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Abstract—Canonical solutions to frequency domain Maxwell’s equations, in the spherical coordinate
system, have found extensive use as is evident from citations in the scientific literature. What is
conspicuous by its absence is lack of such expressions for transient Maxwell systems. The existence
of such expressions or approximations, provide the means to glean interesting physics in a variety
of applications as well as validate existing numerical fullwave solvers. However, developing these
expressions is beset with challenges; direct inverse Fourier transforms of frequency domain expressions
are unstable. Successful approaches that ameliorate this instability are more recent endeavor. In this
paper, we generalize our earlier contribution to this effort by exploiting a novel representation of the
retarded potential to derive expressions for scattering from a dielectric sphere. Several results are
provided that demonstrate the stability and accuracy of the method.

1. INTRODUCTION

In the last century, technologies that rely on exploiting solutions to Maxwell’s equation [1] have been
revolutionary in terms of their impact on society. The wealth and breadth of the impact of these
technologies, which have affected almost every aspect of modern society, can be attributed to the succinct
framework of electromagnetic phenomena via Maxwell’s equations and methods (both theoretical and
experimental) developed glean insight into the physics of electromagnetics. Some of the earliest solutions
to these equations were developed for canonical geometries; a comprehensive catalog of canonical
solutions can be found in [2]. A textbook example of a solution to a canonical problem is scattering by
a spherical object in the frequency domain [3] and has been known for more than a century. It is based
on the existence of analytic eigenfunction of Helmholtz wave equation in spherical coordinate system,
and was formulated based on separation of variables. Interestingly, the history of analytical solutions
for a spherical system goes back much further, perhaps, the most common being those of Lorentz [4]
and Debye [5], both of which are almost contemporary to Mie’s work. However, as is rather common,
the solution was “reinvented” several times. An excellent review article in 1965 by Logan [6] went
through most (if not all) of contributions related with scattering from spheres and uncovered the “lost”
contributions of Clebsh [7], Nicholson [8], Bromwich [9], Proudman [10], Doodson [10], Kennedy [10],
and White [11]. Widespread lack of awareness of these other work has largely resulted in calling these
solutions either Mie series or Mie approach or Lorentz-Debye-Mie theory. A more detailed discussion
on this topic can be found in [6] and [12]. It comes as no surprise that applications of this theory have
had a widespread impact in a variety of frequency regimes [12, 13].

Since the development of Lorentz-Mie-Debye formulation theory for a single sphere of homogeneous
medium, research has focused on different applications ranging from scattering for different
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excitations [14] to scattering from spheres with different constitutive properties (dielectric [15],
uniaxial [16], chiral [17]) to spheroidal shapes [18] to scattering from clusters [19]. While the classical
Lorentz-Mie-Debye theory was largely relegated to studying scattering of plane wave incident on an
object, more recent work has focused on the Generalized Lorentz-Mie theory (GLMT) [14, 20] that
extends the approach to analyzing sphere-arbitrary wave interactions by expressing the incident field
in terms of vector spherical wave functions. The GLMT has been used to study beam scattering by
spheres and spheroids [14, 18, 21]. Although Mie series approach has been extended to spheroidal particle
with spheroidal wave functions, it’s difficult (if not impossible) to find analytical eigenfunctions with
convergent closed form for scatterers of other shapes (noncanonical or even generalized ellipsoid). The
null-field method based transition matrix (T-Matrix) method proposed in 1965 by Waterman [22–25]
addresses this problem. The research on this approach as applied to multiple scattering is extensive
and has found application in a variety of fields; for a very partial listing, see [26–32]. It should be noted
that all the discussions are limited to three dimensional case and Lorentz-Mie-Debye formulation and
its equivalent methods in two dimensional case also exist.

Thus far, the historical data presented have largely been restricted to solutions to these equations in
the Fourier domain, i.e., wherein the time dependence is assumed to be of the form exp[jωt]. In rather
stark contrast, time-dependent Mie solution or Generalized Lorentz-Mie theory or T-matrix method
has not been studied as much. Typically, when transient response is desired, one computes these from
an inverse Fourier transform of the frequency domain solutions. The rationale for doing so is rather
transparent; analytic expressions for transient solutions do not exist.

In general, compared to time-harmonic case, time dependent Lorentz-Mie-Debye formulation or
more general time domain multiple theory has received far less attention from both the physics
(EM/optics) and the mathematics community. This is not a result of lack of interest; the first piece of
work, to the author’s knowledge, was as early as 1919 [9]. In this work, general solution in time domain or
time-dependent wave function for scalar wave equation was proposed, where its form involves differential
operators on a time-dependent function, which could be reduced to Lorentz-Mie-Debye formulation if
time-harmonic factor is assumed. Afterwards, time-domain representations for “spherical-polar-vector”
components of dipole field were derived [33] and applied for field extrapolation [34]. In 1966, Granzow
generalized earlier results to high order and developed the multipole theory in time domain (MTTD) [35].
Granzow’s MTTD is also based on the high order differential operator working on arbitrary time-
dependent functions to represent each component in the general solutions to wave equations, which
makes the implementation complicated. His method has been used in two types of boundary values
problems: finding the exterior field given (1) normal component of the field [35] (impulse function or
Green’s function approach) and (2) tangential components of the field on the sphere [36] (Laplace and
inverse Laplace approach). Other research on time dependent multipole expansions include [37] and
their applications [38], most of which, instead of working with time-domain versions of wave functions,
focused mainly on radiation due to surface or volume sources. None of those methods provides a
time-domain Lorentz-Mie-Debye solution for electromagnetic scattering from spheres. In [39], time-
domain acoustic scattering from a sphere is studied with the help of time-dependent wave functions
(inverse Fourier transform of the frequency domain spherical wave functions). The same idea is also
extended to two-sphere case [40]. Considering the fact that mode matching concept is used to extract
the time-domain signatures, this type of approach is direct time-domain variant of conventional Lorentz-
Mie-Debye approach. However, the method involves explicit convolutions between inverse Fourier
transform (IFT) of spherical Hankel and Bessel functions (the IFT of spherical Hankel function only
exists in convolution sense according to [39]), which introduces instability especially for high order
modes. Recently, for acoustic scattering, Laplace transform based approach [41, 42] and TDIE based
approach [43] have been proposed to solve the time-dependent scattering problem. These two methods
used the same expansions to represent the unknown physical quantities and didn’t use spherical wave
functions at all. Both methods have been extended to electromagnetics [44, 45]. Compared to [39],
the main advantages of TDIE based method lie in the stability and flexibility, because no explicit time
domain wave functions is used. Though stable and self-consistent, Laplace based methods involves
finding the roots of special functions (recursion rules have to be used). TDIE based method has explicit
modal decoupling, where a set of independent Volterra integral equations will be solved, and extension
into multilayer or multiple spheres problems is fairly straightforward.
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Another approach, not Lorentz-Mie-Debye formulation based, but the so-called Debye series [46]
based, has been proposed to study the behaviors of time-domain scattering from spheres [47, 48]. As in
its frequency domain counterparts [46, 49], each term in the Mie series is represented by another set of
Debye series. After exchange of the summations and introducing some large argument approximations
for spherical Bessel functions, the scattering field could be written as a simple form of Debye series,
which could be transformed into time-domain using inverse Fourier transform.

The rest of the paper is organized as follows: In Section 2 we develop the requisite formulation,
which is then followed in Section 3 by a novel addition theorem that we will exploit. Using these addition
theorems, we develop Mie solution in Section 4. Results and discussions are presented in Sections 5 and
6, respectively.

2. TIME DEPENDENT FORMULATION AND FIELD REPRESENTATION

Frequency domain Mie type solutions are typically obtained starting with eigenfunctions of the
underlying differential equation. Early attempts to obtain transient solutions relied using inverse Fourier
transform of the frequency domain solutions. The approach espoused in this paper is to use an integral
equation based approach; note, in the frequency domain, it can be readily proven that both approaches
yield identical results. To this end, consider a sphere with non-dispersive constitutive parameters
(ε−, μ−) that occupies a region denoted by Ω whose surface is denoted by ∂Ω. Let Ω+ = R

3/Ω,
and Ω− = Ω/∂Ω. Surfaces ∂Ω± can be thought of as boundaries of Ω± that are conformal to, and
just outside and inside ∂Ω, respectively. These surfaces are equipped with a unique outward pointing
normal that is denoted using n̂±, where the subscript ± denotes that the currents that are defined
either on ∂Ω±. Henceforth, we denote quantities that are associated with Ω± using the subscript ±.
Assume that an incident field denoted using {Ei(r̄, t),Hi(r̄, t)} that is approximately bandlimited to
fmax and quiescent for t < 0. The scattered field can be constructed using the equivalence theorem by
first defining equivalent electric and magnetic currents J±(r̄, t) and M±(r̄, t). As usual, the currents are
defined as J±(r̄, t) = n̂± × H±(r̄, t) and M±(r̄, t) = E±(r̄, t) × n̂±. The total field in regions exterior
and interior to ∂Ω can be defined as follows.

E+(r̄, t) = Ei(r̄, t) + Es
+(r̄, t) = Ei(r̄, t) − L+(J+(r̄′, t)) + K+(M+(r̄′, t)) (1a)

H+(r̄, t) = Hi(r̄, t) + Hs
+(r̄, t) = Hi(r̄, t) − 1

η2
+

L+(M+(r̄′, t)) −K+(J+(r̄′, t)) (1b)

E−(r̄, t) = Es
−(r̄, t) = −L−(J−(r̄′, t)) + K−(M−(r̄′, t)) (1c)

H−(r̄, t) = Hs
−(r̄, t) = − 1

η2−
L−(M−(r̄′, t)) −K−(J−(r̄′, t)) (1d)

where η± =
√

μ±/ε± is the impedance of the medium.
The operators L±(·) and K±(·) are spatial-temporal operators associated with dyadic Green’s

functions, and are defined as follows:

L±(X(r̄′, t))(r̄, t) = μ∂t

∫
S′

G̃e±(r̄, r̄′, t) ⊗ X(r̄′, t)dS′ ≡ μ∂tG̃e± �st J (2)

K±(X(r̄′, t))(r̄, t) = −
∫

S′
G̃m±(r̄, r̄′, t) ⊗ X(r̄′, t)dS′ ≡ −G̃m± �st M (3)

In the above definitions, G̃e± and G̃m±, respectively, denote dyadic Green’s functions of electric type
and magnetic type in the homogeneous exterior or interior space. The subscript e and m are used to
denote electric and magnetic type, respectively. These Green’s functions can be expressed as

G̃e±(r̄, r̄′, t) =
(I − c2

±∂−2
t ∇∇) δ

(
t − R

c±

)
4πR

(4a)

G̃m±(r̄, r̄′, t) = ∇×
⎡
⎣I δ

(
t − R

c±

)
4πR

⎤
⎦ = ∇

δ
(
t − R

c±

)
4πR

× I (4b)
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where I is the idempotent, R = |r̄− r̄′| and
δ(t − R/c±)

4πR
is the retarded kernel for scalar potential with

c± the speed of light in the exterior or interior domain.
One can obtain a set of time-dependent integral equations (TDIE) by following the application of

the boundary condition, viz., tangential continuity of fields. The continuity for tangential components
is preserved by defining J+(r̄, t) = −J−(r̄, t) = J(r̄, t) and M+(r̄, t) = −M−(r̄, t) = M(r̄, t) in the limit
Ω± → Ω; note in this limit, n̂+ = −n̂− → n̂. Hence, no net artificial currents exists on the interface. In
this work, the dependence of currents on position and time will be suppressed unless specified otherwise.

Let n̂× defined trace operator. Then, a linear combination of tangential trace of (1a) and tangential
trace of (1c) gives the generalized electric field integral equation (EFIE);

[(1 + α)I + n̂ × (K+ − αK−)]M− [n̂ × (L+ − αL−)]J = −n̂ × Ei (5)

Likewise, a linear combination of tangential trace of (1b) and tangential trace of (1d) would give a
generalized magnetic field integral equation (MFIE);[

n̂ ×
(

1
η2
+

L+ − β

η2−
L−

)]
M + [(1 + β)I + n̂ × (K+ − βK−)]J = n̂ × Hi (6)

In the above equations, α and β are appropriately chosen constants [50].
In a similar manner, if trace operator were defied as n̂ × n̂×, one gets another set of TDIEs; viz.,

[(1 + α)n̂ × I + n̂ × n̂ × (K+ − αK−)]M − [n̂ × n̂ × (L+ − αL−)]J = −n̂ × n̂ × Ei (7)[
n̂ × n̂ ×

(
1
η2
+

L+ − β

η2−
L−

)]
M + [(1 + β)n̂ × I + n̂ × n̂ × (K+ − βK−)]J = n̂ × n̂ ×Hi (8)

The above two TDIEs can be regarded as widely used TD-PMCHWT or TD-Müller formulations
for particular values for α and β, as in frequency domain [50]. There are other types of formulation that
could be used to model the scattering from dielectric objects. All of the associated integral equation
formulations might show slight differences in performance and accuracy when discretized. It should be
noted that for spherical systems, vector spherical harmonics (VSH) form a natural basis to represent
the currents. As shown in [51], using the addition theorem for dyadic Green’s functions (the frequency
domain counterparts of (4)), the use of VSH leads to a diagonal system. To this end, we seek a
representation of the current density as follows:

J =
∑
nm

(J1
nm(t)Ψm

n (r̂) + J2
nm(t)Φm

n (r̂)) (9a)

M =
∑
nm

(M1
nm(t)Ψm

n (r̂) + M2
nm(t)Φm

n (r̂)) (9b)

where
∑
nm

is defined as two-fold summation
∞∑

n=0

n∑
m=−n

. The vector spherical harmonic functions in (9)

are defined as

Ψm
n (r̂) = Ψm

n (θ, φ) =
r√

n(n + 1)
∇tY m

n (θ, φ) (10)

Φm
n (r̂) = Φm

n (θ, φ) =
1√

n(n + 1)
r̄ ×∇tY m

n (θ, φ) (11)

where

Y m
n (θ, φ) =

√
2n + 1

4π
(n − m)!
(n + m)!

Pm
n (cos θ)ejmφ (12)

Additionally, a set of orthogonal basis to represent the normal component of the field in terms of VSHs
can be written as

Y(r̂) = Y(θ, φ) = r̂Y m
n (θ, φ) (13)

In the above expressions, the unknown quantities, Qi
nm(t) for Q denoting either J/M , and i = 1, 2

need to be recovered to provide the necessary transient behavior. Our approach to constructing these
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will proceed as follows: (i) use representations (9) in the appropriate TDIEs, (ii) use a novel addition
theorem for the dyadic Green’s function, and (iii) obtain a one-dimensional integral equation (as a
function of time) for each of coefficients. The approach can be easily extended to both multiple spheres
as well as multilayered spheres.

3. ADDITION THEOREMS FOR TIME DOMAIN GREEN’S FUNCTION

In this section, a set of addition theorems for time domain Green’s function will be introduced. The
spherical expansion for the time-domain scalar Green’s function in free space will form the basis to
construct the set of addition theorems for time domain dyadic Green’s function. Two types of modified
dyadic Green’s functions are discussed next. The first relates current sources to trace components
of the fields and will be used to solve the IEs. The second type relates the current sources and
fields. Henceforth, these representation of the dyadic Green’s functions will be referred to as current
propagators and radiators, respectively.

3.1. Spherical Expansion for Time-Domain Scalar Green’s Function

Like its variant in frequency domain, the addition theorem for the time domain scalar Green’s function
in free space can be expressed in terms of spherical harmonics [43] as

δ(t − R
c )

4πR
=

∑
nm

c

2rr′
Pn

(
r2+r′2−c2t2

2rr′

)
Pαβ(t)Y m

n (θ, φ)Y m
n

∗(θ′, φ′)=
∑
nm

cn(t)Y m
n (θ, φ)Y m

n
∗(θ′, φ′) (14)

where (r, θ, φ) and (r′, θ′, φ′) are the locations of source and observation points in spherical coordinate,
respectively. Note, this expression is very different from those obtained using an inverse Fourier
transform of expressions in [43]. The detailed derivation of (14) and its application in deriving Mie-like
solution for transient scattering of acoustic waves from hard and soft spherical objects can be found
in [43]. In (14), the time t lies in the range [ |r−r′|

c , |r+r′|
c ] [43], which is tantamount to constraining the

argument of Pn(·) to within [−1, 1]. This requirement corresponds to the causality of the scattering
system. One can consider the Green’s function in time domain as the impulse response G̃(t) of the
scattering system, and it vanishes when t < |r−r′|

c or t > |r+r′|
c , where the radial position for input and

output signal are r and r′, respectively.
Each term in the expansion can be seen as one mode kernel, which has time dependence as a

Legendre polynomial with t2 in its argument. For example, by assuming that r1 = 3, r2 = 5 and c = 1,
Fig. 1 gives several plots of time-dependent coefficients cn(t) in the expansion of time-domain Green’s
function.
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Figure 1. Time-dependent coefficients with degree (a) n = 0, (b) n = 3 and (c) n = 10. (r1 = 3,
r2 = 5 and c = 1.)

In addition to the fact that the above expansion is the time-domain counterpart of the conventional
addition theorem for time-harmonic case, it also has following properties:
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(i) It is symmetric in terms of source and observation position.
(ii) For fixed r and r′, space and time dependence can be separated.
(iii) No singularity exists if it is used in integral equations.
(iv) The time-domain dependent coefficient cn(t) in the expansion corresponds to the Green’s function

for the orthogonal spatial mode Y m
n .

(v) No explicit singular time-domain outgoing wave function is involved.
(vi) Operators associated with time or radial (such or normal derivatives) on the time domain Green’s

function can be done on the time-dependent coefficient cn(t).
Property (i) is unique in time domain. Properties (ii) to (v) are essential to derive analytic or

semi-analytic Mie type of solutions from integral equations of first kind (which is associated with single
layer potential operator). Property (vi) can ensure the existence of addition theorem for ∂

∂rG(t, r, r′) or
∂
∂r

∂
∂r′G(t, r.r′) in system with spherical symmetry, and thus it can lead to analytic or semi-analytic Mie

type of solutions from integral equations involving those kernels with higher order singularity.
The above addition theorem provides the basis of deriving the spherical expansion for time-domain

dyadic Green’s function. It should be noted that the (14) is not new; it was first presented in [40] when
the authors tried using this expression to derive analytical expression for the coefficients.

3.2. Spherical Expansion for Tangential Trace of Dyadic Green’s Function

As in scalar case, the dyadic Green’s function in time domain can be also expanded in the form of
addition theorem [45]. As shown in [45], when working with surface integral equations it is easier to
work with a modified version of dyadic Green’s function specifically its tangential trace form Ge0. A
quick review of the derivation is given below.

The tangential trace forms of frequency-domain dyadic Green’s functions of electric and magnetic
types can be written as

G̃tt
e0(r̄, r̄

′, ω) = r̂ × r̂ × G̃e0(r̄, r̄′, ω) × r̂′ × r̂′

= −jkr̂ × r̂ ×
∑
n,m

[
N(4)

nm(k, r̄)N(1)∗
nm (k, r̄′) + M(4)

nm(k, r̄)M(1)∗
nm (k, r̄′)

]
× r̂′ × r̂′

= −jk
∑
n,m

⎡
⎢⎣
[
krz

(4)
n (kr)

]′
kr

[
kr′z(1)∗

n (kr′)
]′

kr′
Ψnm(r̂)Ψ∗

nm(r̂′)+z(4)
n (kr)z(1)∗

n (kr′)Φnm(r̂)Φ∗
nm(r̂′)

⎤
⎥⎦ (15)

and
G̃tt

m0(r̄, r̄
′, ω) = r̂ × G̃m0(r̄, r̄′, ω) × r̂′ × r̂′

= jk2r̂ ×
∑
n,m

[
M(4)

nm(k, r̄)N(1)∗
nm (k, r̄′) + N(4)

nm(k, r̄)M(1)∗
nm (k, r̄′)

]
× r̂′ × r̂′

= jk2
∑
n,m

⎡
⎢⎣

[
krz

(4)
n (kr)

]′
kr

z(1)∗
n (kr′)Φnm(r̂)Φ∗

nm(r̂′) − z(4)
n (kr)

[
kr′z(1)∗

n (kr′)
]′

kr′
Ψnm(r̂)Ψ∗

nm(r̂′)

⎤
⎥⎦ (16)

In the above expansions, it is assumed r > r′, and N(p)
nm(k, r̄) and M(p)

nm(k, r̄) are vector spherical wave
functions (VSWF) of degree n and order m, respectively, z

(1)
n (kr′) is the spherical Bessel funcition

and z
(4)
n (kr) denotes the spherical Hankel function of second type with k being the wave number in

the medium. The above derivations used the relations between vector spherical harmonics and vector
spherical wave functions [45].

Inverse Fourier transforms of (15) and (16) lead to time-domain additions theorems for tangential
form of dyadic Green’s functions that can be written as

G̃tt
e0(r̄, r̄

′, t) =
∑
n,m

[
K(0)

n (r, r′, t)Φnm(r̂)Φ∗
nm(r̂′) +

c2∂−2
t

rr′
∂r∂r′

[
rr′K(0)

n (r, r′, t)
]
Ψnm(r̂)Ψ∗

nm(r̂′)
]

(17)
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and

G̃tt
m0(r̄, r̄

′, t) =
∑
n,m

[
∂r′

r′
[
r′K(0)

n (r, r′, t)
]
Ψnm(r̂)Ψ∗

nm(r̂′) − ∂r

r

[
rK(0)

n (r, r′, t)
]
Φnm(r̂)Φ∗

nm(r̂′)
]

(18)

where the following auxiliary function K
(0)
n is defined as

K(0)
n (r, r′, t) ≡ F−1

[
−jkz(4)

n (kr)z(1)∗
n (kr′)

]
=

c

2rr′
Pn

(r2 + r
′2 − c2t2

2rr′
)
Pαβ(t) (19)

It should be noted that one can derive the above addition theorems for the modified time-domain
dyadic Green’s function using the approach given in [43], though a little more complicated than the
one given here based on the result of scalar case. Spherical expansions for time-domain modified dyadic
Green’s function share almost all of the same properties associated with the time-dependent addition
theorem of scalar case.

3.3. A Simplified Current-Field Radiator in Spherical Coordinate System

The addition theorems presented above are sufficient to solve the TDIEs and obtain the current
coefficients for each harmonic. Furthermore, it is possible to use these expressions to find trace fields
on any spherical surface (say for scattering from multiple spheres or spheres from with multiple layers).
What is also necessary is to compute radiated fields wherein one may need all components of both the
electric and magnetic fields. To derive the field propagators, we start with

G̃ft
e0(r̄, r̄

′, ω) = G̃e0(r̄, r̄′, ω) × r̂′ × r̂′=jk
∑
n,m

[
N(4)

nm(k, r̄)N(1)∗
nm (k, r̄′)+M(4)

nm(k, r̄)M(1)∗
nm (k, r̄′)

]
× r̂′ × r̂′

= −G̃tt
e0(r̄, r̄

′, ω) − jk
∑
n,m

√
n(n + 1)

z
(4)
n (kr)

kr

[
kr′z(1)∗

n (kr′)
]′

kr′
Ynm(r̂)Ψ∗

nm(r̂′) (20)

and

G̃ft
m0(r̄, r̄

′, ω) =G̃m0(r̄, r̄′, ω)×r̂′×r̂′=jk2r̂×
∑
n,m

[
M(4)

nm(k, r̄)N(1)∗
nm (k, r̄′)+N(4)

nm(k, r̄)M(1)∗
nm (k, r̄′)

]
×r̂′×r̂′

= −r̂ × G̃tt
m0(r̄, r̄

′, ω) + jk2
∑
n,m

√
n(n + 1)

z
(4)
n (kr′)

kr
z(1)∗
n (kr′)Ynm(r̂)Φ∗

nm(r̂′) (21)

Transforming the above two relations results in the two corresponding field propagators:

G̃ft
e0(r̄, r̄

′, t) = G̃e0(r̄, r̄′, t) × r̂′ × r̂′

= −G̃tt
e0(r̄, r̄

′, t) +
∑
n,m

√
n(n + 1)

c2∂−2
t

rr′
∂r′

[
r′K(0)

n (r, r′, t)
]
Ynm(r̂)Ψ∗

nm(r̂′) (22)

and

G̃ft
m0(r̄, r̄

′, t)=G̃m0(r̄, r̄′, t)×r̂′×r̂′=−r̂× G̃tt
m0(r̄, r̄

′, t)−
∑
n,m

√
n(n + 1)

K0
n(r, r′, t)

r
Ynm(r̂)Φ∗

nm(r̂′) (23)

Thus, given the equivalent current density on the interface, one can construct the radiated electric
or magnetic field through (1a) or (1b), respectively. As defined in Section 2, the current densities are
expanded in terms of vector spherical harmonics. Consequently, considering the orthogonality properties
of VSH, the spatial integral can be evaluated analytically, thus reducing the four dimensional spatial-
temporal convolution between source currents and the time-domain dyadic Green’s function into a
weighted sum of a set of temporal convolutions. One can evaluate the electric field observed at the
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spherical surface with radius r due to the currents on the dielectric scatterer (with radius r′). Without
losing generality, assuming that ε+ = ε0, the scattered fields can be written as

Es(t, r) = −μ

c
∂t

∫
S′

G̃e0(r̄, r̄′, t) �t J(r̄′, t)dS′ −
∫

S′
G̃m0(r̄, r̄′, t) �t M(r̄′, t)dS′

=
μ

c
∂t

∫
S′

G̃ft
e0(r̄, r̄

′, t) �t J(r̄′, t)dS′ +
∫

S′
G̃ft

m0(r̄, r̄
′, t) �t M(r̄′, t)dS′ (24)

where the property G̃e/m0 ·X = −G̃ft
e/m0 ·X is used. Substituting for the spherical expansion for both

currents densities and the modified dyadic Green’s functions, we get

Es(t, r̄) =
∑
nm

[
K1

n(r, r′, t) �t J1
nm(t)Ψnm + K2

n(r, r′, t) �t J2
nm(t)Φnm + K5

n(r, r′, t) �t J1
nm(t)Ynm

+K3
n(r, r′, t) �t M1

nm(t)Φnm + K4
n(r, r′, t) �t M2

nm(t)Ψnm + K6
n(r, r′, t) �t M2

nm(t)Ynm

]
(25)

with equivalent time domain kernels defined as

K1
n(r, r′, t) = −μ

c∂−1
t

rr′
∂r∂r′

[
rr′K(0)

n (r, r′, t)
]

(26a)

K2
n(r, r′, t) = −μ

c

∂

∂t
K(0)

n (r, r′, t) (26b)

K3
n(r, r′, t) = −∂r′

r′
[
r′K(0)

n (r, r′, t)
]

(26c)

K4
n(r, r′, t) = −∂r

r

[
rK(0)

n (r, r′, t)
]

(26d)

K5
n(r, r′, t) =

√
n(n + 1)μ

c∂−1
t

rr′
∂r′

[
r′K(0)

n (r, r′, t)
]

(26e)

K6
n(r, r′, t) = −

√
n(n + 1)

K0
n(r, r′, t)

r
(26f)

It follows, that one can use a similar procedure to map the fields on ∂Ω+ to fields on the boundary of
any spherical surface. Thus, we have expressions for two propagators. The first can be used to solve
TDIEs (as examined next) and the second can be used to post-process data.

4. TIME-DEPENDENT LORENTZ-MIE-DEBYE SERIES SOLUTION

In this section, TDIEs governing the time-dependent scattering from dielectric spheres are to be solved.
The spatial expansion mentioned in Section 2 and the addition theorems in Section 3 will be used to
derive the reduced semi-discrete system. Afterwards, the reduced system are to be solved using an
hp-discontinuous Galerkin approach.

4.1. Reduced System

As in usual discretization of integral equations of time-harmonic case, after substituting the
representations of currents defined in (9) into (5) and (7) and using expansion for the tangential trace of
dyadic Green’s function, one can test the TDIEs with Ψ∗

nm and Φ∗
nm, respectively, using the Galerkin

testing scheme. The following reduced system can be obtained for each mode set Ψnm and Φnm:

[
(1 + α)δ(t) + (K4

+nm − αK4
+nm)

]
�t M1

nm − [
K2

+nm − αK2
+nm

]
�t J2

nm = f1 (27a)

[1.5mm]
[
(1 + α)δ(t) + (K3

+nm − αK3
+nm)

]
�t M2

nm − [
K1

+nm − αK1
+nm

]
�t J1

nm = f2 (27b)

[1.5mm]
[
K2

+nm/η2
+ − βK2

+nm/η2
+

]
�t M2

nm +
[
(1 + β)δ(t) + (K4

+nm − βK4
+nm)

]
�t J1

nm = f3 (27c)

[1.5mm]
[
K1

+nm/η2
+ − βK1

+nm/η2
+

]
�t M1

nm +
[
(1 + β)δ(t) + (K3

+nm − βK3
+nm)

]
�t J2

nm = f4 (27d)
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where the dependence on time is suppressed, and the right hand side terms can be written as

f1 = −
∫

S′
Ψ∗

nm · (n̂ × Ei)dS′; f2 = −
∫

S′
Φ∗

nm · (n̂ × Ei)dS′;

f3 =
∫

S′
Ψ∗

nm · (n̂ × Hi)dS′; f4 =
∫

S′
Ψ∗

nm · (n̂ × Hi)dS′.
(28)

Compared to the PEC case in [45], the above reduced system is coupled with four unknowns instead
of one. After careful observation, (27a) and (27d) are independent from (27b) and (27c); in another
words, the above system can be further reduced into two smaller systems. All the reductions of the semi-
discrete version of original TDIEs are based on the orthogonality of VSH, and the spatial convolution
is taken care of analytically. Again, no radial argument is involved during the reduction. It is apparent
from the above equations that a direct Mie type analytical solution to these coefficients is difficult (if
not impossible).

If the tangential component of excitation can be represented using

n̂ × Ei(t, r̄) =
∑
nm

(E1
nm(t)Ψnm + E2

nm(t)Φnm) and n̂ × Hi(t, r̄) =
∑
nm

(H1
nm(t)Ψnm + H2

nm(t)Φnm),

the integrals in (28) can be done analytically. The summations need to be truncated so that finite number
of reduced equations are to be solved. Fortunately, if the incident field is approximately band-limited in
both space and time, then the expansion in the excitation and field representation be truncated, and
one can develop error bounds that can be correlated to truncation. Typically, the highest degree of
the modes chosen is proportional to the electric size of the sphere being studied, very similar to the
time-harmonic case. For transient systems, this amounts to the largest electrical size of the object. For
pulses, the coefficients E1

nm and E2
nm are obtained using the properties of Ψnm and Φnm.

4.2. Marching-on-in-Time Solution

The current coefficients, J i
nm,M i

nm for i = 1, 2 are obtained using temporal deconvolution, i.e., solve
the reduced system in (27a)–(27d). It is done first by representing the time-dependent coefficients using
temporal basis functions, such as shifted Lagrange polynomials, piecewise Legendre polynomials or
approximate prolate function. Then, using either Galerkin testing or collocation, one can get a discrete
convolution system. The procedure is similar to the one given in [43, 45]. Minor differences include that
(1) the kernels involved are linear combinations of kernels corresponding to the exterior and interior
domains and (2) the spatial system dimension is only two by two for homogeneous dielectric problem
instead of one by one in perfectly conducting case.

Since the system is greatly decoupled (hence the size for the deconvolution problem is greatly
decreased), marching-on-in-time or time-stepping approach [52] is easy to be applied here. While details
are not given in this paper, readers are referred to [43, 45] for a more complete description. It has to
be noted that the stable MOT solutions for four different kernels have been obtained for conducting
sphere case [45].

5. NUMERICAL EXAMPLES

In this section, a simple numerical example is given to test the formulation derived earlier for
electromagnetic scattering from a dielectric sphere of unit radius. The incidence field is a modulated
Gaussian pulse Ei(r, t) = x̂ cos(2πf0t)e−(t−r̄·k̂/c−tp)2/2σ2

, where k̂ = ẑ denotes the direction of
propagation, σ = 3/(2πB) with B denoting the bandwidth, and tp = 20σ. Center frequency and
bandwidth are set as 0.5 GHz and 0.3 GHz respectively in the example. Fig. 2(a) plots the time-
dependent coefficients (J1(t) and J2(t) respectively) for the modes Ψ41 and Φ41 in the electric current
density, and Fig. 2(b) plots the time-dependent coefficients (M1(t) and M2(t) respectively) for the same
two modes in the magnetic current density.

The current density values are transformed into Fourier domain to compare with frequency-domain
Lorentz-Mie-Debye series. Fig. 3(a) plots the spectrum of the transient responses (magnitude of
frequency domain coefficients) for the modes Ψ41 and Φ41 in the electric current density, along with
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Figure 2. Transient response (coefficients) of modes Ψ41 and Φ41 in (a) electric currents and (b)
magnetic currents. “Re” and “Im” denote real and imaginary part, coefficients that are not listed are
zero.
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Figure 3. Spectrum of temporal responses of modes Ψ41 and Φ41 due to the modulated Gaussian
pulse incidence. (a) Electric currents and (b) magnetic currents. The curves from Fourier domain and
time-dependent Lorentz-Mie-Debye formulation are denoted by “FD” and “TD” respectively.

the results from frequency domain Lorentz-Mie-Debye series. Similarly, Fig. 3(b) plots the comparison
in the magnetic current density data. From the comparisons, the agreement between timed-dependent
Lorentz-Mie-Debye series based solution and its Fourier domain counterpart is evident.

6. DISCUSSIONS AND CONCLUSIONS

In this contribution, we construct a time-dependent Lorentz-Mie-Debye formulation for dielectric
spherical objects based on the new set of addition theorems for time domain dyadic Green’s function.
With the new current and field propagators, the presented approach can help build self-consistent
time-domain spherical multipole theory, which can be widely applied in both the microwave and optics
regime.

Furthermore, it can be easily verified that the above formulation can be trivially extended to solve
scattering from multiple spheres as well as multilayered spheres. For both the cases, at each interface
there would be a set of IEs like (5) and (6). Each interface will have an unknown function associated
with it to represent the time signature of the currents on it. For concentrically layered case, the spatial
coupling will be in block diagonal form. When analyzing multiple spheres, the spatial system would be
fully coupled except the block corresponding to each interface. In this case, fast method like plane-wave
time-domain [53] can be used to reduce the memory and time complexity.
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Another example of applications of time-dependent Mie formulation includes an exact non-
reflection global boundary condition [54, 55] for partial differential equation based simulation. That
is straightforward in time-harmonic case. The open domain could be truncated within a spherical
artificial domain, on which boundary integral is employed to satisfy the Sommerfeld radiation boundary
condition. This observation allows the possible applications in many more complicated problems with
non-canonical shapes, inhomogeneous materials or nonlinear behaviors.

Finally, an interesting discussion item is the stability of the time marching system. This has been
numerically demonstrated in [45]. However, ongoing work is focused on studying late time stability for
this system and extending it to analyzing stabilities of TDIEs as applied to electromagnetics — a long
standing problem where significant literature exists [56–62].
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