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Abstract—This work investigates an adaptive, parallel and scalable integral equation solver for very
large-scale electromagnetic modeling and simulation. A complicated surface model is decomposed
into a collection of components, all of which are discretized independently and concurrently using a
discontinuous Galerkin boundary element method. An additive Schwarz domain decomposition method
is proposed next for the efficient and robust solution of linear systems resulting from discontinuous
Galerkin discretizations. The work leads to a rapidly-convergent integral equation solver that is scalable
for large multi-scale objects. Furthermore, it serves as a basis for parallel and scalable computational
algorithms to reduce the time complexity via advanced distributed computing systems. Numerical
experiments are performed on large computer clusters to characterize the performance of the proposed
method. Finally, the capability and benefits of the resulting algorithms are exploited and illustrated
through different types of real-world applications on high performance computing systems.

1. INTRODUCTION

Surface integral equation (SIE) methods [1–7] have shown to be effective in solving electromagnetic
(EM) radiation and scattering problems. Applications range from advanced antenna design [8, 9],
stealth technologies [10, 11], integrated circuits [12] to optics and photonics [13, 14]. One advantage
of SIE is that both the analysis and unknowns reside only on the boundary surfaces of the targets.
It often requires fewer unknowns to solve when compared to differential equation methods, where the
unknowns scale volumetrically. Since surface-based modeling is used, it is easier to prepare analysis-
suitable models from Computer Aided Design (CAD) geometries. However, application of SIE methods
to Maxwell’s Equations leads to a dense, complex and indefinite matrix equation to solve, therefore,
robust preconditioning techniques and scalable computational algorithms are needed.

Over the past decades, with the synergy between the advancement of fast algorithms and
increasingly capable computing hardwares, many very large-scale EM problems can be simulated in a
reasonable timeframe. Fast and parallel algorithms such as the fast multipole method (FMM) [15–18],
hybrid FMM and fast Fourier transform (FFT) [19], and parallel adaptive integral method [20, 21] have
been developed to accelerate the dense matrix-vector product (MVP). Other significant developments
include the parallel higher-order method of moments [22] and fast direct solver of the SIE linear
system [23–25]. With these advancements, the solutions with over several hundred millions and a
billion unknowns have been possible [17, 18, 26].

Reciprocally, the growing sophistication in real-world EM applications and the increasing demand
on enhancements of the model fidelity have driven the need for more advanced mathematical models
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and numerical algorithms. One representative EM application considered in this work is the full wave
analysis of a modern full-scale aircraft carrier. As illustrated in Fig. 1, this high-definition platform
consists of hundreds of EM sub-systems and over 100,000 parts. In the Ku band, it requires more than
20 billion mesh points to discretize the entire platform, and leads to an dense matrix equation with
approximately 30 billion degrees of freedom (DoFs) to solve. Another major difficulty comes from the
multi-scale nature of the high-definition geometry, in which the spatial scales differ by several orders of
magnitude. The coexistence of an electrically large aircraft carrier platform and electrically small fine
features reflects into disparate mesh sizes. It may cause the so-called “mixed-frequency” problem [12, 27]
and result in an extremely ill-conditioned matrix equation.

Such very large multi-scale EM problems present significant mathematical and computational
challenges. They can hardly ever be completed within a reasonable amount of time on a single computer.
This puts a high premium on investigation into parallel SIE simulators which are scalable on massively
parallel supercomputers. Furthermore, to fully exploit the potential of petaflops and exaflops high
performance computing (HPC) systems, all essential elements in the IE modeling and simulation process,
including model preparation, mesh generation, preconditioning, solution and post-processing, must be
designed with scalable parallelism in mind.

The objective of this research is to investigate an adaptive and parallel SIE solver for the solution
of time-harmonic Maxwell’s Equations. Both the simulation capability and modeling fidelity of the
proposed solver are expected to scale with the exponential growth in computing power. To realize
this objective, advances have been made on three fronts: (i) a geometry-adaptive discontinuous
Galerkin boundary element method (DG-BEM), which permits the use of non-conformal surface
discretizations and facilitates the mesh generation task for high-definition objects; (ii) a non-overlapping
additive Schwarz domain decomposition (DD) method for the iterative solution of the DG-BEM
matrix equations, which leads to scalable convergence in the DD iterations; (iii) parallel and adaptive
computational algorithms to reduce the time complexity of very large-scale simulations via distributed
memory HPC architectures.

The work is shown to be an suitable paradigm not only for the parallel, scalable solution of the
SIE matrix equation on advanced HPC computers, but also for new simulation-aided design tools
capable of component oriented optimization, discretization and simulation. As depicted in Fig. 1,
many EM applications today involve the interaction of multiple bodies and the integration of multiple
components. At conceptual design stage, individual components are often modified on a daily basis.
The proposed work allows generating analysis-suitable models per-component, analyzing individual
components independently, and automating assembly of multiple components to obtain the virtual
prototyping of entire product.
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Figure 1. A high-definition aircraft carrier.
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The remainder of the paper is organized as follows. In Section 2 we introduce the model problem
of EM scattering from non-penetrable PEC objects. We then introduce the DG-BEM variational
formulation and Schwarz DD preconditioning. In Section 3, we present the major ingredients of
the parallel computing methodology. Based on the proposed algorithms, we have developed a hybrid
Message Passing Interface (MPI)/OpenMP parallel implementation. Section 4 includes representative
numerical experiments to validate the analysis and to illustrate the performance of the proposed method.
Concluding remarks are summarized in Section 5.

2. THEORY AND FORMULATION

2.1. Model Problem

We focus on the solution of time-harmonic EM scattering from a finite three-dimensional PEC object
Ω with its exterior boundary S, as illustrated in Fig. 2. The exterior region Ωext is assumed to be
free space. Two surface trace operators on S are employed in this work. They are the tangential trace
operator πτ (f) := n̂×(f×n̂)|S , and the twisted tangential trace operator π×(f) := n̂×(f)|S = n̂×πτ (f).
The plane wave incident electric and magnetic fields are denoted by Einc and Hinc, respectively.

Figure 2. EM scattering from a non-penetrable PEC object.

The surface integral equation method is a natural choice for such an EM scattering problem. To
do so, we first introduce the electric field boundary potential, L, and magnetic field boundary potential
K, defined as,

L (f ;S) (r) := −ık0ΨA (f ;S) (r) + 1

ık0
∇ΨF (∇τ · f ;S) (r) , (1)

K (f ;S) (r) := ∇×ΨA (f ;S) (r) , (2)

where ΨA and ΨF are the single-layer vector and scalar potential, defined by:

ΨA (f ;S) (r) :=

∫
S
f(r′)G(r, r′)dr′, (3)

ΨF (ρ;S) (r) :=

∫
S
ρ(r′)G(r, r′)dr′, (4)

and G(r, r′) := exp−ık0|r−r′|

4π|r−r′| is the free-space Green’s function.

We proceed to introduce an auxiliary variable on S, j = 1
−ık0

π×(∇ × E), which represents the
scaled surface electric current. To avoid internal resonance solutions, we herein employ a combined field
integral equation (CFIE) formulation, which can be written as:

α

2
j− απ×

(
K̄ (j;S)

)
− (1− α)πτ (L (j;S)) = αjinc + (1− α) einc on S, (5)

where K̄ stands for the principle value of the magnetic field boundary potential, K, on S, and
jinc = η0π×(H

inc) and einc = πτ (E
inc). The coupling parameter α is chose to be 1

2 in the following
study.
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2.2. Discontinuous Galerkin Formulation

Equation (5) is often solved via the Galerkin method, which is based on a variational formulation in
suitable trial and testing function spaces. Therefore, conforming boundary element spaces defined on a
conformal discretization of the target’s surface are commonly required. However, generating conformal
discretizations for engineering system-level simulations is far from trivial, as the complexity of modern
engineering applications increases at a fast pace. Among the previous works addressing the above
mentioned deficiencies, we mention recent works [28–32].

In this work, we investigate an interior penalty discontinuous Galerkin boundary element method,
which allows the solution of CFIE (5) using square-integrable, L2, trial and testing functions spaces.
Due to the local characteristics of L2 vector functions, it admits discontinuities of the elements in the
discrete space and allows the use of non-conformal surface discretizations of the targets. In this way,
the troublesome mesh generation task of complex, multi-scale targets can be facilitated dramatically.
Initial work has been done to demonstrate the potential of DG-BEM in solving the EM wave scattering
from PEC objects in [33]. We have shown that the DG-BEM provides the same order of accuracy and
convergence behavior compared to that of the traditional Galerkin CFIE method, which uses standard
H(div)-conforming boundary element spaces. Moreover, the stability and convergence have been
validated for targets with sharp edges and corners. Along the line of this research, we herein employ a
non-symmetric interior penalty formulation [34]. Although it results in non-symmetric coupling matrices
after the finite dimensional discretization, it enjoys the remarkable property of discrete ellipticity of the
weak formulation and well-posedness of the discrete formulation. The consistency of the discrete weak
formulation is illustrated in this section.

Let us consider a simplicial mesh Sh =
∪M

m=1{Tm} of S, i.e., a tessellation of S made of M
triangles. In the DG-BEM formulation, the triangles are neither required to be conformal nor matching.
Furthermore, for any Tm ∈ Sh we define the boundary of the triangular to be Cm and the in-plane unit
normal t̂m outer to the boundary Cm. The approximation of the current jh can be written as:

jh (r) =
M⊕

m=1

jhm (r) (6)

where jhm ∈ Xh
m is the local approximation of the surface current within each element, andXh

m is taken as
the space spanned by the vector basis functions introduced in [35] with the DOFs defined independently
for each triangle. Moreover, let Tm and Tn to be two adjacent triangles sharing the contour boundary
Cmn. The jump of the surface electric current across adjacent elements is denoted by[[

jh
]]
mn

:= t̂m · jhm + t̂n · jhn on Cmn. (7)

We define the following bilinear form on Xh ×Xh:

ah

(
vh, jh

)
:=

ık0
2

M∑
m=1

⟨
vh
m,

M∑
n=1

ΨA

(
jhn; Tn

)⟩
Tm

+
1

2ık0

M∑
m=1

⟨
∇τ · vh

m,

M∑
n=1

ΨF

(
∇τ · jhn; Tn

)⟩
Tm

+
1

4ık0

∑
Cmn∈C

⟨[[
jh
]]
mn

,

M∑
n=1

ΨF

(
∇τ · vh

n; Tn
)⟩

Cmn

− 1

4ık0

∑
Cmn∈C

⟨[[
vh

]]
mn

,

M∑
n=1

ΨF

(
∇τ · jhn; Tn

)⟩
Cmn

+
β

2k0

∑
Cmn∈C

⟨[[
vh

]]
mn

,
[[
jh
]]
mn

⟩
Cmn

+
1

4

M∑
m=1

⟨
vh
m, jhm

⟩
Tm

+
1

2

M∑
m=1

⟨
π×

(
vh
m

)
,

M∑
n=1

K̄
(
jhn; Tn

)⟩
Tm

where the stabilization parameter [33] is chosen to be β = | log h̄|/10, where h̄ is the average element
size over the entire discretization.

The variational weak formulation of CFIE (5) using discontinuous Galerkin discretizations can be

formally stated as: Seek jh =
⊕M

m=1 j
h
m, jhm ∈ Xh

m such that

ah

(
vh, jh

)
=

1

2

⟨
vh, einc

⟩
Sh

+
1

2

⟨
vh, jinc

⟩
Sh

(8)
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∀vh =
⊕M

m=1 v
h
m, vh

m ∈ Xh
m. After expanding the current in terms of the basis functions, the discrete

system can then be cast as a matrix equation as: Ax = b, where x is the unknown coefficient vector
and b is the right hand side vector.

We proceed to show that the DG-BEM weak formulation is consistent, i.e., the exact solution j of
CFIE (5) solves the finite dimensional weak form:

ah

(
vh, j

)
=

1

2

⟨
vh, einc

⟩
Sh

+
1

2

⟨
vh, jinc

⟩
Sh

∀vh ∈ Xh (9)

To prove this statement, we first recognize that, for exact solution j, the jump of the surface electric
current is equal to zero, [[j]]mn = 0. Thus, we obtain that for vh ∈ Xh

ah

(
vh, j

)
:=

ık0
2

M∑
m=1

⟨
vh
m,

M∑
n=1

ΨA (jn; Tn)

⟩
Tm

+
1

2ık0

M∑
m=1

⟨
∇τ · vh

m,

M∑
n=1

ΨF (∇τ · jn; Tn)

⟩
Tm

− 1

4ık0

∑
Cmn∈C

⟨[[
vh

]]
mn

,
M∑
n=1

ΨF (∇τ ·jn; Tn)

⟩
Cmn

+
1

4

M∑
m=1

⟨
vh
m, jm

⟩
Tm

+
1

2

M∑
m=1

⟨
π×v

h
m,

M∑
n=1

K̄ (jn; Tn)

⟩
Tm

Next, we recall the definition of jump operator, and the boundary integral term involving discontinuous
testing functions, −1

4ık0

∑
Cmn∈C⟨

[[
vh

]]
mn

,
∑M

n=1ΨF (∇τ · jn; Tn)⟩Cmn , can be rewritten as:

− 1

4ık0

∑
Cmn∈C

⟨[[
vh

]]
mn

,

M∑
n=1

ΨF (∇τ · jn; Tn)

⟩
Cmn

= − 1

2ık0

M∑
n=1

⟨
vm · t̂m,

M∑
n=1

ΨF (∇τ · jn;Sn)

⟩
Cm

(10)

After applying a surface Green’s formula, we arrive at the following expression:

ah

(
vh, j

)
=

ık0
2

M∑
m=1

⟨
vh
m,

M∑
n=1

ΨA (jn; Tn)

⟩
Tm

− 1

2ık0

M∑
m=1

⟨
vh
m,

M∑
n=1

∇τΨF (∇τ · jn; Tn)

⟩
Tm

+
1

4

M∑
m=1

⟨
vh
m, jm

⟩
Tm

+
1

2

M∑
m=1

⟨
π×

(
vh
m

)
,

M∑
n=1

K̄ (jn; Tn)

⟩
Tm

=

M∑
m=1

⟨
vh
m,

1

4
j

⟩
Tm

−
M∑

m=1

⟨
vh
m,

1

2
π×

(
K̄ (j;S)

)⟩
Tm

−
M∑

m=1

⟨
vh
m,

1

2
πτ (L (j;S))

⟩
Tm

=

M∑
m=1

⟨
vh
m,

1

2
jinc

⟩
Tm

+

M∑
m=1

⟨
vh
m,

1

2
einc

⟩
Tm

Note that we have used Eq. (5) in the final step of derivation. The above proves the consistency
of the DG-BEM weak formulation. Furthermore, since the DG-BEM solution jh ∈ Xh also solve the
discrete weak formulation, we have:

ah

(
vh, jh

)
=

⟨
vh, einc

⟩
Kh

∀vh ∈ Xh (11)

Subtracting (9) and (11) and making use of the linearly in the bilinear form, we arrive at:

ah

(
vh, j− jh

)
= 0 ∀vh ∈ Xh (12)

Namely, the projection of the solution error, r := j− jh, onto the finite dimensional subspace Xh is zero
with respect to the energy inner product defined by the bilinear form ah(·, ·). Eq. (12), also known as
Galerkin orthogonality property, states that jh is the best approximation of j in Xh with respect to the
energy inner product, as the error is orthogonal to the space we are seeking for the solution. Therefore,
the DG-BEM discrete formulation will be converging, and the solution error decreases with increasingly
bigger finite dimensional subspaces.
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2.3. Domain Decomposition Solver

This section investigates efficient and robust solution techniques for the linear system resulting from
DG-BEM discretizations. For many problems of practical interest, the number of DOFs, and therefore
the dimension of the matrix equation to be solved, is too large to permit the use of direct solution
techniques. Instead, one usually turns to preconditioned Krylov subspace iterative methods. When
such iterative solutions are employed, the efficient and parallel computation of effective preconditioners
poses an immense challenge [6, 12, 36–42].

This work proposes a one-level non-overlapping additive Schwarz DD preconditioner [43] for the
solution of the DG-BEM linear system equation, Ax = b. The main advantages of the method are
twofold: (i) it results in a highly efficient and naturally parallelizable computational algorithm on
distributed memory many-core parallel computing architectures; (ii) it enables the design of SIE based
“divide-and-conquer” scheme in which appropriate SIE solvers can be seamlessly integrated to solve
individual subdomain problems.

To apply the proposed method, we first partition the triangular mesh Sh into N subdomains, Sh
i ,

i = 1, . . . , N . The sub-meshes associated to ith subdomain are denoted by Sh
i =

∪Mi
m=1{T i

m}. The
matrix equation for the decomposed problem is given by:

A1 C12 . . . C1N

C21 A2 . . . C2N
...

...
. . .

...
CN1 CN2 . . . AN



x1

x2
...

xN

 =


b1

b2
...

bN

 (13)

In (13), Ai denotes the subdomain CFIE impedance matrix on Sh
i , and Cij is the coupling matrix

between subdomains Sh
i and Sh

j . We note that these subdomains are obtained by a direct partitioning of

the object’s surface without the introduction of artificial interfaces [11, 44] or auxiliary unknowns [45, 46].
We proceed to introduce Ri, a rectangular restriction matrix that returns the vector of coefficients in
the subdomain Sh

i , i.e., xi = Rix. The subdomain matrix Ai can be written as:

Ai = RiART
i (14)

The one-level additive Schwarz preconditioner P−1 can then be expressed as the following:

P−1 =
N∑
i=1

RiA
−1
i RT

i (15)

The matrix Eq. (13) can then be solved with a right preconditioned form, (AP−1)Px = b.
Explicitly, the preconditioned matrix equation can be formulated as:

I C12A
−1
2 . . . C1NA−1

N
C21A

−1
1 I . . . C2NA−1

N
...

...
. . .

...
CN1A

−1
1 CN2A

−1
2 . . . I



u1

u2
...

uN

 =


b1

b2
...

bN

 (16)

where ui = Aixi. Thus, the system matrix equation is solved in two steps. The first step is to solve the
preconditioned matrix equation Eq. (16) by a Krylov subspace iterative method, in which the residual
norm, ∥Au−b∥2, is the same as the original matrix equation. Once the unknown vector ui is computed,
the solution for each subdomain can be recovered via xi = A−1

i ui.
The proposed work can be viewed as an effective preconditioning scheme that reduces the condition

number of very large systems of equations. Numerical experiments illustrate that the iteration count
of preconditioned systems depends logarithmically on the number of sub-domains and the electrical
size of the object. Therefore, the method is very effective in solving very large-scale EM engineering
applications. Furthermore, it is shown to be a suitable computing paradigm not only for the scalable
parallel solution of the IE matrix equation on advanced computing architectures, but also for a flexible
hybrid solution strategy where fast direct solvers and fast multipole methods based iterative solvers can
be applied to individual sub-domain problems.
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3. PARALLELIZATION STRATEGY

The mathematical advancements of the proposed work enable an adaptive, parallel and scalable SIE-
based analysis framework well-suited for advanced distributed computing systems. The basic units of
the parallel analysis framework consist of pre-processing, parallel computing and post-processing, all
of which are formulated with proposed mathematical ingredients towards scalable parallelism. This
section provides an overview of the parallel implementation of the proposed algorithms.

3.1. Pre-processing

3.1.1. Geometry-Based Domain Decomposition

The simulation flowchart begins with a decomposition of the CAD-generated surface model into a
collection of components based on simulation-aided design aspects. Each component is a surface module
and considered as one sub-domain, and all components in the modeling and simulation processes are
interchangeable. Subsequently, the virtual prototyping of the entire product is obtained by automating
assembly of multiple components. As a representative example, the high-definition aircraft carrier shown
in Fig. 1 is first decomposed into three simulation modules, (i) aircrafts on deck, (ii) an integrated
island, and (iii) the flight deck and ship body. Those modules are further decomposed into a collection
of components directly based on the design description embodied in the CAD models. Each component
has its own geometric representation and represents one subdomain in the simulation framework. The
resulting geometry-based decomposition is depicted in Fig. 3.

Module I Module II 

Module III 

Figure 3. Geometry-based domain decomposition of the aircraft carrier.

3.1.2. Parallel Geometry-Adaptive Mesh Generation

Next, individual components are discretized independently and concurrently into a tessellation of
triangular elements. The largest discretization size employed in the computation is determined by
the wavelength of the operating frequency. Fine surface discretizations are generated locally to
accurately represent geometrically complex regions. Each triangulated subdomain contains its own
collection of triangles, edges, and vertices. As a result, it enables a trivially parallel mesh generation
and allows engineers to rapidly generate high-fidelity models of complex geometries. Moreover, since
every component and associated discretization are interchangeable, it provides unprecedented flexibility
and convenience for simulation-based design and parameter studies, i.e., antenna in-situ performance
characterization, antenna co-site interference analysis, etc.
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3.1.3. Algorithmic Graph Partitioning

The goal of this part is to develop an automatic spatial decomposition that will balance the computation
among the processors in the HPC system. To do so, we first employ an algorithmic graph partitioning
algorithm, METIS [47], to partition the DG discretizations associated with each component into modular
work units based on an a-priori complexity analysis and HPC architectural parameters. Subsequently,
work units are then aggregated into balanced computational subdomains based on the number of
processors available and the local memory each processor can access. Taking the aircraft carrier shown
in Fig. 3 for example, the subdomains obtained from CAD geometry-based partitioning are highly
unbalanced for parallel computation. After applying the load balancing strategy, we show in Fig. 4 the
new balanced computational partitioning. The proposed method provides a much-needed adaptive load
balancing strategy for massively parallel HPC computers.

Figure 4. Load-balanced computational partitioning.

3.2. Parallel Computing

To fully exploit the recent success of multi-core processors and massively parallel distributed memory
supercomputers, we have considered a hybrid MPI/OpenMP implementation of proposed algorithms.
The computation in solving the preconditioned DD matrix equation Eq. (16) consists of three parts:
(i) a parallel preconditioned Krylov subspace iterative method; (ii) the application of the additive
Schwarz preconditioner involving local subdomain solutions; and (iii) the EM radiation coupling among
subdomains corresponding to off-diagonal coupling matrices, Cij , in Eq. (16).

3.2.1. Parallel Krylov Iterative Method

Since the system matrix equation is non-symmetric due to the use of CFIE formulation, we have
employed the truncated GCR method [48] for the solution of Eq. (16). The objective of the GCR method
is to obtain an approximation un to the solution u in the Krylov subspace Kn((AP−1), r0), where the
Krylov subspace is defined as Kn(B,y) := Span{y,By, . . . ,Bn−1y} and the initial preconditioned
residual is denoted by r0 = (b−AP−1u0). The GCR method can be easily extended to the proposed
work with M subdomains. In a distributed memory MPI programming model, each subdomain Krylov
subspace vector will be stored only in the local memory associated with individual MPI processes. The
main algorithms are summarized in the following.

3.2.2. Task-based Parallelism of Subdomain Solutions

As illustrated in the previous section, the application of the additive Schwarz preconditioner, P−1,
requires the solution of individual subdomain problems. One advantage of the proposed preconditioner
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Algorithm 1 Computation of matrix-vector multiplication r =
(
AP−1

)
v

1: Subdomain solution ti = A−1
i vi, ∀i = 1,M

2: for i = 1,M do
3: ri =

∑
Cijtj , ∀j = 1,M and j ̸= i

4: ri = vi + ri
5: end for

Algorithm 2 Computation of solution vector x = P−1u

1: Initialize xi = 1, ∀i = 1,M
2: for i = 1,M do
3: xi = A−1

i ui

4: end for

is the ability to solve all the subdomain problems simultaneously in each DD iteration. Each subdomain
is allowed to choose its own appropriate subdomain solver based on local EM wave characteristics
and geometrical features. In the parallel implementation, we have employed a task-based parallelism
for subdomain solutions. Namely, those subdomain solutions are considered as independent tasks in
an MPI programming model. Individual MPI processes will execute different tasks simultaneously.
Furthermore, we have developed a queue-based task balancing strategy. The time spent for individual
tasks in the previous DD iteration is measured, and the tasks are sorted and recorded into a task queue.
Each MPI process will be assigned with a group of tasks based on the timing data, leading to a dynamic
load balancing environment.

3.2.3. Radiation Coupling among Subdomains

The final part in the parallel computing is the radiation coupling among multiple subdomains. It
requires that the surface currents in each independent subdomain be radiated to all other subdomains.
The computation is accomplished with two mathematical ingredients: (i) a hierarchical multi-level
fast multipole method (H-MLFMM) [49, 50], which leads to the seamless integration of multi-level
skeletonization technique [51] into the FMM framework and results in an effective matrix compression
for non-uniform DG discretizations; (ii) a primal-dual octree partitioning algorithm for separable
subdomain coupling [52]. Namely, instead of partitioning the entire computational domain into a
single octree as in the traditional FMM, we have created independent octrees for all subdomains. Those
octrees are allowed to be overlapping or intersecting. We have again employed a task-based parallelism
for the radiation coupling. To illustrate, we consider the case of M subdomains and M distributed
computing nodes. At the begin of the radiation coupling, we use MPI to broadcast the input data,
ti, ∀i = 1,M , among all computing nodes. Individual subdomains proceed to calculate the MLFMM
radiation pattern simultaneously and independently using their own octrees. Next, the interactions
between subdomains are also distributed among MPI processes. For example, the ith MPI process will
execute the task: ri =

∑
Cijtj , ∀j = 1,M ; and j ̸= i. The skeletonized near-field and FMM based

far-field compressions are applied to Cij with the help of a primal tree partitioning. We note that
individual tasks are performed without any communication or synchronization among the computing
nodes. The parallelization within each task is attained using OpenMP, which exploits the fast memory
access in the shared-memory multi-core processors. Finally, we remark that, for a very large number of
subdomains, a highly scalable parallel performance in radiation coupling can be achieved by a hybrid
MLFMA-FFT algorithm, which has been demonstrated in [53, 54].

3.3. Post-Processing

Once the simulation is completed, the surface electric current for each subdomain will be calculated and
translated into separate Silo files. Silo is a popular mesh and field I/O library and scientific database
developed by Lawrence Livermore National Laboratory. In order to process large-scale Silo data files
efficiently, we have employed the Visit visualization tool [55], which is a distributed, parallel visualization
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and graphical analysis tool. In addition, an embarrassingly parallel far-field calculator has been written
to calculate the scattered far-field from the surface electric currents.

4. NUMERICAL EXPERIMENTS

In this section, we study the performance of the proposed work via numerical experiments. We first
present the convergence analysis and study of the scalability of the proposed method. It is followed by
parallel strong scaling and weak scaling experiments. Finally, several examples of practical interest are
included to demonstrate the capability of the proposed method.

4.1. Numerical Study

4.1.1. Eigenspectrum

We first examine the eigenvalue distribution and condition number of the preconditioned system
matrix (16). To do so, we use a PEC spherical target with radius 0.5m, and the eigenspectrum is
examined at two difference frequencies: 180MHz and 240MHz. The discretization size is kept fixed at
h = λ0/10. The resulting triangular meshes at two frequencies are partitioned into 2 subdomains and 3
subdomains, respectively. As depicted in Fig. 5, the subdomains are formed by a direct partitioning of
the triangular mesh, which leads to jagged boundaries between adjacent subdomains. The eigenvalue
distributions for the preconditioned DD matrix are shown in Fig. 5. We notice that all the eigenvalues
are within the shifted unit circle. Moreover, they are well separated from the origin. The results indicate
the effectiveness of the additive Schwarz preconditioner. Thus, we expect a rapid convergence of Krylov
solvers for the preconditioned matrix equation, see [56, 57].
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Figure 5. Eigenspectrum for a PEC sphere with irregular subdomain boundaries. (a) Domain
partitioning, N = 2. (b) Eigenspectrum, f = 180MHz. (c) Domain partitioning, N = 3. (d)
Eigenspectrum, f = 240MHz.

4.1.2. Convergence Study

Next, we investigate the convergence in iterative matrix solutions of Eq. (16) with respect to the problem
size. Namely, we keep the size of each subdomain constant and increase the number of subdomains for
higher operating frequencies. The studies performed here demonstrate the potential of the proposed
method to solve very large-scale problems. A PEC cube of dimensions 1m× 1m× 1m is used and the
performance of the method is evaluated at five different frequencies, 0.6GHz, 1.2GHz, 2.4GHz, 4.8GHz
and 9.6GHz. The electrical size of the cube increase from 1λ0 to 16λ0, and the number of subdomain
increases from 2 to 512, correspondingly. The mesh size is fixed at h = λ0/10. The iterative solver
convergences for various simulations are plotted in Fig. 6. We observe that the convergence behavior
is quite insensitive to the increase in the number of subdomains. Regarding to the cases of 2 and 512
subdomains, the iteration counts increase from 4 to 7 to reach a relative residual 10−2, and from 24
to 35 to reach a relative residual 10−6. Fig. 7 gives electric current distributions at 9.6GHz using the



Progress In Electromagnetics Research, Vol. 154, 2015 153

0 10 20 30 40 50

Iterations

10

10

10

10

10

10

10

R
e
si

d
u

a
l

0

-1

-2

-3

-4

-5

-6

f = 0.6 GHz, N = 2

f = 1.2 GHz, N = 8

f = 2.4 GHz, N = 32

f = 4.8 GHz, N = 128

f = 9.6 GHz, N = 512

Figure 6. Iterative solver convergence with respect to operating frequency.
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Figure 7. Electric current on a PEC cube at 9.6GHz using 512 subdomains.

proposed work method with 512 subdomains. We notice that the normal continuity of electric current
is enforced correctly at the surface of PEC cube.

4.1.3. Accuracy Study

Finally, we examine the solution accuracy of proposed method. To do so, we consider the EM scattering
from a PEC sphere with radius 0.5m, for which analytic solution is available in the form of Mie-series.
The operating frequency varies from 1GHz to 16GHz, and the mesh size is chosen as h = λ0/12 at each
frequency. The generated surface discretizations are partitioned into a number of subdomains with a
fixed number of DOFs per subdomain. The numerical solutions obtained from the proposed work are
compared to the Mie-series analytical solutions. The error of the numerical solution is evaluated in L2

norm, defined by:∥∥∥jh − jref
∥∥∥
L2(Sh)

=

[∫
Sh

(
jh (r)− jref (r)

)
·
(
jh (r)− jref (r)

)∗
dr

] 1
2

The results are shown in Fig. 8. We notice that, for a fixed mesh size, the solution error in L2 norm
remains nearly constant with increasing higher operating frequencies. Fig. 9 presents the bistatic radar
cross section (RCS) of the sphere at 16GHz. The plane wave illuminates the sphere from −ẑ direction
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and the electric field is polarized in the x̂ direction. We observe that the computational result agrees
very well with the analytical result obtained by a Mie-series solution.

4.2. Parallel Performance Study

In this section, we present the parallel performance experiments of the parallel implementation of
proposed algorithms. Results were obtained on Copper, a Cray XE6m DoD HPCMP Open Research
System. The login and compute nodes are populated with AMD Opteron processors. Copper uses a
dedicated Cray Gemini high-speed network for MPI messages and IO traffic. Copper uses Lustre to
manage its parallel file system that targets arrays of SAS disk drives. Copper has 460 compute nodes
that share memory only on the node; memory is not shared across the nodes. Each compute node has
two sixteen-core processors (32 cores per node) that operate under a Cray Linux Environment (CLE)
sharing 64 GBytes of DDR3 memory, with no user-accessible swap space. Copper is rated at 138 peak
TFLOPS and has 239 TBytes (formatted) of parallel disk storage.

In the following experiments, the speedup and efficiency are displayed in terms of number of cores.
All the elapsed time are obtained using the MPI routine MPI Wtime(). Precisely, we concern with two
cases of scalability [58]: (i) weak scalability, defined as how the solution time varies with the number
of cores for a fixed problem size per core. Ideally the elapsed time is constant for a fixed ratio between
the problem size and the number of cores. (ii) Strong scalability, defined as how the solution time
varies with the number of cores for a fixed total problem size. Ideally, the elapsed time is inversely
proportional to the number of cores.

4.2.1. Weak Scalability Test

We consider a plane wave scattering from a high-definition mockup jet aircraft. The dimensions of the
jet aircraft are approximately 14.5m long, 9.6m wide, and 5.0m high. We would like to analyze the
EM wave scattering from this high definition multi-scale aircraft at four different frequencies, 3GHz,
6GHz, 9GHz and 12GHz. The plane wave incidents upon the aircraft from the nose (radome), −x̂
direction. The electric field is polarized in the ẑ direction. The surface discretization is first generated
at 3GHz using DG boundary element methods. The discretization is chosen to accurately represent the
arbitrarily-shaped geometrical surfaces, which usually results in distinct mesh sizes for different parts of
the aircraft. At higher operating frequencies, individual local meshes is refined independently to satisfy
the Nyquist sampling rate and to reach a desired level of accuracy.

In the scaling experiment, we use a nearly constant number of DOFs, 3.5 million, per subdomain.
The global discretization at each operating frequency is then partitioned into a number of subdomains
using METIS. The number of subdomains increases from 2 subdomains at 3GHz to 32 subdomains at
32GHz, correspondingly. The resulting partitions are displayed in Fig. 10. In the parallel computing,
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Figure 10. Domain partitioning for jet aircraft simulations. (a) 3GHz, 2 subdomains. (b) 6GHz, 8
subdomains. (c) 9GHz, 18 subdomains. (d) 12GHz, 32 subdomains.
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Figure 11. Parallelization efficiency in various simulations.

each subdomain is assigned with one MPI process in which 32 OpenMP threads are used. The
parallelization efficiency relative to 32 cores is plotted in Fig. 11. It is evident that the efficiency
remains 90% for all the computations. The details of computational statistics for individual operating
frequencies are given in Table 1.

We first notice that the iteration counts to reach a relative residual of 10−2 only increase from 4
to 8 when comparing the cases of 3GHz with 6.95 million DOFs and 12GHz with 111.3 million DOFs.
As a comparison, the GCR iterative solver with the conventional near-field preconditioner takes 223
iterations, 505 iterations and 1349 iterations for the cases of 3GHz, 6GHz and 9GHz, respectively.
The promising iterative solver convergence in the proposed work is one of the crucial factors to reach
scalability for very large-scale EM simulations. Moreover, when using 1024 computing cores, the EM
scattering from the jet aircraft at Ku-band can be solved within 7 and a half hours. Finally, we plot in
Fig. 12 the electric current distributions on the exterior surfaces of the jet aircraft. From these figures,
we have witnessed smooth current distributions without noticeable discontinuities across subdomain
boundaries.
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Table 1. Computational statistics for scaling experiments of EM scattering from a full-scale aircraft.

Num. of

cores

Num. of

subdomains

Subdomain

solution

(minutes)

Coupling

(minutes)

Krylov

method

(seconds)

Total

time per

iteration

(minutes)

Num. of

iterations

Num. of

DOFs

(million)

64 2 50 7 3 57 4 6.95

256 8 47 8 15 55 5 27.4

576 18 40 14 28 65 7 62.3

1024 32 35 21 39 57 8 111.3

(a) (b)

(c) (d)

Figure 12. Surface electric currents distributions on jet aircraft at different operating frequencies. (a)
3GHz, 2 subdomains. (b) 6GHz, 8 subdomains. (c) 9GHz, 18 subdomains. (d) 12GHz, 32 subdomains.

4.2.2. Strong Scalability Test

In the strong scaling experiment, we examine the solution time required for a fixed problem size by
increasing the number of cores. To do so, we consider EM scattering from the aircraft at 3GHz and
increase the number of subdomain from 2 to 32. In the parallel computing, each subdomain is assigned
with one MPI process in which 32 OpenMP threads are used. Thus, the total computing cores increase
from 64 to 1024. The timings of various simulations are given in Fig. 13. We see that the speedup is
super-linear between 64 and 256 cores and then sub-linear from 256 cores to 1024 cores due to the slight
growth of iteration numbers. At peak performance on 1024 cores, the speedup relative to 64 cores is
approximately a twelve times decrease in simulation time.

4.3. Application: A Plane Wave Scattering from a Full-Scale Aircraft Carrier

We conclude this section with a very large-scale simulation, that of a plane wave scattering from a
full-scale aircraft carrier as shown in Fig. 3. The carrier platform geometry, shown in Fig. 14, is
approximately 250m long, 65m wide and 40m high. This large high-definition platform model comprises
of a number of complex smaller structures such radar antenna, mast, weapons and landing system
located on the integrated island. Moreover, a variety of mockup aircrafts, including one V-22 osprey
aircraft, three full-scale Apache helicopters, two full-scale stealth aircraft and three Unmanned Aerial
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Figure 14. Aircraft carrier model.

Figure 15. Geometry-based decomposition of an
aircraft carrier with a variety of jet aircrafts.

Figure 16. Load-balanced computational
partitioning of the aircraft carrier.

Figure 17. Surface electric current distributions on a full-scale aircraft carrier, f = 400MHz.
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Vehicles (UAVs) are located on the flight deck. The multi-scale nature of the underlying geometry and
very large-scale problem sizes present significant computational difficulties for conventional IE methods.

We first simulate the plane wave scattering from the aircraft carrier at f = 400MHz as depicted
in Fig. 15. A total number of M = 24 subdomains are used, resulting in 35million DOFs. The
computational partitioning resulted from the Metis partitioner is shown in Fig. 16. Each subdomain
is then assigned to one MPI process with 16 computing cores. The simulation requires 8 iterations to
reach a relative residual 10−2. The computation takes half an hour per DDM iteration. The surface
electric current distribution for the large multi-scale simulation is given in Fig. 17.

Lastly, to demonstrate the capability of the proposed method, we consider the large-scale high-
fidelity aircraft carrier simulation at 1.2GHz. The geometry-based decomposition and computational
partitioning are displayed in Fig. 3 and Fig. 4, respectively. The simulation requires 254 million DOFs
with M = 62 subdomains. Each subdomain is assigned to one MPI process with 32 computing cores.
A total number of 1984 computing cores are used in the computation. The simulation takes 1 hour

(a)

y

x

(b)

Figure 18. Surface electric current distributions on a full-scale aircraft carrier, f = 1.2GHz. (a)
Aircrafts on deck and front view. (b) Zoom-in view of integrated island.
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Figure 19. Comparison of the time spent in various steps for individual subdomains.

51minutes for one DDM iteration and 12 iterations are required to reach a relative residual 10−2. The
surface electric currents on the aircraft carrier are depicted in Fig. 18. Finally, we show in Fig. 19 the
runtime spent for individual subdomains in the first DDM iteration. Moreover, a breakdown of the time
into, respectively, subdomain solution, coupling, and Krylov method is presented. We notice that the
time spent in Krylov method, which includes the distribution of Krylov vector, computation of vector
norms and message passing across MPI processes, is almost negligible comparing to subdomain solution
and coupling times. Also, there is still room for improvement towards a perfect load balancing among
computing nodes, which will be investigated in the future work.

5. CONCLUSIONS

The numerical results illustrate the capability of proposed algorithms for massively parallel HPC
architectures. The technical advancements enable appealing parallel simulation capabilities including:
(1) trivially parallel mesh generation, (2) scalable convergence in the DD iterations, (3) automatic
load-balanced computational partitioning, and (4) embarrassingly parallel sub-domain solutions. We
expect that continued work in this field will lead to a parallel EM simulation environment, where the
fidelity and complexity of the EM problems that can be solved will scale with the exponential growth of
supercomputing power. The longer-term goal is to create a reconfigurable, portable and maintainable
IE solution suite based on the proposed framework. The already existing SIE solvers in academics,
industry and government can be easily integrated with minor modifications.
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