bm,iS ]{H̄S}−[Km,rc]{Em,c}

)
(42)(

[Km,cc] − [Km,cr][Km,rr]−1[Km,rc]
) {Em,c} = {fm,c} − [Bm,cS ]{H̄S} − [Km,cr][Km,rr]−1 {fm,r}

−[Km,cr][Km,rr]−1
(
[Rm,br]T [Rm,Hb]

T gm,b − [Rm,ir]T [Bm,iS ]{H̄S}
)

(43)

Assembling Eq. (43) in all interior subdomains and using Eq. (11) yield the following global equation
for the primal corner unknowns {Ec} as

[K̃cc]{Ec} = {f̃c} + [K̃cb]{ub} + [K̃cS ]{H̄S} (44)

where

[K̃cc] =
Ns∑

m=1

[Rmc]T
(
[Km,cc] − [Km,cr][Km,rr]−1[Km,rc]

)
[Rmc] (45)

[K̃cb] = −
Ns∑

m=1

(Rmc)T

⎛
⎝[Km,cr][Km,rr]−1[Rm,br]T [Rm,Hb]

T
∑

n∈ neighbor(m)

([Um,mn Vm,mn][Rnb])

⎞
⎠ (46)

[K̃cS] =
Ns∑

m=1

[Rmc]T
(
[Km,cr][Km,rr]−1[Rm,ir]T [Bm,iS ] − [Bm,cS]

)
(47)

[f̃c] =
Ns∑

m=1

(Rmc)T
({fm,c} − [Km,cr][Km,rr]−1{fm,r}

)
(48)

where [Rmc] is the projection Boolean matrix which satisfies {Em,c} = [Rmc]{Ec}, {ub} is the electric
and magnetic field unknown coefficients at the interfaces of all subdomains and [Rnb] is a Boolean
projection matrix extracting {un,b} from {ub}. Thus {Ec} can be formulated with {ub} and {H̄S} as:

{Ec} = [K̃cc]−1
(
{f̃c} + [K̃cb]{ub} + [K̃cS ]{H̄S}

)
(49)

From Eq. (42), we can obtain the electric and magnetic field unknown coefficients {um,b} at the
interfaces of the mth subdomain as

{um,b} = [Rm,br]{um,r} = [Rm,br][Km,rr]−1

[
{fm,r} + [Rm,br]T [Rm,Hb]

T {gm}

−[Rm,ir]T [Bm,iS ]{H̄S} − [Km,rc]{Em,c}
]

(50)

Assembling Eq. (50) in all interior subdomains with the aid of Eq. (11) yields

[K̃bb]{ub} + [K̃bS ]{H̄S} + [K̃bc]{Ec} = {f̃b} (51)
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where

[K̃bb] = [I]−
Ns∑

m=1

⎛
⎝[Rmb]T [Rm,br][Km,rr]−1[Rm,br]T [Rm,Hb]

T
∑

n∈neighbor(m)

([Um,mn Vm,mn][Rnb])

⎞
⎠

[K̃bS ] =
Ns∑

m=1

[Rmb]T [Rm,br][Km,rr]−1[Rm,ir]T [Bm,iS ]

[K̃bc] =
Ns∑

m=1

[Rmb]T [Rm,br][Km,rr]−1[Km,rc][Rmc]

{f̃b} =
Ns∑

m=1

[Rmb]T [Rm,br][Km,rr]−1{fm,r}

(52)

According to Eq. (42), we have

{ES} = {EF } =
Ns∑

m=1

Em,s =
Ns∑

m=1

([Rm,sr]{um,r} + {Em,c})

=
Ns∑

m=1

(
[Rm,sr][Km,rr]−1

[
{fm,r} + [Rm,br]T [Rm,Hb]

T {gm,b}

−[Rm,ir]T [Bm,iS ]{H̄S} − [Km,rc]{Em,c}
]

+ {Em,c}
)

(53)

By substituting Eq. (53) into Eq. (20), then using Eq. (11), we have

[K̃Sb]{ub} + [K̃SS ]{H̄S} + [K̃Sc]{Ec} = {f̃S} (54)

where

[K̃Sb] = [P ]
∑

m∈ neighbor(S)

⎛
⎝[Rm,sr][Km,rr]−1[Rm,rb]T [Rm,Hb]T

∑
n∈neighbor(m)

([Um,mn Vm,mn][Rnb])

⎞
⎠ (55)

[K̃SS ] = [Q] − [P ]
∑

m∈ neighbor(S)

(
[Rm,sr][Km,rr]−1[Rm,ir]T [Bm,iS ]

)
(56)

[K̃Sc] = [P ]
∑

m∈ neighbor(S)

(−[Rm,sr][Km,rr]−1[Km,rc] + I
)
[Rmc] (57)

{f̃S} = {fs} − [P ]
∑

m∈ neighbor(S)

[Rm,sr]T [Km,rr]−1{fm,r} (58)

Substituting Eq. (49) into Eqs. (51) and (54), the final matrix equation system only related to unknowns
{ub} and {H̄S} can be obtained. The inverse of [K̃cc] in Eq. (49) used by Eqs. (51) and (54), referred to
as the coarse problem [19], is global, which needs to be solved first. This coarse problem couples all the
subdomains by propagating the error globally at each iteration and increases the convergence rate [19].

2.4. Non-Conformal FETI-DP DDM

When the mesh is non-conformal, the final matrix equation system can be obtained in a similar way
as described in Subsection 2.3. Besides special treatments for the unknowns at the FE-BI interface
described in Subsection 2.2, another treatment related to the ‘corner’ unknowns is also required.

According to the FETI-DP DDM, a preconditioner matrix related to global primal variables {Ec}
is constructed by assembling Eq. (49) in all interior subdomains to speed up the convergence of the
iterative solution of the interface equation. It is difficult for non-conformal meshes because the number
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Figure 2. Conformal and non-conformal mesh case for a common corner edge.

of unknowns at a common corner edge for different shared subdomains is usually different as shown in
Fig. 2. Fig. 2(a) shows the four subdomains sharing a common corner edge of lc. Figs. 2(b) and 2(c)
show the meshes of the interface between subdomains V1 and V2 sharing lc for conformal and non-
conformal cases respectively.

To deal with the aforementioned problem, the local corner edges from the shared subdomains for
a common corner edge are grouped into one “master” local corner edge and other “slave” local corner
edges as Fig. 2(c) [23]. The “master” local corner edge has the largest number of unknowns compared
with the “slave” local corner edges. The unknowns from all “master” local corners are regarded as {Ec}.
We impose the Dirichlet continuity condition Em

t = Es
t at lc, expand Em

t , Es
t by vector basis functions

{Nm
c,lc

}, {Ns
c,lc

} and test both sides using {Ns
c,lc

}, then the slave vector of {Es
c,lc

} can be represented by
the master vector of {Em

c,lc
} as

{Es
c,lc} =

[
Dss

c,lc

]−1 [
Hsm

c,lc

] {Em
c,lc} =

[
T

sm

c,lc

] {Em
c,lc} (59)

with
[Dss

c,lc ] =
∫

lc

{Ns
c,lc} · {Ns

c,lc}T dl, [Hsm
c,lc ] =

∫
lc

{Ns
c,lc} · {Nm

c,lc}T dl (60)

Suppose [T sm
mc ] consists of all [T

sm

c,lc
] in the mth subdomain, then we can replace the projection Boolean

matrix [Rmc] in Eqs. (45)–(48) with [T sm
mc ].

Similar to SDDM, we can replace Eq. (54) for the non-conformal FETI-DP with:

[K̃Sb]{ub} + [K̃SS ]{H̄S} + [K̃Sc]{Ec} = {f̃S} (61)

where

[K̃Sb] = [P ][T SF ]
∑

m∈ neighbor(S)

(
[Rm,sr][Km,rr]−1[Rm,rb]T [Rm,Hb]

T

∑
n∈neighbor(m)

([Um,mn Vm,mn][Rn,b])
)

(62)

[K̃SS] = [Q] − [P ][T SF ]
∑

m∈ neighbor(S)

(
[Rm,sr][Km,rr]−1[Rm,ir]T [Bm,iS ]

)
(63)

[K̃Sc] = [P ][T SF ]
∑

m∈ neighbor(S)

(−[Rm,sr][Km,rr]−1[Km,rc] + I
)
[T sm

mc ] (64)

{f̃S} = {fs} − [P ][T SF ]
∑

m∈ neighbor(S)

[Rm,sr]T [Km,rr]−1{fm,r} (65)

By following the same procedure as described in Subsection 2.3, the final matrix equation system only
related to unknowns {ub} and {H̄S} can be obtained and solved.
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3. NUMERICAL RESULTS AND DISCUSSIONS

The computational complexity of the fast DDMs of FE-BI-MLFMA can be divided into two parts:
DDM for FEM and MLFMA for BI. The computational complexity of MLFMA has been well studied
and proven to be Ns log Ns with Ns being the number of surface unknowns [31]. The following will
discuss the computational complexity of DDM for FEM. Since FETI-DP DDMs have a more stable
convergence speed for the iterative solution to the final interface matrix equation than SDDMs, we will
focus on the estimation of computational complexity of FETI-DP DDM.

In FETI-DP DDM, we need to calculate the inverse of the global “corner” matrix [K̃cc] and [Ki
rr] for

all subdomains. When the entire FEM domain with Nv unknowns is decomposed into Na subdomains,
the number of unknowns in each subdomain and the number of corner unknowns are Nr = Nv/Na and
Nc ∝ NaN

1/3
r = N

1/3
v ×N

2/3
a respectively. Suppose the computational complexity of sparse direct solvers

for the FEM matrix is O(Nβ) (N is the dimension of the FEM matrix), the computational complexities
for performing factorization for all subdomain FEM matrixes and the global corner matrix by using
sparse direct solvers are Na × MDr

LDLT ∝ Na × (Nr)β = N1−β
a Nβ

v and MDc

LDLT ∝ (Nc)β = N
β/3
v × N

2β/3
a .

If the indexes of β are the same for the inverse of the global matrix [K̃cc] and [Ki
rr] of all subdomains,

the computational complexities of these two parts should be equal by settingNa = N
2β/(5β−3)
v . Thus,

the computational complexity of the FETI-DP DDM can achieve O(N (3β2−β)/(5β−3)
v ). Our following

numerical experiments show that the computational complexity of the sparse direct solver of FEM
matrix equations is usually less than O(N2

v ), namely β < 2, for 3D scattering/radiation problems.
Hence, the computational complexity of FETI-DP DDM is less than N1.43

v . Since the number of surface
unknowns Ns usually can be approximated by the number of volume unknowns Nv as Ns = N

2/3
v ,

the computational complexity of MLFMA approximately is N
2/3
v log Nv. Thus the total computational

complexity of FETI-DP DDM of FE-BI-MLFMA should be less than N1.43
v .

The above estimation of computational complexity is based on the assumption that the CPU time
for the inverse of the global “corner” matrix [K̃cc] is equal to that for [Ki

rr] of all subdomains. It is true
for extremely large problems. However, to our often interested problems (i.e., the number of unknowns
is less than 1 billion), our numerical experiments show that the CPU time for the inverse of the global
“corner” matrix [K̃cc] is actually a small part of that for [Ki

rr] of all subdomains. For these cases, we
have a better choice of domain decomposition to obtain better computation efficiency. We fixed the
number of unknowns in each subdomain to ten thousands and can achieve nearly linear computational
complexity.

Next, we will perform a series of numerical experiments to verify the above analysis of computation
efficiency. All the computations are performed on a computer at the Center for Electromagnetic
Simulation, Beijing Institute of Technology (BitCEMS). It has 2 Intel X5650 2.66 GHz CPUs with
6 cores for each CPU, 96 GB memory. The GMRES solver is employed with a restart number of 20 and
the convergence criterion is set to 0.001. To determine the computational complexity of CPU time and
memory, we use the Curve Fitting Tool (cftool) of MATLAB to fit the calculated results. In cftool, the
Adjusted R-square (indicator of the fit quality) is set to be larger than 0.995.

First, we need to estimate the computational complexity of direct solver for FEM matrix equations.
Among various direct solvers for FEM matrixes, MUMPS is one of the most efficient solvers [32].
Hence, we employ MUMPS to study the computational complexity of direct solvers for the FEM matrix
equations numerically. The computational complexity of MUMPS depends on the sparse pattern of the
FEM matrix. The sparse pattern of the FEM matrix is determined by the shape of the computational
domain. As we know, the shape with almost the same size in the three directions in Cartesian coordinates
usually has a larger computational complexity than others with different sizes in the three directions.
To be convenient, we take a simple but typical problem, scattering by a dielectric cube with εr = 4, as
an example. The CPU time and memory for factorizing the FEM matrix of [K] are shown in Fig. 3. We
can see the computational complexity for factorizing [K] with MUMPS is about O(N1.85) and O(N1.42)
for CPU time and memory, respectively.

Second, we investigate the computational complexity of computing the inverse of [K̃cc]. We fix the
subdomain size as 0.5λ × 0.5λ × 0.5λ with about 25000 FEM edges. Then we increase the number
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Figure 3. CPU time and memory cost as a
function of unknowns for factorizing [K].

Figure 4. CPU time and memory cost as a
function of unknowns for factorizing [K̃cc].

Figure 5. Total CPU time and memory as a
function of unknowns for the FETI-DP solution
of the FEM equation.

Figure 6. Geometrical configuration of the three
layered dielectric brick.

of subdomains from 4 × 4 × 4 to 24 × 24 × 24. Fig. 4 presents the CPU time and memory for
computing [K̃cc]−1 as a function of Nv. It can be seen from Fig. 4 that the computational complexity
of computing the inverse of [K̃cc] is about O(N1.78) and O(N1.26) respectively for the CPU time and
memory. Furthermore, we can conclude that the computational complexity of [K̃cc]−1 is smaller than
that of [K]−1, because the [K̃cc] is sparser than [K].

Third, we employ the FETI-DP DDM to compute the above examples of the cubes with subdomains
from 4×4×4 to 24×24×24. Fig. 5 presents the total CPU time and memory for computing [K̃cc]−1 and
all [Ki

rr]
−1 as a function of Nv. We can see from Fig. 5, the computational complexity in FETI-DP is

about O(N1.20) and O(N1.01) respectively for the CPU time and memory. It can be explained as follows.
When the subdomain size is fixed, the CPU time and memory for obtaining all [Ki

rr]−1 increases linearly
with the number of total FEM unknowns. In these examples, the CPU time for calculating [K̃cc]−1 is
still a small part of that for obtaining all [Ki

rr]
−1. Thus the total CPU and memory of FETI-DP are

mainly determined by that for obtaining all [Ki
rr]−1 and have nearly linear computational complexity.

To further verify the above analysis, an inhomogeneous dielectric brick with three different layers,
as shown in Fig. 6, is investigated with FETI-DP DDM of FE-BI-MLFMA. The thickness of each layer
is fixed as 0.5λ. The relative permittivity are set to ε1 = 2 − 0.5j, ε2 = 3 − j and ε3 = 4 − 3j
respectively from the top layer to the bottom layer. Detailed computation information of the three
layered inhomogeneous brick with different size is listed in Table 1. The required total CPU time and
memory as a function of FEM unknowns are plotted in Fig. 7. We can see from Fig. 7, the CPU
time and memory are closer to linear with the number of unknowns than those in Fig. 5. Since the



50 Yang et al.

Table 1. Computation information for the three layered inhomogeneous brick with different sizes.

Brick size
(λ)

Domain
partion

FEM/BI
unknowns

Dual
Unknowns

Primal
Unknowns

Iteration
number

4 × 4 × 1.5 8 × 8 × 3 4611885/151200 598560 12285 49
5 × 5 × 1.5 10 × 10 × 3 7195845/216000 954600 18645 51
6 × 6 × 1.5 12 × 12 × 3 10352205/291600 1393200 26325 53
8 × 8 × 1.5 16 × 16 × 3 18382125/475200 2518080 45645 55

10 × 10 × 1.5 20 × 20 × 3 28701645/702000 3973200 70245 58
12 × 12 × 1.5 24 × 24 × 3 41310765/972000 5758560 100125 60

Figure 7. Total CPU time and memory as a
function of unknowns for the FETI-DP DDM of
FE-BI-MLFMA.

Figure 8. V V and HH-polarized bistatic RCS of
the inhomogeneous brick in Fig. 6. The incident
angles are set to θ = 30◦, ϕ = 10◦. The
observation is in the x-z plane.

size of this example in z-direction is fixed and we just increase the sizes in x- and y-directions, this
problem is in fact a 2D extended problem. The number of global corner unknowns is small compared
with total number of unknowns. Moreover, the number of iterations for different bricks increases slowly
with the total unknowns. Hence the computational complexity is O(N1.03) and O(N1.02) for CPU time
and memory respectively, and an almost linear complexity is achieved. The computed V V and HH
polarized bistatic RCSs are shown in Fig. 8.

4. CONCLUSIONS

A unified, consistent, efficient formulation of SDDMs and FETI-DP DDMs of FE-BI-MLFMA
is presented for both conformal and non-conformal cases. SDDMs are simple and have easy
implementation, whereas FETI-DP DDMs have a more stable and faster convergence. These fast
domain decomposition methods can reduce the computational complexity of FE-BI-MLFMA to less
than O(N (3β2−β)/(5β−3)

v ). For the problems with the number of unknowns less than 1billion, numerical
experiments show that the real computational complexity of FETI-DP DDM of FE-BI-MLFMA can
achieve nearly linear computational complexity.

ACKNOWLEDGMENT

This work is partially supported by the National Basic Research Program (973) under Grant
No. 61320602 and No. 61327301, the 111 Project of China under the Grant B14010, and the NSFC
under Grant 61371002.



Progress In Electromagnetics Research, Vol. 155, 2016 51

REFERENCES

1. Sheng, X. Q., J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid
finite element and boundary integral methods for 3-D scattering,” IEEE Transactions on Antennas
and Propagation, Vol. 46, 303–311, 1998.

2. Sheng, X. Q. and E. K. N. Yung, “Implementation and experiments of a hybrid algorithm of
the MLFMA-Enhanced FE-BI method for open-region inhomogeneous electromagnetic problems,”
IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 163–167, 2002.

3. Botha, M. M. and J. M. Jin, “On the variational formulation of hybrid finite element-boundary
integral techniques for electromagnetic analysis,” IEEE Transactions on Antennas and Propagation,
Vol. 52, No. 11, 3037–3047, 2004.

4. Vouvakis, M. N., S. C. Lee, K. Zhao, and J. F. Lee, “A symmetric FEM-IE formulation with a
single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE
Transactions on Antennas and Propagation, Vol. 52, No. 11, 3060–3070, 2004.

5. Liu, J. and J. M. Jin, “A special higher-order finite-element method for scattering by deep cavities,”
IEEE Transactions on Antennas and Propagation, Vol. 48, No. 5, 694–703, 2000.

6. Jin, J. M., J. Liu, Z. Lou, and C. S. T. Liang, “A fully high-order finite-element simulation of
scattering by deep cavities,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9,
2420–2429, 2003.

7. Peng, Z. and X. Q. Sheng, “A flexible and efficient higher-order FE-BI-MLFMA for scattering by
a large body with deep cavities,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7,
2031–2042, 2008.

8. Yang, M. L. and X.-Q. Sheng, “Parallel high-order FE-BI-MLFMA for scattering by large and
deep coated cavities loaded with obstacles,” Journal of Electromagnetic Waves and Applications,
Vol. 23, No. 13, 1813–1823, 2009.

9. Liu, J. and J. M. Jin, “A highly effective preconditioner for solving the finite element-boundary
integral matrix equation for 3-D scattering,” IEEE Transactions on Antennas and Propagation,
Vol. 50, 1212–1221, 2002.

10. Hu, F. G. and C. F. Wang, “Preconditioned formulation of FE-BI equations with domain
decomposition method for calculation of electromagnetic scattering from cavities,” IEEE
Transactions on Antennas and Propagation, Vol. 57, 2506–2511, 2009.

11. Lee, J., J. Zhang, and C. C. Lu, “Sparse inverse preconditioning of multilevel fast multipole
algorithm for hybrid integral equations in electromagnetics,” IEEE Transactions on Antennas and
Propagation, Vol. 52, No. 9, 2277–2287, 2004.

12. Lee, J. F. and D. K. Sun, “p-type multiplicative Schwarz (pMUS) method with vector finite elements
for modeling three-dimensional waveguide discontinuities,” IEEE Transactions on Microwave
Theory and Techniques, Vol. 52, No. 3, 864–870, 2004.

13. Yang, M. L. and X. Q. Sheng, “Hybrid h-and p-type multiplicative Schwarz (h-p-MUS)
preconditioned algorithm of higher-order FE-BIMLFMA for 3D scattering,” IEEE Transactions
on Magnetics, Vol. 48, 187–190, 2012.

14. Després, B., P. Joly, and J. E. Roberts, “A domain decomposition method for the harmonic Maxwell
equations,” Iterative Methods in Linear Algebraic Amsterdam, 475–484, Elsevier, The Netherlands,
1992.

15. Farhat, C. and F. X. Roux, “A method of finite element tearing and interconnecting and its parallel
solution algorithm,” International Journal for Numerical Methods in Engineering, Vol. 32, 1205–
1227, 1991.

16. Wolfe, C. T., U. Navsariwala, and S. D. Gedney, “An efficient implementation of the finite-element
time-domain algorithm on parallel computers using finite-element tearing and interconnecting
algorithm,” Microwave and Optical Technology Letters, Vol. 16, No. 4, 1997.

17. Farhat, C., P. Avery, and R. Tezaur, “FETI-DPH: A dual-primal domain decomposition method
for acoustic scattering,” Journal of Computational Acoustics, Vol. 13, 499–524, 2005.



52 Yang et al.

18. Li, Y. J. and J. M. Jin, “A vector dual-primal finite element tearing and interconnecting
method for solving 3-D large-scale electromagnetic problems,” IEEE Transactions on Antennas
and Propagation, Vol. 54, 3000–3009, 2006.

19. Li, Y. J. and J. M. Jin, “A new dual-primal domain decomposition approach for finite element
simulation of 3-D large-scale electromagnetic problems,” IEEE Transactions on Antennas and
Propagation, Vol. 55, No. 10, 2803–2810, 2007.

20. Yang, M. L. and X. Q. Sheng, “On the finite element tearing and interconnecting method for
scattering by large 3D inhomogeneous targets,” International Journal of Antennas and Propagation,
Vol. 2011, 2012, [Online], available: http://www.hindawi.com/journals/ijap/2012/898247/.

21. Zhao, K., V. Rawat, S. C. Lee, and J. F. Lee, “A domain decomposition method with nonconformal
meshes for finite periodic and semi-periodic structures,” IEEE Transactions on Antennas and
Propagation, Vol. 55, No. 9, 2559–2570, 2007.

22. Peng, Z. and J. F. Lee, “Non-conformal domain decomposition method with mixed true second
order transmission condition for solving large finite antenna arrays,” IEEE Transactions on
Antennas and Propagation, Vol. 59, No. 5, 1638–1651, 2011.

23. Xue, M. F. and J. M. Jin, “Nonconformal FETI-DP methods for large-scale electromagnetic
simulation,” IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4291–4304, 2012.

24. Xue, M. F. and J. M. Jin, “A hybrid conformal/nonconformal domain decomposition method for
multi-region electromagnetic modeling,” IEEE Transactions on Antennas and Propagation, Vol. 62,
No. 4, 2009–2021, 2014.

25. Vouvakis, M. N., K. Zhao, S. M. Seo, and J. F. Lee, “A domain decomposition approach for non-
conformal couplings between finite and boundary elements for unbounded electromagnetic problems
in R3,” Journal of Computational Physics, Vol. 225, No. 1, 975–994, 2007.

26. Zhao, K. Z., V. Rawat, S. C. Lee, and J. F. Lee, “Hybrid domain decomposition method
and boundary element method for the solution of large array problems,” IEEE Antennas and
Propagation Society International Symposium, 2007.

27. Xue, M. F., Y. J. Li, and J. M. Jin, “Acceleration and accuracy improvement of FEM
computation by using FETI-DP and BI hybrid algorithm,” IEEE Antennas and Propagation Society
International Symposium, 2010.

28. Yang, M. L., H. W. Gao, and X. Q. Sheng, “Parallel domain-decomposition-based algorithm
of hybrid FE-BI-MLFMA method for 3D scattering by large inhomogeneous objects,” IEEE
Transactions on Antennas and Propagation, Vol. 61, 4675–4683, 2013.

29. Yang, M. L., H. W. Gao, W. Song, and X. Q. Sheng, “An effective domain-decomposition-based
preconditioner for the FE-BI-MLFMA method for 3D scattering problems,” IEEE Transactions on
Antennas and Propagation, Vol. 62, No. 4, 2263–2268, 2014.

30. Rao, S. M., D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary
shape,” IEEE Transactions on Antennas and Propagation, Vol. 30, 409–418, 1982.

31. Song, J. M., C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic
scattering by large complex objects,” IEEE Transactions on Antennas and Propagation, Vol. 45,
No. 10, 1488–1493, 1997.

32. Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L’Excellent, “A fully asynchronous multifrontal
solver using distributed dynamic scheduling,” SIAM Journal of Matrix Analysis and Applications,
Vol. 23, 15–41, 2001.


