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Properties and Applications of Error Coefficient Matrix
in Linear Antenna Array Design

Bhargav Appasani*

Abstract—This paper presents the theoretical framework for a new technique in the field of linear
antenna arrays with amplitude control called error coefficient matrix. First of all, the array factor is
expressed as a summation of contribution from the elements of the array. It will be shown that for small
errors in excitation amplitude, the error in the overall radiation pattern at a given angle is a summation
of errors contributed by the individual elements of the array at that angle. An error coefficient matrix
is proposed, and its properties are discussed in great detail. The accuracy of the proposed method
is investigated for varying levels of errors in weights and for varying number of error elements, using
Monte-Carlo simulation. Finally, the applications of this new technique in the field of antenna arrays
are presented.

1. INTRODUCTION

Fault analysis is a hot topic of research in the field of antenna arrays. Manufacturing tolerances [1]
in the excitation amplitudes result in the deviation of radiation pattern from the desired pattern. In
the recent past, several methods have been proposed for detection of such faults. Methods based on
Genetic Algorithms (GA) [2], Neural Networks (NN) [3], Bacterial Foraging Optimization (BFO) [4],
Bayesian Compressive Sensing [5], Exponentially Weighted Moving Average Scheme (EWMA) [6], etc.
were proposed for fault detection, but no method has been proposed for precise location of the error
in the array. In [7] a practical approach has been suggested, where the error elements are identified by
placing a small number of probes around the array. In [8] failure diagnosis of uniform linear array in
the presence of mutual coupling has been presented, but it requires the use of an optimization method
to compute the excitation coefficients and also it cannot be used for detection of error elements in
the array. An analytical technique which can locate the position and magnitude of error would be
highly beneficial for dynamical correction of faults. Analytical techniques [9, 10] have been proposed for
radiation pattern tolerance arrays, but no method has been proposed for fault detection and correction.

Radiation pattern synthesis is another area of research in the field of antenna arrays. Several
methods are available for design of antenna arrays with specified Side Lobe Level (SLL) and beam
width. These approaches are analytical methods such as Taylor’s method and Chebyshev’s method [11]
or are optimization based methods [12–16]. Over the past few decades, many accurate techniques have
been developed for antenna pattern synthesis [17–24]. A generalized projection method was proposed
in [18] for synthesis of radiation patterns. It is based on a minimization algorithm and requires high
computational time. The optimization based techniques [12–16, 20–23] provide the flexibility to design
any arbitrary radiation pattern but these techniques require high amount of computational time. An
analytical technique which can predict the excitation amplitudes from the given design requirements
would greatly reduce the computational time. In [24] an analytical method was proposed, but it is
applicable only for symmetric antenna arrays. A simple and general approach is required. In this paper
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an attempt is made to address these issues. The theoretical framework for a new technique called the
error coefficient matrix is presented, which focuses on linear antenna arrays with amplitude control.
Also, its properties and applications are presented. The simplicity of this method and its effectiveness
is demonstrated for null placement in the radiation pattern.

The organization of the paper is as follows. The next section presents the mathematical foundation
for the proposed technique. The accuracy of the proposed method is discussed for varying levels of
errors in weights and for varying number of error elements, using Monte-Carlo simulation. In Section 3
the properties of the error coefficient matrix with relevant proofs are presented in great detail and its
applications are presented in the fourth section. Also an example is presented, where the proposed
technique is used for null placement in the radiation pattern. In the last and final section conclusions
are presented along with the future scope of work.

2. MATHEMATICAL FOUNDATIONS

The radiation characteristics of an antenna array depend on several factors, such as the amplitude of
excitation; inter element spacing and phase of excitation of the elements of the array. The radiation
characteristics of the elements of the array are the same for all the elements. The above mentioned
factors affect the array factor and so we are interested in the array factor of the antenna array, but
not in the radiation characteristics of the individual elements in the array. The array factor of an ‘N ’
element array can be represented as:

AF(θ) =

N−1∑
i=0

aie
Jβdi cos(θ). (1)

where β is 2π/λ (λ is the wavelength) ai the excitation amplitude of the (i + 1)th element, di the
distance of the (i + 1)th element from the first element and J = sqrt(−1). The range of angle ‘θ’ is
taken from 0◦ to 90◦.

If all the elements of the array are separated by a uniform spacing of k, the array factor can be
expressed as follows:

AF(θ) =
N−1∑
i=0

aie
Jβik cos(θ).

Expanding the above equation and separating it into real and imaginary term results in

AF(θ) =

N−1∑
i=0

aie
Jβik cos(θ).

AF(θ) =

N−1∑
i=0

ai cos (βik cos(θ)) + J

N−1∑
i=0

ai sin (βik cos(θ)) .

(2)

As we are interested in the power radiated by the array, we find the square of the magnitude of the
array factor. So finding the absolute value of Equation (2) and then squaring it on both sides results in

|AF(θ)|2 =

(
N−1∑
i=0

ai cos(βik cos(θ))

)2

+

(
N−1∑
i=0

ai sin(βik cos(θ))

)2

.

|AF(θ)|2 =
N−1∑
i=0

N−1∑
j=0

aiaj cos (βik cos(θ)) cos (βjk cos(θ))

+

N−1∑
i=0

N−1∑
j=0

aiaj sin (βik cos(θ)) sin (βjk cos(θ)) .

|AF(θ)|2 =
N−1∑
i=0

N−1∑
j=0

aiaj cos (βk(i− j) cos(θ)) .

(3)
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From Equation (3) it can be seen that the power radiated by an array is the sum of the contribution
from elements of the array. If a single error is introduced in the excitation amplitude at the pth position
of the array and the magnitude of the error is δap, i.e., ap → ap + δap. The power radiated at the angle
‘θ’ after the occurrence of error would be:

|AF(θ)p|2 =
N−1∑
i=0

N−1∑
j=0

aiaj cos (βk(i− j) cos(θ)) + δap

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)) + (δap)
2. (4)

The deviation of the resultant radiation pattern from that of the desired radiation pattern at the angle
θ is given by the difference between Euations (4) and (3). This error is given by:

ξ (θ) = δap

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)) + (δap)
2. (5)

If the magnitude of the deviation ξ(θ) is large compared to, the error in excitation amplitude δap (i.e., for
small errors in the amplitude of excitation) the term (δap)

2 can be neglected. The resulting expression
becomes:

ξ(θ) = δap

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)) = δapu
N
pθ. (6)

The term uNpθ is called as the error coefficient for pth position measured at the angle θ of an N element
array and is given by

uNpθ =

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)). (7)

If two elements have errors in their excitation amplitudes, then the array factor becomes:

|AF(θ)pq|2 =

N−1∑
i=0

N−1∑
j=0

aiaj cos (βk(i− j) cos(θ)) + δap

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)) + (δap)
2 + . . .

+δaq

N−1∑
j=0

2aj cos (βk(q − j) cos(θ)) + (δaq)
2 + 2δapδaq cos (βk(p− q) cos(θ)) . (8)

The errors in the magnitude of excitation are δap and δaq, and the positions at which they occur are
given by p and q, respectively. The deviation of the radiation pattern in this case from that of the
desired radiation pattern can be given by the difference between Equation (8) and Equation (3):

ξ (θ) = δap

N−1∑
j=0

2aj cos (βk(p− j) cos(θ)) + (δap)
2 + δaq

N−1∑
j=0

2aj cos (βk(q − j) cos(θ)) + (δaq)
2 + . . .

+2δapδaq cos (βk(p− q) cos(θ)) . (9)

We can safely neglect the terms δa2p, δa
2
q and δapδaq, by properly choosing the angle θ (in the case of

pattern synthesis) to be within the main lobe range (to be discussed later) or by limiting the values
of the errors in excitation amplitudes (this is automatically fulfilled in the case of fault detection due
to manufacturing tolerances as the tolerance limits are usually small). The expression of error then
becomes:

ξ (θ) = δapu
N
pθ + δaqu

N
qθ. (10)

uNpθ is the error coefficient for pth position and uNqθ the error coefficient for qth position, both of them
measured at the angle θ. From the above equation, it can be seen that the total error in the radiation
pattern is a summation of errors contributed by the individual elements. Generalizing this principle in
the case of n errors, the total deviation in the radiation pattern at a given angle θ is given as:

ξ (θ) = δai1u
N
i1θ + δai2u

N
i2θ + . . .+ δain−1u

N
in−1θ + δainu

N
inθ. (11)
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where i1, i2, . . . , in are the positions at which the errors occurs and δai1 , δai2 , . . . , δain are the magnitude
of errors in excitation at i1, i2, . . . and in respectively. Since the remaining elements have no error in
their excitation amplitude, their contribution to the overall error in the radiation pattern would be zero.
Hence Equation (11) can also be written as:

ξ (θ) = δa1u
N
1θ + δa2u

N
2θ + . . .+ δaN−1u

N
(N−1)θ + δaNuNNθ. (12)

In the above equation, there are N unknowns of which there are N − n zeros, and the remaining are
the errors in the excitation amplitudes. So, if we have at least N equations, then it is possible to find
the errors in the excitation amplitudes of all the elements. These equations can be obtained easily by
choosing N different angles and measuring the overall error in the radiation pattern. If θ1, θ2, . . . , θN are
the angles at which the errors are measured, and ξ(θ1), ξ(θ2), . . . , ξ(θN ) are the overall errors calculated
at these angles, the error equations can be written in terms of matrix notation as given below:

ξ (θ1)
ξ (θ2)

...
ξ (θN )

 =


uN1θ1 uN2θ1 . . . uNNθ1

uN1θ2 uN2θ2 . . . uNNθ2
...

...
...

uN1θN uN2θN . . . uNNθN




δa1
δa2
...

δaN

 .

[E (θ)] =
[
UN
θ

]
[δA] .

(13)

[E(θ)] is called the error matrix, [UN
θ ] called the error coefficient matrix of an N element array, and

[δA] is the matrix containing the magnitude of errors of individual antenna elements. Since the error
coefficient matrix and the error matrix can be determined, we can know the errors in the excitation
amplitudes.

Before discussing the properties of the error coefficient matrix, the accuracy of the proposed method
has to be investigated. Monte-Carlo simulation analysis is performed to investigate the reliability of the
proposed technique. Monte-Carlo analysis is performed for varying levels of error in amplitudes and for
varying number of error elements. A 12-element array was used, and the Monte-Carlo simulation was
performed for 2000 generations. The R.M.S value of the difference between the actual error in radiation
pattern and that of the error obtained from the simplified expression in Equation (12) is calculated
for varying number of errors in amplitudes and varying number of elements. The results are shown in
Table 1. The plot showing the variation in R.M.S value with respect to the angle from 0◦ to 90◦ is
shown in Fig. 1.

From Table 1, it can be observed that in a given array the R.M.S value of error increases with
increase in error magnitude and also with the increase in the number of error elements. However, the
value of error is small, so the proposed method can be used for calculating the errors in radiation pattern
for arrays having small errors in excitation amplitude (i.e., for ±10% error limit) and having a small
number of error elements.

An interesting observation can be made from Fig. 1. It can be observed that the R.M.S value of
error is almost the same at all angles except for the angles within the main lobe range, and for the angles
in the main lobe range, the R.M.S value of error is small. This is quite helpful to improve the accuracy
of the proposed method for varying levels of error weights and for varying numbers of error elements.

Table 1. R.M.S values of difference between actual error and the error calculated using the proposed
method, modeled by Monte-Carlo technique.

Number of
error elements

Error % in excitation amplitudes

±10% ±5% ±1%
2 2.65 1.31 0.264
5 6.463 3.47 0.63
7 10.341 5.064 1
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(a) (b)

(c)

Figure 1. R.M.S error vs. angle when number of errors are (a) 7, (b) 5, (c) 2.

This observation indicates that the error calculated using Equation (12) is approximately the same as
the original error in the radiation pattern, at these angles. So in Equation (12), by selecting the angles
θ1, θ2, . . . , θN within the main lobe range, the accuracy of the results obtained using Equation (13) can
be improved. The properties of the error coefficient matrix are discussed in the next section.

3. PROPERTIES OF ERROR COEFFICIENT MATRIX

Each element of an error coefficient matrix is given by Equation (7)

uNiθ =

N−1∑
j=0

2aj cos (βk(i− j) cos(θ)).

Writing the above equation in more general terms as an element of an array results in

uij =
N−1∑
p=0

2ap cos (βk(j − p) cos(θi)). (14)

where j is the position at which we are calculating the error coefficient and is equivalent to the term i
in Equation (7). Similarly, p is equivalent to the term j in Equation (7).

There are several properties of this error coefficient matrix which are discussed in this section. The
properties are as follows:

1. Angle symmetry : From Equation (14) we can clearly see that if we replace θi with 180 − θi, the
elements of the error coefficient matrix will remain the same. So, we can choose the values of θ



176 Appasani

with the range 0◦ to 90◦. This property arises due to the symmetry of the radiation pattern with
respect to 90◦.

Proof :

uij =
N−1∑
p=0

2ap cos (βk(j − p) cos(180− θi)) =
N−1∑
p=0

2ap cos (βk(j − p) cos(θi)).

2. Excitation symmetry : If the elements of the array have symmetrical amplitude distribution,
such as Chebyshev’s distribution, then the elements of the error coefficient matrix would also
be symmetrical.

Proof :

Since the amplitude distribution is symmetrical

ap = aN−1−p.

uij =

N−1∑
p=0

2ap cos (βk(j − p) cos(θi)).
(15)

The element of the error coefficient matrix located at the symmetrical position to the element uij
is ui(N−1−j). From (14) ui(N−1−j) is given by

ui(N−1−j) =
N−1∑
p=0

2ap cos (βk(N − 1− j − p) cos(θi)).

Substituting Equation (15) in the above equation we get

ui(N−1−j) =

N−1∑
p=0

2aN−1−p cos (βk(j − (N − 1− p)) cos(θi)).

ui(N−1−j) =
N−1∑
k=0

2ak cos (βk(j − k) cos(θi)).

ui(N−1−j) = uij .

So arrays having symmetrical amplitude distributions have a symmetrical error coefficient matrix.
This is demonstrated with the help of a 12-element array having Chebyshev’s distribution. The
excitation amplitude of each element and the angles at which the error is measured are shown in
Table 2 and Table 3, respectively. The error coefficient matrix is calculated at these angles using
MATLAB R⃝ and is shown below in Table 3. It can be seen that the error coefficient matrix is
symmetrical about its center.

3. If the error coefficient matrix is singular, then the errors in the excitation amplitude cannot be
determined uniquely using Equation (13). Several solutions are possible, and all of them may not
satisfy the design requirements. Those solutions which do not satisfy the requirements can be
discarded.

Table 2. Excitation amplitude and errors in excitation amplitude of a 12 element array.

Excitation

Amplitude
0.008 0.053 0.192 0.452 0.772 1.000 1.000 0.772 0.452 0.192 0.053 0.008

Errors 0.025 0.025 0 0.011 0.027 0.035 0 0 0 0 0 0

Table 3. Angle at which the errors are measured and the corresponding errors in the radiation pattern.

Angle 26.14 55.54 23.88 74.19 88.44 65.72 30.95 52.57 9.70 81.57 79.17 73.60
Error 0.001 0.003 0.001 0.039 1.164 0.021 0.001 0.002 0.000 0.188 0.027 0.046
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4. APPLICATIONS

The technique presented in this paper has many applications in the field of antenna arrays. Some of
these applications are listed below:

1. For fault location and fault correction, one should know the location of the occurrence of fault and
the magnitude of the fault. Faults occur due to manufacturing tolerances in antenna arrays. The
tolerance limit is small and hence, errors in the excitation amplitudes are also small. Using the
proposed technique, it is possible to detect the location of faults and the magnitude of error in the
excitation amplitude. If the error coefficient matrix is non-singular, then from Equation (13) it is
possible to detect and correct the fault. But for arrays having symmetrical distributions, the error
coefficient matrix is singular, and hence there will be more than one solution for Equation (13). In
this case, the final solution has to be selected from all the possible solutions of Equation (13) after
testing them for the actual occurrence of faults.

2. For the design of antenna arrays, having the desired radiation pattern, one should know the
amplitude distribution of the elements of the array. For designing the arrays having the desired
pattern, the deviation of the desired radiation pattern from that of a uniformly excited linear array
is calculated at various angles (these angles should be selected in such a way that the deviation is
large). The error coefficient matrix is then determined for these angles, and from Equation (13)
the errors in the excitation amplitudes are calculated. These errors when added to the uniform
distribution give the amplitude distribution needed to generate the desired radiation pattern.

3. This technique can be used for reduction of Side Lobe Level (SLL) and for null placement (or
placement of minima).

The simplicity and effectiveness of the proposed technique can be demonstrated using the problem of a
null placement. Consider a uniformly excited antenna array consisting of 12 elements, i.e., N = 12. The
design problem is to place a null point at 25◦, keeping the radiation pattern unchanged at other angles.
First, we generate the error matrix by taking the error at 25◦ to be −100 and the error at remaining
angles is taken as zero. The error coefficient matrix is calculated for 100 angles. By increasing the
number of angles, in effect, we are increasing the number of observation points, and hence the accuracy
of the result improves. The errors in the excitation magnitudes needed for null placement at 25◦ are
obtained from Equation (13) using MATLAB R⃝. These values are shown in Table 4. The final excitation
amplitudes are shown in Table 5. The final excitation amplitudes are obtained by the adding the values
of errors obtained from solving Equation (13) to the uniform amplitude distribution. These tables also
depict the values needed for null placement at 40◦ and 55◦. The average simulation time was found

Table 4. Errors in excitation amplitude.

Errors at 25◦ Errors at 40◦ Errors at 55◦

−0.1722 0 0

0 0 −0.0527

0 0 0.4101

0.1784 0 −0.0889

0 0 −0.3986

0.0351 −0.1192 0

0 0 0.2715

−0.1107 0.2948 0

0 −0.3154 0

−0.2313 0.1573 0

0.2890 0.1198 0

0 −0.1548 −0.1695
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Table 5. Excitation amplitudes for null placement.

At 25◦ At 40◦ At 55◦

0.8278 1.0000 1.0000

1.0000 1.0000 0.9473

1.0000 1.0000 1.4101

1.1784 1.0000 0.9111

1.0000 1.0000 0.6014

1.0351 0.8808 1.0000

1.0000 1.0000 1.2715

0.8893 1.2948 1.0000

1.0000 0.6846 1.0000

0.7687 1.1573 1.0000

1.2890 1.1198 1.0000

1.0000 0.8452 0.8305

(a) (b)

(c)

Figure 2. Radiation pattern after null placement at (a) 25◦, (b) 40◦ and (c) 55◦.

to be 4.30 Sec. The simulations were performed on a Pentium Core Duo Processor having a processor
speed of 2GHz and 1GB RAM. The computational time indicates that the proposed technique is simple
and can be used for real time implementation.

Finally, the radiation pattern obtained after null placement (or placement of minima) along with
the radiation pattern before null placement (i.e., uniformly excited array) is shown in Fig. 2. For all
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cases. The placement of null point is indicated by the dotted circle.[
UN

θ

]

=



0.004 −0.004 0.004 −0.003 0.002 −0.001 −0.001 0.002 −0.003 0.004 −0.004 0.004
−0.002 0.000 0.002 −0.001 −0.002 0.001 0.001 −0.002 −0.001 0.002 0.000 −0.002
0.004 −0.004 0.003 −0.003 0.002 −0.001 −0.001 0.002 −0.003 0.003 −0.004 0.004
−0.016 −1.988 −2.592 −1.411 0.742 2.384 2.384 0.742 −1.411 −2.592 −1.988 −0.016
8.722 9.069 9.349 9.562 9.704 9.776 9.776 9.704 9.562 9.349 9.069 8.722
0.239 0.313 −0.067 −0.349 −0.126 0.280 0.280 −0.126 −0.349 −0.067 0.313 0.239
0.002 −0.003 0.003 −0.003 0.002 −0.001 −0.001 0.002 −0.003 0.003 −0.003 0.002
−0.001 −0.001 0.001 0.000 −0.002 0.001 0.001 −0.002 0.000 0.001 −0.001 −0.001
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
−5.623 −3.297 −0.285 2.787 5.278 6.668 6.668 5.278 2.787 −0.285 −3.297 −5.623
−5.338 −4.749 −2.552 0.509 3.397 5.136 5.136 3.397 0.509 −2.552 −4.749 −5.338
0.391 −1.554 −2.354 −1.420 0.560 2.128 2.128 0.560 −1.420 −2.354 −1.554 0.391


From Fig. 2. it can be observed that using the proposed technique we can place the null point at any
desired location. The computational cost involved in finding the excitation amplitudes and needed for
generating the desired radiation pattern is considerably lower than the optimization methods. From this
simple example of null placement, we can understand the ability of the proposed method in designing
of antenna arrays.

5. CONCLUSION

The theoretical framework for a novel technique in the field of antenna arrays is presented. Through
detailed mathematical derivations, it is shown that for small errors in the excitation amplitudes (i.e., for
±10%), the deviation of the radiation pattern from that of the desired radiation pattern can be expressed
as a summation of errors contributed by the individual elements of the array. This approximation is
justified by performing a Monte-Carlo simulation for varying number of error elements and for different
values of tolerance limits. It is also observed that by calculating the error coefficients at angles within
the main lobe range of the antenna array, the accuracy can be improved in all cases. An error coefficient
matrix is proposed, and its properties are discussed. The application of this matrix in the field of fault
detection, fault correction and radiation pattern synthesis is presented. An application of the proposed
method of placement of the null point in the radiation pattern is also presented. The proposed technique
is found effective in generating the desired radiation pattern, and the computational cost involved is
much less than that of optimization techniques. A simple and general analytical method is proposed
for generating any desired radiation pattern. There are innumerable applications of this method in
the field of antenna arrays, and it is beyond the scope of this paper to discuss all the applications
with relevant examples. The author intends to use the theoretical framework presented in this paper for
fault analysis (which also includes mathematical details of what to do with singular cases) and radiation
pattern synthesis of antenna arrays, in his future work.

REFERENCES

1. Elliott, R. E., “Mechanical and electrical tolerances for two-dimensional scanning antenna arrays,”
IRE Trans., Vol. 6, No. 1, 114–120, Jan. 1958.

2. Rodriguez, J. A., F. Ares, H. Palacios, and J. Vassal’lo, “Finding defective elements in planar
arrays using genetic algorithms,” Progress In Electromagnetics Research, Vol. 29, 25–37, 2000.

3. Vakula, D. and N. V. S. N. Sarma, “Fault diagnosis of planar antenna arrays using neural networks,”
Progress In Electromagnetics Research M, Vol. 6, 35–46, 2009.

4. Acharya, O., A. Patnaik, and B. Choudhury, “Fault finding in antenna arrays using bacteria
foraging optimization technique,” National Conference on IEEE Communications (NCC), 1–5,
Bangalore, 2011.

5. Oliveri, G., R. Paolo, and A. Massa, “Reliable diagnosis of large linear arrays — A Bayesian
compressive sensing approach,” IEEE Trans. Antennas Propag., Vol. 60, 4627–4636, 2012.



180 Appasani

6. Harrou, F. and M. N. Nounou, “Monitoring linear antenna arrays using exponentially weighted
moving average based fault detection scheme,” System Science and Control Engineering, Vol. 2,
433–443, 2014.

7. Migliore, M. D., et al., “A sparse recovery approach for pattern correction of active arrays in
presence of element failures,” IEEE Antennas Wireless Propag. Lett., Vol. 14, 1027–1030, 2015.

8. Zhang, Y. and H. Zhao, “Failure diagnosis of a uniform linear array in the presence of mutual
coupling,” IEEE Antennas Wireless Propag. Lett., Vol. 14, 1010–1013, 2015.

9. Anselmi, N., L. Manica, P. Rocca, and A. Massa, “Tolerance analysis of antenna arrays through
interval arithmetic,” IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5496–5507, Nov. 2013.

10. Manica, L., N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis
through an interval-based particle swarm optimisation,” IET Microw. Antennas Propag., Vol. 7,
No. 12, 976–984, Sep. 2013.

11. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, 1997.

12. Ren, X. F., J. A. Azevedo, and A. M. Casimiro, “Synthesis of non-uniformly spaced arrays using
the Fourier transform and window techniques,” IET Microw. Antennas Propag., Vol. 3, 1245–1253,
2009.

13. Kurup, D. G., M. Himdi, and A. Rydberg, “Synthesis of uniform amplitude unequally spaced
antenna arrays using the differential evolution algorithm,” IEEE Trans. Antennas Propag., Vol. 51,
2210–2217, 2003.

14. Chen, K., Z. He, and C. Han, “A modified real GA for the sparse linear array synthesis with
multiple constraints,” IEEE Trans. Antennas Propag., Vol. 54, 2169–2173, 2006.

15. Khodier, M. M. and C. G. Christodoulou, “Linear array geometry synthesis with minimum side
lobe level and null control using particle swarm optimization,” IEEE Trans. Antennas Propag.,
Vol. 53, 2674–2679, 2005.

16. Bhargav, A. and N. Gupta, “Multi-objective genetic optimization of non-uniform linear array with
low sidelobes and beamwidth,” IEEE Antennas Wireless Propag. Lett., Vol. 12, 1547–1549, 2013.

17. Mautz, J. R. and R. F. Harrington, “Computational methods for antenna pattern synthesis,” IEEE
Trans. Antennas Propag., Vol. 23, 507–512, Jul. 1975.

18. Bucci, O. M., G. D. Elia, and G. Romito, “Power synthesis of conformal arrays by a generalized
projection method,” IEE Proceedings on Microwaves Antennas and Propagation, Vol. 142, No. 6,
467–471, Dec. 1995.

19. Khzmalyan, A. D. and A. S. Kondratyev, “Phase-only synthesis of antenna array amplitude
pattern,” International Journal of Electronics, Vol. 81, No. 5, 585–589, 1996.

20. Haupt, R. L., “Phase-only adaptive nulling with a genetic algorithm,” IEEE Trans. Antennas
Propag., Vol. 45, 1009–1015, Jun. 1997.

21. Vaskelainen, L. I., “Constrained least-square optimization in conformal array antenna synthesis,”
IEEE Trans. Antennas Propag., Vol. 55, 859–867, Mar. 2007.

22. Comisso, M. and R. Vescovo, “Fast co-polar and cross-polar 3D pattern synthesis with dynamic
range ratio reduction for conformal antenna arrays,” IEEE Trans. Antennas Propag., Vol. 61, No. 2,
614–626, Feb. 2013.

23. Zhang, Y., Z. Zhao, Z. Nie, and Q. H. Liu, “Full-polarisation three-dimensional pattern synthesis
for conformal conical arrays with dynamic range ratio constraint by using the initializations based
on equivalence theorem,” IET Microw. Antennas Propag., Vol. 9, No. 15, 1659–1666, Dec. 2015.

24. Miller, K., “Synthesizing linear-array patterns via matrix computation of element currents,” IEEE
Antennas and Propagation Magazine, Vol. 55, No. 5, 85–96, Oct. 2013.


