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Microwave Scattering from Metamaterial Based Spheres in the
Presence of a Conducting Plane: Normal Incidence

Adnan Jamil* and Tenneti C. K. Rao

Abstract—The microwave scattering characteristics of a metamaterial (MTM) sphere and an MTM
coated conducting sphere is compared to that of its DPS (Real(ε) > 0, Real(μ) > 0) counterpart in the
presence of an infinite conducting plane using the multipole expansion method and is presented in this
article. The DPS medium may be an artificial dielectric or natural dielectric. The differential scattering
cross sections and the differential backscattering cross sections of the different types of spheres are
presented for a circularly polarized (left or right) beam incident normally on the sphere. The results
presented may be useful for maritime applications.

1. INTRODUCTION

In this paper the theoretical scattering characteristics of microwaves from a sphere made of MTMs and
a conducting sphere coated with MTMs, in the presence of an infinite conducting plane are presented.
The motivation for this research arose from the works of Johnson [1] in which similar analysis is
presented but with a dielectric sphere. The multipole expansion method was made use of in that
effort to present the scattering characteristics of a dielectric sphere in the presence of a conducting
plane. Methods used previously (references therein Johnson [1]) were approximation methods. The
multipole expansion method is not an approximation, but rather provides a numerically exact solution
to Maxwell’s equations. The underlying principle used in this analysis is based on image theory, which
has been extensively studied and researched (references therein Johnson [1]). The results presented in
this paper may be useful for maritime applications [2, 3] and were obtained from computations performed
by a program written in MATLAB.

2. THEORY

In this section the problem definition and methodology is presented. A sphere made of either double
negative/DNG (ε < 0, μ<0), double positive/DPS (ε > 0, μ > 0) or dispersive MTM and a conducting
sphere coated with such materials are placed in the vicinity of an infinitely long perfectly conducting
plane. An incident circularly polarized (left or right) electromagnetic wave Einc is travelling downwards
normally in the negative z-direction as shown in Fig. 1. This gives rise to a reflected plane wave Eref

and scattered wave Escat. Thus the total field outside the scattering particle is the sum of all the three
fields, which satisfy Maxwell’s equations. A time-dependence of the form e−jωt, where ω is the angular
frequency of the incident wave, is assumed and suppressed throughout. All boundary conditions on the
sphere surface and on the infinite conducting plane (at z = 0) must be satisfied.

The solution to this scattering problem is quite difficult to obtain and thus to simplify it a technique
similar to method of images is introduced [1]. For the analysis of the system in Fig. 1, the method of
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Figure 2. Geometry of the transformed system
of Fig. 1 using the method of images.

images combined with the multipole expansion is employed to find the solution. By the method of
images, the system in Fig. 1 will look like the transformed system in Fig. 2.

The incident field on the transformed system as shown in Fig. 2, is given by Einc = −(êx+iêy)e−ikz.
An image incident field, Ẽinc = (êx + iêy)eikz is also present. k is the wavevector in free space. The
total incident wave for the two particle problem is the sum of these two waves:

Ei = (êx + iêy)(eikz − e−ikz) (1)

The total electric field of the system may be written as the sum of the incident wave and the scattered
waves from the two particle system. In the region above the conducting plane (z > 0), the total electric
field is the sum of the incident field and the fields scattered by the two particles.

E = Ei + E(1)
s + E(2)

s (2)

The two scatter electric fields, E(1)
s and E(2)

s , propagate radially outward from the centers of the two
spheres, O1 and O2 respectively (Fig. 2). The electric fields can be expanded in terms of vector spherical
wave functions as shown below.

M(j)
n,m = z(j)

n (kr) eimφXn,m(θ) (3)

N(j)
n,m =

eimφ

kr

{
∂

∂r

[
rz(j)

n (kr)
]
Yn,m (θ) + z(j)

n (kr)Zn,m(θ)
}

(4)

where, z
(j)
n is a spherical Bessel function of type jn, h

(1)
n for j = 1, 3 respectively. The vector functions

X, Y and Z are defined by:

Xn,m (θ) = iπn,m (θ) êθ−τn,m(θ)êφ (5)
Yn,m (θ) = τn,m (θ) êθ+iπn,m (θ) êφ (6)
Zn,m (θ) = n(n + 1)Pm

n (cos(θ)) êr (7)

where,

πn,m (θ) =
m

sin(θ)
Pm

n (cos (θ)) (8)

τn,m (θ) =
∂

∂θ
Pm

n (cos (θ)) (9)

The function Pm
n (x) is the associated Legendre polynomial and (êr, êθ, êφ) are unit orthogonal vectors

associated with the spherical coordinates r, θ, φ. In the analysis that follows Mn,m and Nn,m with
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m = 1 will be needed only. Thus Mn,m and Nn,m will be replaced with Mn and Nn, respectively. The
circularly polarized plane wave can be expanded and written as:

(êx + iêy) e±ikz = ∓
∑∞

n=1
(±i)n+1 2n + 1

n (n + 1)

[
M(1)

n (r, θ, φ) ±N(1)
n (r, θ, φ)

]
(10)

r, θ, φ are coordinates with respect to the coordinate axes with origin, O, as shown in Fig. 2. A point
in this coordinate space will be represented by r. The other two coordinate systems with origins O1 and
O2 will have points represented by rj with coordinates (rj, θj, φj), where the subscript j may be 1 or
2 depending on which origin is being referred to. The incident wave, given by Eq. (1) can be expanded
in terms of spherical wave functions centered at O1:

Ei (r1) =
∑∞

n=1

[
pnM(1)

n (r1) + qnN(1)
n (r1)

]
(11)

The expansion coefficients in this equation can be obtained using Eq. (10). They are given by:

pn = −in+1 2n + 1
n (n + 1)

[
e−ikd − (−1)n eikd

]
(12)

qn = −in+1 2n + 1
n (n + 1)

[
e−ikd + (−1)n eikd

]
(13)

where d is the displacement of the center of the sphere from origin O. Also the scattered waves E
(1)
s

and E
(2)
s can be expanded around centers O1 and O2, respectively.

E(j)
s (rj) =

∑∞
n=1

[
a(j)

n M(3)
n (rj) + b(j)

n N(3)
n (rj)

]
; j = 1, 2 (14)

The scattering coefficients a
(1)
n , b

(1)
n , a

(2)
n and b

(2)
n are to be determined by the calculation. This can be

made easier by taking advantage of the mirror symmetry of the system and the boundary conditions
on the z = 0 plane. These conditions imply the following relations between the scattering coefficients:

a(1)
n = − (−1)n a(2)

n (15)

b(1)
n = (−1)n b(2)

n (16)
To find the scattering coefficients, it is convenient to expand the fields in the coordinate system with
the origin at O1. The fields Ei and E(1)

s are already in this form. E(2)
s is not, but can be converted to

this form by means of the translation-addition theorem for vector spherical wave functions [1]. From
this theorem we obtain the following:

M(3)
n (r2) =

∑∞
n′=1

[
An,n′M(1)

n′ (r1) + Bn,n′N(1)
n′ (r1)

]
(17)

N(3)
n (r2) =

∑∞
n′=1

[
An,n′N(1)

n′ (r1) + Bn,n′M(1)
n′ (r1)

]
(18)

The formulas for the coefficients An,n′ and Bn,n′ and a discussion of the method for calculating these
are given in Appendix A. The electric field in the region outside the sphere is given by Eq. (2). The
multipole expansion of this field around origin O1 can be derived with Eqs. (11), (14), (17) and (18).
The result is:

E =
∑

n

{[
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∑
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(2)
n′ + Bn′,nb
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(19)

This equation is of the form:

E =
∑

n

(
αnM(1)

n (r1) + a(1)
n M(3)

n (r1) + βnN(1)
n (r1) + b(1)

n N(3)
n (r1)

)
(20)

The ratio of the amplitudes of scattered wave multipoles (M(3) and N(3)) to the incident wave multipoles
(M(1) and N(1)) are:

un =
a

(1)
n

αn
(21)

vn =
b
(1)
n

βn
(22)
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The quantities un and vn are elements of the scattering T matrix for the particle [1]. For a homogenous
sphere un and vn are the Mie theory coefficients for the TE and TM scattering modes, respectively. The
formulas for un and vn are given in Appendix B. After un and vn have been computed, these equations
can be cast in a much more compact form by expressing all the coefficients as square matrices or column
vectors. The quantities a

(1)
n , b

(1)
n , a

(2)
n , b

(2)
n , pn and qn are elements of column vectors of length N : a(1),

b(1), a(2), b(2), p and q. The quantities An′,n and Bn′,n are elements of the N by N square matrices
A and B. The scattering coefficients un and vn are elements of the diagonal matrices u = [unδn,n′ ] and
v = [vnδn,n′ ]. Also another diagonal matrix g is present given by g = [(−1)nδn,n′ ]. The set of 2N linear
equations can now be written in a matrix form:[

AT + gu−1 BT

BT AT − gv−1

] [
a(2)

b(2)

]
= −

[
p
q

]
(23)

where Eqs. (15) and (16) gives a(1)= −ga(2) and b(1)= gb(2). The superscript T represents transpose
of the matrix. Scripts written in MATLAB were used to solve this matrix equation and calculate the
scattering coefficients. Once the scattering coefficients a(2) and b(2) have been calculated the next step
is to find the differential cross sections and differential backscattering cross sections.

The scattered wave is the sum of the two scattering components:

Escat=E(1)
s + E(2)

s (24)

The asymptotic form of this wave can be evaluated in the limit r → ∞ with the aid of Eq. (14) to
obtain:

Escat =
eikr

ikr
eiφ[Sθ (θ) êθ + iSφ (θ) êφ] (25)

where, the vector components of the scattering amplitude are given by:

Sθ (θ) = eikdcos(θ)S
(1)
θ (θ) + e−ikdcos(θ)S

(2)
θ (θ) (26)

Sφ (θ) = eikdcos(θ)S
(1)
φ (θ) + e−ikdcos(θ)S

(2)
φ (θ) (27)

and where:

S
(j)
θ (θ) = −

∑N

n=1
(−i)n+1

[
a(j)

n πn (θ) + b(j)
n τn (θ)

]
(28)

S
(j)
φ (θ) = −

∑N

n=1
(−i)n+1

[
a(j)

n τn (θ) + b(j)
n πn (θ)

]
(29)

for j = 1, 2.
If the incident beam is right or left circularly polarized or if it is unpolarized, as considered in the

paper, the differential scattering cross section (DSCS) is given by [1]:

σ (θ) =
1

2k2

[
|Sθ (θ)|2 + |Sφ (θ)|2

]
(30)

The angle θ in these formulas is restricted to the reflecting plane, i.e., 0 ≤ θ ≤ π
2 . For the differential

backscattering cross section (DBSCS), θ is set to 0◦ and a frequency sweep is performed. In all cases,
10 ∗ log10(

σ
πR2 ) is the quantity sought and plotted, with R being the radius of the object i.e., sphere or

coated sphere. The next section will present some results and discussion on the DSCS and DBSCS of
MTM based spheres in the presence of a conducting plane.

3. RESULTS

In this section, some representative results of the scattering characteristics of MTM spheres and MTM
coated conducting spheres in the presence of a perfectly conducting plane are presented and compared to
its dielectric DPS counterpart. The analysis that follows is in the microwave regime (0.1 GHz–10 GHz)
and the findings should be of benefit to the maritime engineering community [2, 3]. The types of material
considered are dielectrics (artificial or natural) and DNG type MTM of both lossless and lossy kinds.
In the first part the results of scattering from an MTM and dielectric sphere will be discussed and in
the second part a conducting sphere coated by a layer of MTM and dielectric will be looked at.
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3.1. Scattering from a Dielectric/MTM Sphere

The scattering characteristics of a normally incident circularly polarized (left or right) wave from a
dielectric and MTM sphere will be studied and compared in this section. A sphere of radius 50 mm
is considered in the configuration of Fig. 1. For the nondispersive MTM sphere only DNG type was
considered. In the dispersive case the MTM layer may act as DNG, DPS, ENG or MNG depending on
the frequency spectrum considered. Both the DBSCS and DSCS results were obtained and comparisons
were made between materials of different electromagnetic properties. Below are some representative
results and discussions.

Figure 3 shows the DBSCS characteristics for a DPS sphere (εr = 2.54 and μr = 2) and a DNG
sphere (εr = −2.54 and μr = −2). The conducting plane is at a distance of 0.275 m from the center of
the sphere. The distance is chosen such that it is comparable to the radius of the sphere. From the figure
it can be observed that for low frequencies, lower than approximately 1GHz, the backscattering from
the DNG sphere is much higher than that of the DPS sphere, indicating that at lower frequencies and
with these material parameters, the DNG sphere is a highly scattering structure in this configuration.
At frequencies between 1.4 GHz to 2.6 GHz, the backscattering from the DNG sphere is at lower levels
than that of the DPS sphere. Beyond 4GHz, there is not much difference between backscattering of the
two. Next, further investigation is done to study the DSCS of the two spheres under different conditions.

Figure 4 shows the DSCS characteristic of DPS spheres with different εr values and a fixed value
for μr at 2 at an incident frequency of 2.5 GHz. For εr = 2.54 in the backscattering direction (θ = 0◦),
the scattering level is roughly at 10.5 dB which matches the backscattering level at f = 2.5 GHz in
Fig. 3. Of the three different εr values the lowest overall scattering in all directions is the lowest for
εr = 0.001, which approximates nihility media with very low refractive index. Fig. 5 shows results
for the same exact scenario except the sphere is a DNG sphere. For εr = −2.54 in the backscattering
direction (θ = 0◦), the scattering level is roughly at 0 dB which matches the backscattering level in
Fig. 3. The lowest overall scattering in all directions is observed for εr = −2.54, unlike that of the DPS
case. The scattering from the nihility approximated media (εr = −0.001) is the most scattering until
approximately θ = 67◦, indicating that the scattering levels are, overall, the lowest for planes close to
the azimuthal plane (θ = 90◦) in the nihility media case. By keeping εr fixed, the effect of variation of
μr is studied next.

Figure 6 is representative of the DSCS characteristics for a DPS sphere for different values of μr

with εr fixed at 2.54. For μr = 2 in the backscattering direction (θ = 0◦), the scattering level is
roughly at 10.5 dB which matches the backscattering level at f = 2.5 GHz in Fig. 3. Apart from the
main lobe (0◦ ≤ θ ≤∼ 27◦), a non-monotonically varying set of scattering characteristics is observed
in all directions with increasing μr. For planes closer to the azimuthal plane (θ ≥ 60◦) the scattering
is lower than 0dB for μr = 1 and μr = 3. In Fig. 7, for the μr = −2 in the backscattering direction
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(θ = 0◦), the scattering level is roughly at 0 dB which matches the backscattering level at f = 2.5 GHz
in Fig. 3. A similar non-monotonically varying set of patterns is observed with the DNG case of Fig. 7
when scattering levels are compared to each other for all three cases apart from the lobe close to
the azimuthal plane (80◦ ≤ θ ≤ 90◦), where the scattering levels are monotonically decreasing with
decreasing value of μr. An interesting feature is that for the μr = −2 case the scattering is below 0 dB
for almost all directions, except it creeps just above 0 dB for a small range of scattering angles above
80◦. The scattering characteristics for fixed values of εr and μr for different heights of placement of the
sphere are looked at next.

Figure 8 shows the DSCS characteristics for a DPS sphere at different heights of placement
(d = 0.1 m, 0.5 m and 1 m) at a frequency of 2.5 GHz. It can be observed that as height increases,
the characteristics starts to increase in the number of lobes. The backscattering (θ = 0◦) is the lowest
for the smallest height (d = 0.1 m) for the DPS sphere at roughly 6 dB. As height increases, there is
not much change in the backscattering levels as can be observed with d = 0.5 m and 1 m. A similar
characteristic is observed with the DNG sphere of Fig. 9, with the number of lobes increasing as the
height increases, but there is not much change in the backscattering levels and remains almost at a
constant level of roughly 0 dB. The overall patterns for all three heights remain on or below 0 dB for all
scattering directions. The analysis for non-dispersive DPS and DNG spheres end with the case where
the radius of the sphere is varied at fixed height and frequency.

Figure 10 shows the DSCS characteristics for a DPS sphere with varying radii at a frequency of
2.5 GHz. In the backscattering direction (θ = 0◦), the backscattering levels for all three are roughly
between 8 dB to 12 dB. In certain ranges of scattering angles, scattering is either monotonically increasing
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or decreasing with increasing radius. For both R = 100 mm and R = 150 mm the scattering levels are
below 0 dB for θ ≥ 20◦. A similar behavior is observed with the DNG sphere of Fig. 11, as radius is
varied. The backscattering level for R = 50 mm is at 0 dB with the overall pattern hovering at or below
0dB in all directions. This is in contrast to R = 100 mm and R = 150 mm, where the backscattering
is above 10 dB. All these results encourage the investigation scattering from dispersive DPS and DNG
sphere in the presence of a conducting plane.

For the dispersion model, the Drude-Lorentz model for the rings and rods type of MTM was
investigated [4–6]. The MTM relative permittivity, εr, and relative permeability, μr, as a function of
frequency is given by:

εr = 1 − f2
p

f2 + jfγe
(31)

μr = 1 − f2
mp − f2

o

f − f2
o + jfγh

(32)

where, electric and magnetic collision frequencies are γe and γh, respectively; magnetic resonance
frequency is fo; plasma frequency is fp; fmp is the magnetic plasma frequency. An examination of
any dispersive MTM show that for certain frequency bands, the MTM may act as DPS (Re(εr) > 0,
Re(μr) > 0), DNG (Re(εr) < 0, Re(μr) < 0), ENG (Re(εr) < 0, Re(μr) > 0) or MNG (Re(εr) > 0,
Re(μr) < 0). For the time dependence chosen in this paper and to maintain consistency with Poynting’s
theorem, the imaginary parts of the two parameters need to be positive. The characteristic parameters
of the coating layer are therefore given by:

εr = ±ε′ + jε′′ (33)
μr = ±μ′ + jμ′′ (34)

ksph = ±k′ + jk′′ (35)
ηsph = η′ ± jη′′ (36)

ksph is the wavevector within the MTM sphere or coating. It should be noted that the lossless DNG case
ksph = −k′ and for the lossless ENG case ηsph = −jη′′ [6]. To model the dielectric DPS nature, the real
parts of εr and μr are forced to be positive for the entire frequency range. The material properties and
DBSCS characteristics of a dispersive and lossy DPS dielectric and DNG MTM sphere in the presence
of a conducting plane are shown next.

Figure 12 shows the permittivity and permeability properties of a dispersive rings and rods media
based on the Drude/Lorentz model of Eqs. (31) and (32). It approximates a DNG material between
approximately 2.5 GHz to 4GHz, i.e., both εr and μr have negative real parts within that frequency
band. On the other hand, Fig. 13 shows a hypothetical DPS dielectric material which is modeled by



64 Jamil and Rao

0 10 20 30 40 50 60 70 80 90
-20

-15

-10

-5

0

5

10

15

Scattering angle in degrees

σ
d

iff
/π

R
2  in

 d
B

Plot of differential scattering cross section versus scattering
for εr =−2.54, μr =−2, d = 0.275 m and f = 2.5 GHz

 

 

R = 50 mm
R = 100 mm
R = 150 mm

 angle

Figure 11. DSCS characteristics for a DNG
sphere with different radii.

0 1 2 3 4 5 6 7 8 9 10

x 10
9

-2

-1

0

1

2

3

4

5

Frequency (Hz)

ε
r a

nd
 μ

r

Plot of real and imaginary parts of εr and μr for f0=2.5 GHz,
 fp=4.5 GHz, γe=0.1 GHz, γh=0.1 GHz, fmp =3.75 GHz

0.1 GHz to 10 GHz

 

 

real(ε
r
)

real(μ
r
)

imag(ε
r
)

imag(μ
r
)

Figure 12. Characteristics of a dispersive DNG
MTM.

0 1 2 3 4 5 6 7 8 9 10

x 10
9

0

5

10

15

Frequency (Hz)

ε
r a

nd
 μ

r

Plot of real and imaginary parts of εr and μr
 fp=4.5 GHz, γe=0.1 GHz, γh = 0.1 GHz, fmp = 3.75 GHz

0.1 GHz to 10 GHz

 

 

real(εr)

real(μr)

imag(εr)

imag(μr)

for f0=2.5 GHz,

Figure 13. Characteristics of a dispersive
hypothetical dielectric DPS material.

0 1 2 3 4 5 6 7 8 9 10

x 10
9

-40

-30

-20

-10

0

10

20

Frequency (Hz)

σ
d

iff
,B

S
/π

R
2  in

 d
B

Plot of normalized differential backscattering cross section
for R =50 mm and d =0.275 m

0.1 GHz to 10 GHz

 

 

Dispersive DNG
Dispersive DPS

 versus frequency

Figure 14. Comparison of DBSCS character-
istics of a dispersive DPS and dispersive DNG
sphere.

the same exact characteristics of the Drude/Lorentz model used for the DNG media of Fig. 12, except
that the absolute value of the real parts of both εr and μr are considered for the entire frequency range,
thus rendering it a DPS dielectric material. The scattering characteristics of a sphere made of both
these materials in the presence of a conducting plane will be studied and compared.

Figure 14 shows a comparison of the DBSCS characteristics of a DPS and DNG sphere for a height
of 0.275 m. It may observed that at the lower end of the frequency range, between 0.1 GHz to 2 GHz,
there are regions where the DNG sphere has a much weaker scattering than its DPS counterpart. For the
DNG sphere there are narrow bands centered around 0.5 GHz and 1.15 GHz where the backscattering
levels are below −10 dB. Also in the region between 1.25 GHz to 2.25 GHz, the DNG sphere has a
stronger backscattering than it DPS counterpart. In the frequency band of 3 GHz to 3.75 GHz the DNG
sphere has a stronger backscattering as well. Fig. 15 shows the effect of height on backscattering levels
below −10 dB for the DNG sphere. For a reduced height of 0.25 m the frequency band centered around
1.15, for which backscattering levels are below −10 dB, disappears. When a conducting sphere is coated
with these materials interesting effects are expected for scattering enhancement and reduction which
may be beneficial for both detection and cloaking for maritime applications.

3.2. Scattering from a Dielectric/MTM Coated Conducting Sphere

In this section, a conducting sphere of 50 mm radius will be coated by a layer of dielectric and DNG
MTM and comparisons of the DBSCS will be made between the two. Furthermore it can be shown that
adding a layer of MTM will reduce the DBSCS significantly and this will be beneficial for cloaking a
conducting object in the presence of a conducting plane. Also scattering may be enhanced and this will
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Figure 16. Geometry of the coated sphere.
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be useful for detection purposes. The scattering coefficients un and vn will change for the coated sphere
as given in Appendix B. The geometry of the coated sphere is shown below in Fig. 16. The dielectric or
MTM layer may be lossless or lossy. The aspect ratio, b/a, is a measure of the thickness of the MTM
layer.

Figure 17 shows the DBSCS characteristics of a conducting sphere coated with a lossless dielectric
and lossless DNG MTM for an aspect ratio of 1.3 and at a height of 0.25 m. The characteristics show
that there are different frequency spectra where one kind of coating may scatter more or less than the
other, and thus shows that lossless DNG media may not be advantageous for cloaking applications for
the overall frequency range. If one were to focus on a specific frequency band then only can lossless DNG
media be useful for scattering reduction applications. An example of this is in the spectrum between
roughly 2GHz to 2.6 GHz where the DNG coating causes less scattering then its dielectric counterpart.
If a frequency of 2.3 GHz was chosen and a plot of the DSCS was made, as shown in Fig. 18, then it may
be observed that overall scattering is much lower for the DNG case then the dielectric/DPS case which
can be helpful for cloaking applications. These results encourage the study of introducing dispersion
into the coating material and observe its effects.

Figure 19 shows the DBSCS characteristics for a dispersive DNG and dispersive DPS coated sphere
for an aspect ratio of 1.3 and at a height of 0.275 m from the conducting plane. The relative permeability
and relative permittivity characteristics of the dispersive DNG and DPS are that of Figs. 12 and 13
respectively. From Fig. 19 it can be observed that there is a very narrow band in the DNG case centered
around 0.8 GHz where the scattering goes down below −10 dB. There is no such band for the DPS case.
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On the other hand, roughly between 3 GHz to 3.7 GHz DNG coating has a stronger scattering than
the DPS coating. So it may be concluded that DNG type coating may be beneficial for both cloaking
and detection applications. A further analysis for the DNG case is shown in the figure below (Fig. 20)
where the DBSCS characteristics are shown at two different heights and the effects on the bandwidth
for which backscattering is below −10 dB are shown. Several iterations of the simulation program was
run by changing the height and the resonance region centred around 0.8 GHz disappeared if the sphere
was placed too close or too far away from the conducting plane (not shown in the paper), indicating that
height has a role in achieving optimum bandwidth for which cloaking or detectability may be achieved.

4. CONCLUSIONS

In this paper, the scattering from an MTM sphere and an MTM coated conducting sphere in the
presence of a conducting plane using the multipole expansion method were presented and compared
to its dielectric counterpart. The results show that utilization of MTM will potentially allow altering
the scattering characteristics for maritime purposes, where sea water may be considered as a good
conductor in these frequencies. Enhancement of backscattering with the MTM coating was observed for
some spectrum of frequencies indicating that MTM may be useful for detection purposes. Furthermore,
lowering observability of conducting spheres by coating it with a layer of MTM in the presence of
conducting plane was also a feature noticed thus providing encouragement for cloaking applications.
Further investigations are needed to achieve cloaking of a conducting sphere for broader spectra at
higher frequencies in the presence of the conducting plane.

APPENDIX A. THE TRANSLATION-ADDITION THEOREM

The expansion coefficients An,n′ and Bn,n′ of Eq. (17) are given by [1]:

An,n′ = −in
′−n 2n′ + 1

2n′(n′ + 1)

∑
υ
i−υ

[
n (n + 1) + n′ (n′ + 1

) − υ (υ + 1)
] · a (

n, n′; υ
) · h(1)

υ (kδ) (A1)

Bn,n′ = in
′−n 2n′ + 1

2n′(n′ + 1)

∑
υ
i−υ(2ikδ) · a (

n, n′; υ
) · h(1)

υ (kδ) (A2)

where h
(1)
υ (kδ) is the spherical Hankel function of the first kind and a(n, n′; υ) is special form of the

Guant coefficient, defined by the following product of two 3 − j symbols:

a
(
n, n′;υ

)
= (2υ + 1)

[
n (n + 1)
n′(n′ + 1)

]1/2 (
n n′ υ
0 0 0

)(
n n′ υ
1 −1 0

)
(A3)

It is to be noted that An,n′ = An′,n and Bn,n′ = Bn′,n. Also δ = 2d.
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APPENDIX B. FORMULAS FOR THE SCATTERING COEFFICIENTS

B.1. Scattering Coefficients for the Plain Sphere

If a sphere is made of material with relative permeability, μr, and relative permittivity, εr, then its
refractive index is given by n =

√
εrμr. All these quantities could be complex numbers. The wavevector

within the sphere, ksph, is given by ksph = nk, where k is the wavevector in free space given by k = 2π
λ .

λ is the wavelength of the incident radiation on the sphere. Ĵn and Ĥ1
n are Ricatti-Bessel and Hankel

functions. All primes denote derivative with respect to the argument of the function. It is assumed that
the medium surrounding the sphere is free space. The scattering coefficients un and vn of Eq. (20) are
given by [5]:

un = −
√

μ
r
Ĵn (ksphR) Ĵ ′

n (kR) −√
εrĴn (kR) Ĵ ′

n (ksphR)
√

μ
r
Ĵn (ksphR) Ĥ1′

n (kR) −√
εrĤ

1
n (kR) Ĵ ′

n (ksphR)
(B1)

and

vn = −
√

μ
r
Ĵn (kR) Ĵ ′

n (ksphR) −√
εrĴn (ksphR) Ĵ ′

n (kR)
√

μ
r
Ĥ1

n (kR) Ĵ ′
n (ksphR) −√

εrĴn (ksphR) Ĥ1′
n (kR)

(B2)

B.2. Scattering Coefficients for the Coated Conducting Sphere

Referring to the geometry of Fig. 16, the coating is made of material with relative permeability, μr, and
relative permittivity, εr. Thus the intrinsic impedance of the coating, ηsph, will be ηsph =

√
μr

εr
·η0, where

η0 is roughly 120π and is the intrinsic impedance of free space. The wavevector within the coating,
ksph, is given by ksph = nk, where k is the wavevector in free space given by k = 2π

λ . n is the complex
refractive index of the coating, given by n =

√
εrμr and λ is the wavelength of the incident radiation

on the coated sphere. Ĵn and Ŷn are Ricatti-Bessel functions. All primes denote derivative with respect
to the argument of the function. It is assumed that the medium surrounding the coated sphere is free
space. Thus the scattering coefficients un and vn may now be written as [7]:

Sn (b) = Ĵn (kspha) Ŷn (ksphb) − Ĵn (ksphb) Ŷn (kspha) (B3)

S′
n (b) = Ĵn (kspha) Ŷ ′

n (ksphb) − Ĵ ′
n (ksphb) Ŷn (kspha) (B4)

Rn (b) = Ĵ ′
n (kspha) Ŷn (ksphb) − Ĵn (ksphb) Ŷ ′

n (kspha) (B5)

R′
n (b) = Ĵ ′

n (kspha) Ŷ ′
n (ksphb) − Ĵ ′

n (ksphb) Ŷ ′
n (kspha) (B6)

un =
ηsphĴn (kb) R′

n (b) − η0Ĵ
′
n (kb) Rn(b)

η0Rn(b)Ĥ1′
n (kb) − ηsphĤ1

n (kb)R′
n (b)

(B7)

and

vn =
η0Ĵn (kb) S′

n (b) − ηsphĴ ′
n (kb) Sn(b)

ηsphSn(b)Ĥ1′
n (kb) − η0Ĥ1

n (kb) S′
n (b)

(B8)
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