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Genetical Swarm Optimizer for Synthesis of Multibeam
Linear Antenna Arrays
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Abstract—The paper presents a hybrid evolutionary algorithm suitable for the optimization of
large-domain electromagnetic problems. The hybrid technique, called Genetical Swarm Optimization
(GSO), combines Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). GSO algorithm is
modelled on the concepts of Darwin’s theory based on natural selection and evolution, and on cultural
and social rules derived from the swarm intelligence. The problem is formulated and solved by means
of the proposed algorithm. The examples are simulated to demonstrate the effectiveness and design
flexibility of GSO in the framework of synthesis of multi-beam linear antennas arrays.

1. INTRODUCTION

Several evolutionary algorithms have been developed for optimization of every kind of electromagnetic
problems. The general goal of the optimization is to find a solution that represents the global
maximum of a fitness function. Electromagnetic optimization problems generally involve a large
number of parameters, that can be either continuous, discrete, or both, and often include constraints in
allowable values. In addition, the solution domain of electromagnetic optimization problems often has
non differentiable and discontinuous regions, and often utilizes approximations or models of the true
electromagnetic phenomena to conserve computational resources [1]. Global search methods have two
competing goals, exploration and exploitation: exploration is important to ensure that every part of the
solution domain is searched enough to provide a reliable estimate of the global optimum; exploitation,
instead, is also important to concentrate the search effort around the best solutions found so far by
searching their neighbourhoods to reach better solutions. Often global search methods are used together
with other local search algorithm in order to improve efficiency and accuracy of the searching process.
The evolutionary computation algorithms (EA) are stochastic optimization methods, which emulate
biologic processes or natural phenomena [2]. The capability to find a global optimum, without being
trapped in local optima, and the possibility to well face nonlinear and discontinuous problems, with
great numbers of variables, are some advantages of these techniques. Besides these methods do not need
to compute any derivatives in order to optimize the objective function and this fact allows to manage
more complex fitness function. Moreover, in contrast with traditional searching methods, EAs do not
depend strongly on the starting point [3]. Often a bad choice of the initial values can slow down the
convergence of the entire process, or even drive the convergence towards a wrong solution, e.g., towards
a local instead a global maximum or minimum. However, these algorithms have strong stochastic basis,
therefore they need a lot of iterations to get a significant result, in particular when the optimization
problem has a big number of unknowns [4, 5]. Considering Genetic Algorithms and Particle Swarm
Optimization algorithms, most of the times, PSO have faster convergence rate than GA early in the
run, but they are often outperformed by GA for long simulation runs, or when the number of unknowns
increases. This is due to the different types of search, adopted by the two algorithms. The new hybrid
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technique here proposed, called Genetical Swarm Optimization, and consists in a strong co-operation of
GA and PSO, since it maintains the integration of the two techniques for the entire run of simulation.
In each iteration, in fact, some of the individuals are substituted by new generated ones by means of
GA, while the remaining part is the same of the previous generation but moved on the solution space
by PSO [6].

In this paper, we are interest in presenting the genetic swarm optimization method that will be
applied to the synthesis of multibeam arrays. A big flexibility between features of the antennas array:
amplitude and phase of feeding, ripple area, and secondary lobe level. . . is introduced.

2. ANTENNA ARRAY PATTERN FORMULATION

An array can form multiple narrow beams towards different directions. For example, suppose it is
desired to form from two to four beams towards the steering angles 2, 3, and 4. The design of a linear
array antenna is based on finding both magnitudes and phases excitation that can generate the desired
patterns.

We consider a linear array of 2N isotropic antenna elements, which are assumed, uncoupled,
symmetrically and equally spaced with half wavelength. Its array pattern can be described as follows
as discussed by Ali [7]:

F (θ) = 2
N∑

k=1

ak cos
(

2π
λ

dk sin(θ) + δk

)
(1)

where

N : Element number;
λ: Wavelength;
δk: Phases of the elements (−180◦ ≤ θ ≤ 180◦);
ak: Amplitudes of the elements;
dk: Distance between position of ith element and the array center;
θ: Scanning angle.

In our applications, we use an elementary source of square shape for substrate with the permittivity
equal to 3.5, thickness equal to 0.159 cm and operating at 5GHz.

In order to generate a beam pattern fulfilling some constraints, side lobe level lower than a fixed
threshold or reproducing a desired shape, an array configuration must be synthesized. First of all, it is
necessary to define the objective function that measures the difference between desired and synthesized
beam pattern. Let us define a function called fitness function as follows:

Fitness = Max −
∫ π

0
|Fd(θ) − F (θ)| dθ (2)

The fitness function defined in Eq. (2) represents the general form for antenna pattern synthesis.

3. GENETIC ALGORITHM

Genetic Algorithm (GA) is one of the most effective evolutionary algorithms developed so far [8, 9]; it
simulates the natural evolution, in terms of survival of the fittest, adopting pseudo-biological operators
such as selection, crossover, mutation,and many other additional operators introduced to get a faster
convergence rate. In GA, the set of parameters that characterizes a specific problem is called an
individual or a chromosome and it is composed of a list of genes. Each gene contains the parameter
itself or a suitable encoding of it. Each individual therefore represents a point in the search space, and
hence a possible solution to the problem. The fitness function is therefore evaluated for each individual
of the population, resulting in a score assigned to the individual. Based on this fitness score, a new
population is generated iteratively with each successive population referred to as a generation [10].
Starting from a population of randomly generated individuals, the three basic GA operators (selection,
crossover, and mutation) are applied in order to manipulate the genetic composition of this population.
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Selection is the process by which the most highly rated individuals in the current generation are chosen
to be involved as parents in the creation of a new generation. The crossover operator produces two
new individuals (i.e., candidate solutions) by recombining the information from two parents. Crossover
operation occurs in two steps. In the first one, a given number of crossing sites, along with the parent
individual, are selected uniformly at random. In the second step, two new individuals are formed by
exchanging alternate pairs of selection between the selected sites. The random mutation of some gene
values in an individual is the third GA operator. Genetic Algorithms are very efficient at exploring
the entire search space, but are relatively poor in finding the precise local optimal solution in the
region in which the algorithm converges. Many efforts on the enhancement of traditional GAs have
been proposed [11, 12], by modifying the structure of the population or the role that an individual
plays in it (distributed GA, cellular GA, and symbiotic GA) or by modifying the basic operations of
traditional GA, or by adding new ones, such as elitism [13, 14]. The Genetic Algorithm developed for
this application uses real encoded genes, since for high number of variables they show themselves faster
than binary ones to converge towards the maximum value [15]. Several additional operators have been
developed for GA in order to get a faster convergence rate.

4. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is one of the more recently developed evolutionary techniques, and
it is based on a suitable model of social interaction between independent agents (particles) and it uses
social knowledge in order to find the global maximum of a generic function [16]. While for the GA,
as shown in the last section, the improvement in the population fitness is assured by pseudo-biological
operators, such as selection, crossover and mutation, the main PSO operator is the velocity update
that takes into account the best position explored during the iterations, resulting in a migration of
the swarm towards the global optimum. PSO is similar to the other evolutionary algorithms in that
the system is initialized with a population of random solutions. Each potential solution, call particles,
flies in the D-dimensional problems space with a velocity which is dynamically adjusted according to
the flying experiences of its own and its colleagues. The location of the ith particle is represented as
Xi = (xi1, . . . , xid, . . . , xiD). The best previous position (which giving the best fitness value) of the ith
particle is recorded and represented as Pi = (pi1, . . . , pid, . . . , piD), which is also called pbest. The index
of the best pbest among all the particles is represented by the symbol g. the location Pg is also called
gbest. The velocity for the ith particle is represented as Vi = (vi1, . . . , vid, . . . , viD). The particle swarm
optimization consists of, at each time step, changing the velocity and location of each particle toward
its pbest and gbest locations according to the Equations (3) and (4) respectively:

vid = w ∗ vid + c1 ∗ rand( ) ∗ (pid − xid) + c2 ∗ rand( ) ∗ (pgd − xid) (3)
xid = xid + vid (4)

where w is inertia weight; c1 and c2 are acceleration constants; rand( ) is a random function in the
range [0 1]. For Equation (3), the first part represents the inertia of previous velocity; the second part
is the “cognition” part, which represents the private thinking by itself; the third part is the “social”
part, which represents the cooperation among the particle. Vi is clamped to a maximum velocity
Vmax = (vmax,1, . . . , vmax,d, . . . , vmax,D). Vmax determines the resolution with which regions between the
present and the target positions are searched [17]. The process for implementation PSO is as follows:

a). Set current iteration generation Gc = 1. Initialize a population which including m particles,
for the ith particle, it has random location Xi in specified space and for the dth dimension of Vi,
Vid = rand2( ) × Vmax,d, where rand2( ) is a random value in the range of [−1 1];

b). Evaluate the fitness for each particle;
c). Compare the evaluated fitness value of each particle with its pbest. If the current value is better

than pbest, and then set the current location as the pbest location. Furthermore, if current value is better
than gbest, then reset gbest to the current index in particle array;

d). change the velocity and location of the particle according to the Equations (3) and (4),
respectively;

e). Gc = Gc + 1, loop to step b) until a stop criterion is met, usually a sufficiently good fitness
value or Gc is achieve a predefined maximum generation Gmax.
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The parameters of PSO includes: number of particles m, inertia weight w, acceleration constants c1

and c2, maximum velocity Vmax. As evolution goes on, the swarm might undergo an undesired process
of diversity loss. Some particles becomes inactively while lost both the global and local search capability
in the next generations. For a particle, the loss of global search capability means that it will be only
flying within a quite small space, which will be occurs when its location and pbest is close to gbest (if
the gbest has not significant change) and its velocity is close to zero for all dimensions; the loss of local
search capability means that the possible flying cannot lead perceptible effect on its fitness. From the
theory of self-organization [18], if the system is going to be in equilibrium, the evolution process will be
stagnated. If gbest is located in a local optimum, then the swarm becomes premature convergence as all
the particles become inactively.

To stimulate the swarm with sustainable development, the inactive particle should be replaced by
a fresh one adaptively so as to keeping the non-linear relations of feedback in Equation (3) efficiently
by maintaining the social diversity of swarm. However it is hard to identify the inactive particles,
since the local search capability of a particle is highly depended on the specific location in the complex
fitness landscape for different problems. Fortunately, the precision requirement for fitness value is more
easily to de decided for specified problem. The adaptive PSO is executed by substituting the step d) of
standard PSO process, as the pseudo code of adaptive PSO [19] that is shown in Fig. 1. Fi is the fitness
of the ith particle, Fgbest is the fitness of gbest. ΔFi = f(Fi, Fgbest), where f(x) is an error function.
The ε is a predefined critical constant according to the precision requirement. Tc is the count constant.
The replace ( ) function is employed to replace the ith particle, where the Xi and Vi is reinitialized by
following the process in step a) of standard PSO, and its pbest is equal to Xi. The array similar Count
[i] is employed to store the counts which are satisfying the condition |ΔFi| < ε in successively for the
ith particle which is not gbest. The inactive particle is natural to satisfy the replace condition; however,
if the particle is not inactively, it has less chance to be replaced as Tc increases.

int[ ]similar Count = new int[m]; // at initializtion stage
// Next code is employed to replace step d)
// in standard PSO process

For (i  = 0; i < m; i + +)   { // for each particle

IF (i  ≠ g & & |ΔF  | < ε)i

THEN similar Count[i] + +; // add1
ELSE similar Count[i] = 0; // reset
IF (similar Count[i] > T  ) // predefinedcountc

THEN replace (the ith particle);
ELSE execute (step d) in standard PSO

}

Figure 1. Inserted pseudo code of adaptive PSO.

The critical constant ε is set as 0.0001, and the count constant Tc is set as 3. The upper limit of
the inertia weight is 0.9 and the lower limit 0.4.

5. GENETICAL SWARM OPTIMIZATION

Some comparisons of the performances of GA and PSO are presented in literature [20], underlining
the reliability and convergence speed of both methods, but continuing in keeping them separate.
Due to the different search method adopted by the two algorithms, the typical selection-crossover-
mutation approach versus the velocity update one,both the algorithms have shown a good performance.
In particular PSO seems to have faster convergence rate than GA early in the run, but often it is
outperformed by GA for long simulation runs, when the last one finds a better solution. Anyway, the
population-based representation of the parameters that characterizes a particular solutionis the same
for both the algorithms; therefore it is possible to implement an hybrid technique in order to utilize
the qualities and uniqueness of the two algorithms. Some attempts have been done in this direction,
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with good results. Most of the times, one technique is used mainly as a pre-optimizer for the initial
population of the other technique. In [21], for example, the authors test two different combinations of
GA and PSO, using the results of one algorithm as a starting point for the other (in both the orders)
to optimize a profiled corrugated horn antenna. Another hybridization strategy is proposed in [22],
where the upper-half of the best-performing individuals in a population is regarded as elite and, before
using GA operators, it is first enhanced by means of PSO, instead of being reproduced directly to the
next generation. The hybrid technique here proposed, called Genetical Swarm Optimization (GSO),
and consists in a strong cooperation of GA and PSO, since it maintains the integration of the two
techniques for the entire run. In fact, this kind of updating technique yields a particular evolutionary
process where individuals not only improve their score for natural selection of the fitness or for good-
knowledge sharing, but for both of them at the same time. In each iteration the population is divided
into two parts and they are evolved with the two techniques respectively. They are then recombined in
the updated population, that is again divided randomly into two parts in the next iteration for another
run of genetic or particle swarm operators. Fig. 2 shows the idea that stands behind the algorithm and
the way to mixing the two main techniques.

The population update concept can be easily understood thinking that a part of the individuals is
substituted by new generated ones by means of GA, while the remaining are the same of the previous
generation but moved on the solution space by PSO. The driving parameter of GSO algorithm is
the Hybridization Coefficient (HC); it expresses the percentage of population that in each iteration is
evolved with GA: so HC = 0 means the procedure is a pure PSO (the whole population is processed
according to PSO operators), HC = 1 means pure GA (the whole population is optimized according
to GA operators), while 0 < HC < 1 means that the corresponding percentage of the population is
developed by GA, while the rest with PSO technique. For the problem at hand, the HC is equal to 0.5;
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Splitting of population 

Velocity updatingSelective reproduction 

Calculation of 
new positions 
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Personal and global 
bests updating 

Mutation 

Resulting new population 
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Figure 2. Flow-chart of the GSO algorithm.
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the number of dimensions is equal to twice the number of antenna elements because both the amplitude
and phase of each parameter must be specified by the GSO. Also, a population of 40 particles was used.

6. PATTERN SYNTHESIS USING GSO

In order to illustrate the capabilities of the hybrid evolutionary algorithm for solving the array
configuration for desired pattern synthesis by varying the amplitude and phase of the elements feed,
we introduce the case of an array having 10 isotropic elements with λ/2 spacing, which is supposed to
generate two beams steered towards the two angles −20◦ and 40◦, Fig. 3 shows the output pattern, the
relative amplitudes of the two beams were equal to unity, after 297 iterations maximum side lobes level
of −25.05 dB was achieved. Amplitude and phase distributions in degree are shown Table 1. the hybrid
algorithm is run for 297 generations.
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Figure 3. Multi-beam arrays with maximum
SLL equal to −25.05 dB.
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Figure 4. Convergence curve.

Table 1. Amplitudes and phases distributions.

Element No Magnitude (V) Phase (◦)
1 0.1633 13.2812
2 0.2971 167.332
3 0.4322 −142.064
4 0.6374 52.7236
5 0.7238 79.6010
6 0.7238 −79.6010
7 0.6374 −52.7236
8 0.4322 142.064
9 0.2971 −167.332
10 0.1633 13.2812

We consider an array of 16 isotropic elements spaced 0.5λ apart in order to generate three beams
towards the steering angles −30◦, 10◦ and 50◦ with amplitude-phase synthesis. Because of symmetry,
here only eight phases and eight amplitudes are to be optimized. Acceptable side lobe level should
be equal to or less than the desired value −20 dB. Fig. 5 shows normalized absolute power pattern in
dB the maximum side lobes level reach −20 dB, there is a very good agreement between desired and
obtained results. The optimized excitation magnitudes and phases (radian) elements are presented in
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Figure 5. Multi-beam arrays with maximum
SLL equal to −20 dB.

0 200 600 1000 1200 1400 1600
Fitness Evaluation

100

95

90

85

80

75

B
es

t F
itn

es
s

70
400 800 1800 2000

Figure 6. Convergence curve.

Table 2. Amplitudes and phases distributions.

Fig. 5 Fig. 7 Fig. 9

No
Ampl
(Volt)

Phase
(Rad)

Ampl
(Volt)

Phase
(Rad)

Ampl
(Volt)

Phase
(Rad)

1 0.2136 0.780 0.0439 −0.906 0.2382 −2.363
2 0.3599 −2.529 0.1671 −0.339 0.4350 0.578
3 0.1791 −1.699 0.2852 2.071 0.0268 −0.650
4 0.3992 1.838 0.2059 0.499 0.0781 −1.296
5 0.8508 −1.424 0.3031 0.325 0.3626 1.157
6 0.5087 −0.875 0.5421 −1.578 0.8760 −2.004
7 0.3990 2.852 0.6875 0.551 0.7002 −1.833
8 0.8479 −0.172 0.7323 1.440 0.3874 1.644
9 0.8479 0.172 0.7323 −1.440 0.3874 −1.644
10 0.3990 −2.852 0.6875 −0.551 0.7002 1.833
11 0.5087 0.875 0.5421 1.578 0.8760 2.004
12 0.8508 1.424 0.3031 −0.325 0.3626 −1.157
13 0.3992 −1.838 0.2059 −0.499 0.0781 1.296
14 0.1791 1.699 0.2852 −2.071 0.0268 0.650
15 0.3599 2.529 0.1671 0.339 0.4350 −0.578
16 0.2136 −0.780 0.0439 0.906 0.2382 2.363

the Table 2. For design specifications of amplitude-phase synthesis, the hybrid algorithm is run for 1863
generations.

With the same array as the last section and the same type of synthesis, we present synthesis results
of multibeam array as indicated in Figs. 7 and 9. Fig. 7 shows normalized absolute power pattern in
dB for multibeam array by amplitude-phase synthesis. After 1835 generations, an optimum multibeam
pattern of three beams steered towards the three angles −30◦, 0◦ and 40◦ is obtained. Side lobes level
obtained for desired pattern is −20.59 dB. Simulated results are shown in Table 2.

After 1649 iterations, the fitness value reached its maximum, and the optimization process ended
due to meeting the design goal. Fig. 9 shows the normalised absolute power pattern for the array with
four beams steered towards the four angles −40◦, −10◦, 20◦ and 50◦. maximum side lobe level reach
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Figure 7. Multi-beam arrays with maximum
SLL equal to −20.59 dB.
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Figure 8. Convergence curve.
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Figure 9. Multi-beam arrays with maximum
SLL level equal to −20 dB.
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Figure 10. Convergence curve.
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Figure 11. Multi-beam arrays with maximum SLL equal to −20 dB.
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−20 dB. The element excitation required to achieve this desired pattern is presented in Table 2. The
optimized result indicates that 16 elements symmetrically linear array is capable to realize the design
goal with less number of antenna elements.

In order to evaluate the performance of the proposed algorithm, we compare the numerical results
calculated by the Hybrid model and the Taylor-Kaiser [1]. We show the comparison of the gains of
two 20-element three-beam arrays with half wavelength spacing and steered towards the three angles
of −30◦, 0◦ and 60◦ among the hybrid algorithm results as indicated in Fig. 11, and the Taylor-Kaiser
simulated results in [1]. The hybrid algorithm −20 dB and the relative amplitudes of the three beams
were equal to unity, and this result remains comparable to the Taylor-Kaiser.

7. CONCLUSION

In this paper, a hybrid algorithm based on the adaptive particle swarm optimizer and standard genetic
algorithm has been presented. The proposed technique has been applied to the design of multi-beam
linear antennas array, in order to optimize the excitations law of its elements. The reported results
show that the genetic swarm optimiser class of procedures is reliable and effective: this feature makes
it suitable for wider application in electromagnetic.
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