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Tomography SAR Imaging Strategy Based on Block-Sparse Model

Xiaozhen Ren* and Fuyan Sun

Abstract—The compressed sensing (CS) based imaging methods for tomography SAR perform well in
the case of large number of baselines. Unfortunately, for the current tomography SAR, the baselines
are obtained from many multi-pass acquisitions on the same scene, which is expensive and can be
severely affected by temporal decorrelation. In order to reduce the number of baselines, a novel strategy
for tomography SAR imaging by introducing the block-sparsity theory into the imaging processing is
proposed in this paper. Using neighboring pixels information in reconstruction, the proposed method
can overcome the imaging quality limitation imposed by the low number of baselines. The results with
simulation data under the additive gaussian noise case are presented to verify the effectiveness of the
proposed method.

1. INTRODUCTION

Traditional synthetic aperture radar (SAR) systems can reconstruct 2-D images of the investigated
area with all-weather capability [1, 2]. However, 2-D images could not meet the requirements in
many applications, and 3-D images are anticipated. Synthetic aperture radar interferometry (InSAR)
technology is a powerful technique used to measure the elevation of the terrain patch [3, 4], but the
distribution of the scatterers in height is underdetermined and cannot be resolved by a single baseline
measurement. As the extension of conventional InSAR, tomography SAR adds multiple baselines in
the direction perpendicular to the azimuth and to the line of sight and forms an additional synthetic
aperture in the height direction. Therefore, it has a resolving capability along this dimension [5, 6].

Much of the work on tomography SAR imaging published focused on spatial spectrum estimation
methods, which provide better resolution than Fourier based methods in the height direction [7–9].
However, these methods are interfered by high sidelobes under non-uniform baseline distribution.
Although some interpolation methods were introduced to solve this problem, the sidelobe performance
can be improved compared with the ideal data [10, 11]. Subsequently, singular value decomposition
(SVD) method was also investigated for the nonuniform data in the height direction [12]. An additional
problem is that the height resolution is limited by the low number of baselines.

Compressed sensing (CS) is a model-based framework for data acquisition and signal recovery,
which indicates that an unknown sparse signal can be exactly recovered from a very limited number
of measurements with high probability [13, 14]. Therefore, CS-based methods have been used widely
in many application fields, such as communication, magnetic resonance imaging and so on [15–17]. In
the past years, CS-based methods were applied to tomography SAR imaging to reduce the number of
required baselines [18–20]. Nevertheless, these methods only exploited single azimuth-slant range pixel
information for reconstruction. One disadvantage of that is any neighboring pixels information are not
exploited, which may improve the reconstruction quality and reduce the number of baselines needed for
reconstruction.
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In a recent work, an advanced version of CS referred as block-sparsity theory has been proposed
for block-sparse signal processing [21–23]. Block-sparse signal is a special case of sparse signal. If sparse
signals to be recovered have additional structures in the form of the nonzero coefficients occurring in
clusters, such signals are referred to as block-sparse signals, and then the block-sparse algorithms can be
utilized to recover the sparse signals [22]. One of the superiorities of this method is that it can reduce
the required number of measurements needed for reconstruction [24].

The main topic of this paper is to present a novel strategy for tomography SAR imaging by
introducing the block-sparsity theory into the imaging processing. As the first step, the neighboring
pixels with the backscattering information of the same structure are used to construct a block-sparse
model for tomography SAR. Then, the block sparse algorithm is used to obtain the imaging result. The
rest of the paper is organized as follows. Section 2 presents the geometric and imaging principle for
tomography SAR. In Section 3, a novel imaging strategy based on block-sparse model for tomography
SAR is described in detail. The performance of the method is investigated by simulated data in Section 4.
Finally, Section 5 gives a brief conclusion.

2. TOMOGRAPHY SAR IMAGING PRINCIPLE

The system geometry of tomography SAR is shown in Figure 1. x, y, and z denote the range, azimuth,
and altitude directions, respectively. There are M passes over the same imaging scene. The observation
on the center pass is defined as the reference position with altitude H. Its look angle in the center of
beam is θ, and its line of sight is the slant range direction r. The direction perpendicular to the azimuth
and to the slant range is defined as the height direction s. Generally, M passes are supposed to be
parallel to the azimuth direction. Then, one 2-D SAR image can be derived by one pass, and M SAR
images are derived by M passes. Suppose that all SAR images have been coregistered first, and then,
the azimuth and slant range positions of each scatterer in all SAR images are the same. That is to say,
we have M data samples corresponding to each azimuth-slant range cell. After the coregistration and
deramping procedure, the received data corresponding to the ith azimuth-slant range cell (yi, ri) can
be written as [12]

ym =

∫
γ(s)gm(s)ds (1)

where

gm(s) = exp

[
j2π

(
2s

λR
b⊥m

)]
, m = 1, 2, · · · ,M (2)

where j is the imaginary unit, γ(s) the backscattering function, λ the wavelength, R the distance
between the reference baseline and the center of the observed scene, and b⊥m the baseline orthogonal
to the line of sight.

For numerical analysis, the continuous-space system model of Eq. (1) for tomography SAR imaging
can be approximated by discrete model

yi = Φri (3)

where yi is the M dimensional observed data received by the ith azimuth-slant range pixel. ri =
[r1, r2, · · · , rn, · · · rN ] is a N dimensional vector, whose component rn denotes the discrete sampling
value of the backscattering function γ(s) obtained at the nth discrete height sampling position sn. Φ
is the M ×N observation matrix of tomography SAR, and its components ϕmn can be obtained from
Eq. (2) and represented as

ϕmn = exp (j2πwmsn) (4)

where wm = 2b⊥m/(λR).
In the more realistic case, some noise is added on the observed data

yi = Φri + ni (5)

with ni a complex Gaussian vector with zero mean and power σ2.
In conclusion, the objective of tomography SAR imaging is to retrieve the backscattering coefficient

r. As the scattering field of the target is usually composed of only a limited number of strong scattering
centers, representing strong spatial sparsity in high frequency radar application, the tomography SAR
imaging can be transformed into the problem of sparse signal recovery from noisy measurements.
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Figure 1. The system geometry of tomography SAR.

3. TOMOGRAPHY SAR IMAGING BASED ON BLOCK-SPARSE MODEL

Block-sparse signal is a special case of sparse signal. If the sparse signal to be recovered has additional
structure in the form of the nonzero coefficients occurring in clusters. Such signals are referred to
as block-sparse signals [21–23], and then the block-sparse model can be utilized to recover the sparse
signals. One of the superiorities of this model is that it can reduce the required number of baselines for
tomography SAR imaging.

In order to construct the block-sparse model for tomography SAR imaging, the neighboring
azimuth-slant range pixels are used. If these pixels present the backscattering information of the same
structure, the distributed compressed sensing theory can be used to generate a block-sparse model for
tomography SAR imaging. Firstly, confirm the number of neighboring azimuth-slant range pixels P
that have the same structure for each pixel of tomography SAR. Then, for the azimuth-slant range pixel
selected to imaging, the observed data vectors received by the P neighboring pixels are arranged into a
PM× 1 vector, i.e.,

ỹ =
[
yT
1 yT

2 · · · yT
P

]T
(6)

where yp (p = 1, 2, . . . , P ) is the M dimensional observed data, which acquired from Eq. (5) is received
by the pth neighboring azimuth-slant range pixel. [·]T denotes the transpose of a matrix. Additionally,
P unknown backscattering coefficient vectors are combined in a PN× 1 vector, i.e.,

r̃ =
[
rT1 rT2 · · · rTP

]T
(7)

where rp (p = 1, 2, . . . , , P ) is the N dimensional backscattering coefficient vector of the pth neighboring
azimuth-slant range cell, which has K nonzero elements.

The distributed compressed sensing theory generalizes the concept of a signal being sparse to
the concept of an ensemble of signals being jointly sparse. Based on this, the joint sparse model for
tomography SAR can be expressed as

ỹ =


y1

y2
...
yP

 =


ϕ 0 0 0
0 ϕ 0 0
...

...
...

...
0 0 0 ϕ



r1
r2
...
rP

+ n = ϕ̃r̃+ nPN×1 (8)

From Eq. (8) it can be seen that as long as the neighboring azimuth-slant range pixels show the
backscattering information of the same structure, the backscattering functions corresponding to these
neighboring pixels will have approximately the same sparse space distributions but have different nonzero
values. That is to say, all the P sparse vectors rp (p = 1, 2, . . . , P ) share the same sparse positions
in the space domain but have different nonzero entries. Based on this, the block-sparsity theory is
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introduced into the joint sparse model of tomography SAR. To define the block-sparsity, the unknown
backscattering coefficient vector r̃ can be rearranged as follows: all the first components of the P sparse
vectors rp are chosen into the block r[1], all the second components of the P sparse vectors rp are
chosen into the block r[2], and so on. The rearrangement processing is shown in Eq. (9)

r̃ = [r1r2 · · · rNrN+1rN+2 · · · r2N · · · rpN−N−1rpN−N+2 · · · rpN ]

(9)
? ? ?

? ? ?
? ? ?

? ? ?
r[1] r[2] r[3]

From Eq. (9) we can get that the backscattering coefficients corresponding to the same space
positions are arranged into a block. Then, the unknown backscattering coefficient vector r̃ rearranged
as a combination of blocks can be rewritten as r

r = [r[1], r[2], · · · r[n], · · · r[N ]]
T

(10)

where r[n] with the length P denotes the nth block, corresponding to the same space position. This
means that the sparse vector r has nonzero elements occurring in clusters. By the above analysis,
there are K blocks of vector r with nonzero Euclidean norm [23]. Similarly, the observation matrix ϕ̃
rearranged as a combination of column-blocks can be rewritten as Φ

Φ = [Φ[1],Φ[2], · · ·Φ[n], · · ·Φ[N ]] (11)

where the column-block Φ[n] with size PM × P is obtained as follows: the columns of matrix ϕ̃
corresponding to the same positions of the block r[n] in r̃ are chosen into the block Φ[n]. The
rearrangement processing is shown in Eq. (12)

ϕ̃ = [Φ1Φ2 · · ·ΦNΦN+1ΦN+2 · · ·Φ2N · · ·ΦpN−N−1ΦpN−N+2 · · ·ΦpN ]

(12)
? ? ?

? ? ?
? ? ?

? ? ?
Φ[1] Φ[2] Φ[3]

where Φi denotes the ith column of matrix ϕ̃.
Then, the optimized block-sparse model for tomography SAR can be represented as

y= Φr+ n (13)

where r is a block-sparse signal, with K nonzero blocks.
Then, the block orthogonal matching pursuit (BOMP) algorithm is used as a computationally

attractive alternative to Eq. (13). The BOMP algorithm is an extension of conventional OMP. In the
BOMP algorithm the column-block of Φ that best matched to the residual is selected as the potential
atom block and the index of which is put into the support set. Then the least square method is used
to estimate the reconstructed vector with the support set, and the residual vector is updated in each
iteration. Then the support set of cardinality is increased one by one by selecting a new column-block’s
index in each iteration and forms a support set of cardinality K at the end. Here, the sparsity K is
obtained by information theoretic criteria (ITC) [25]. The steps of BOMP algorithm are described as
follows:

Step 1: Input the observed data vector y, observation matrix Φ, the sparsity K.
Step 2: Initialize the reconstructed vector r0 = 0, the index set A0 = ∅, the residual vector t0 = y,
and iteration counter j = 1.
Step 3: Project the residual vector tj−1 onto all the column-blocks of Φ and find the index of the
column-block that is best matched to tj−1

bj = argmax
(
mean

(∣∣ΦT [n] tj−1

∣∣)) (14)
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Step 4: Update the index set Aj and calculate the estimated reconstructed vector rj

Aj = Aj−1 ∪ bj (15)

rj = Φ+
Aj
y (16)

where ΦAj is constructed by the column-blocks Φ[n] of Φ indexed by n ∈ Aj , and Φ+
Aj

=

(ΦT
Aj
ΦAj )

−1ΦT
Aj

is the pseudo-inverse of ΦAj .
Step 5: Update the residual vector tj

tj = y −ΦAjrj (17)

Step 6: if ||tj ||2 > ||tj−1||2 or j ≥ K, go to Step 7; else,j = j + 1, go to Step 3.
Step 7: Output the sparse reconstructed vector r̂j . The components of r̂j corresponding to the
index set Aj are confirmed by Φ+

Aj
y, and the other components are filled with zeros.

Then, the mean values of each sub-block in sparse vector r̂ are calculated as the final reconstruction
vector of the selected azimuth-slant range pixel. When all the azimuth-slant range pixels corresponding
to the imaging scene have been processed following the procedure mentioned above, the three-
dimensional image of tomography SAR can be achieved.

4. EXPERIMENTAL RESULTS

In this section, to verify the validity of the proposed imaging algorithm for tomography SAR, the
imaging experiments are carried out with respect to simulated data. The main parameters used for
simulation are as follows: the system geometry of tomography SAR is shown in Figure 1. The radar
carrier frequency is 1.3Ghz, the centre flight height and the centre of ground range are all 5000m, the
flight velocity is 100m/s.

Here, we suppose that there are two cube buildings located at the scene. One building with altitude
15m is located at −5 to 5m in the azimuth direction and 4980 to 5000m in the range direction. And the
other building with altitude 30m is located at −5 to 5m in the azimuth direction and 5000 to 5010m in
the range direction. The position distributions of the two buildings are shown in Figure 2. For the sake
of simplicity, we assume that there are only strong scattering centers in the roofs of the two buildings.
From Figure 1, we can get that as the 3-D imaging coordinates for tomography SAR are presented in
the azimuth, slant range and height directions, which are different from the ground coordinates (y, x,
z). Figure 3 shows the selected section of the imaging scene corresponding to the azimuth position 0m.
Figure 3(a) presents the selected section in the ground coordinates (x, z), and Figure 3(b) presents the
selected section in the imaging coordinates (r, s).

Figure 2. The position distribution of the imaging scene.
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Figure 3. The selected section of the imaging scene corresponding to the azimuth position 0m shown
on (a) ground coordinates (x, z) and (b) imaging coordinates (r, s).
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Figure 4. Comparison of the imaging sections of OMP and BOMP with different baselines. (a) OMP
with eight baselines, (b) OMP with four baselines, (c) BOMP with eight baselines and (d) BOMP with
four baselines.

In order to analyze the performance of the proposed method, the standard CS method orthogonal
matching pursuit (OMP) provided in [26] is given for comparison. For BOMP method, nine neighboring
pixels located in a 3×3 windows is assumed to contain similar backscattering information. As shown in
Figure 4, we conducted two experiments by selecting eight and four baselines, respectively. Additionally,
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the signal-to-noise ratio (SNR) is set to 5 dB. Figure 4 shows the selected slant range-height section of
the final 3-D imaging result of tomography SAR corresponding to the azimuth position 0m. Figures
4(a) and 4(b) show the 2-D images of the selected slant range-height sections obtained by OMP with
eight and four baselines, respectively. Figures 4(c) and 4(d) present the 2-D images of the selected slant
range-height sections obtained by BOMP with eight and four baselines, respectively. By comparing the

-50 -40 -30 -20 -10 0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)

N
or

m
al

iz
ed

 in
te

ns
ity

-50 -40 -30 -20 -10 0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)
N

or
m

al
iz

ed
 in

te
ns

ity

(a) (b)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)

N
or

m
al

iz
ed

 in
te

ns
ity

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)

N
or

m
al

iz
ed

 in
te

ns
ity

(c) (d)

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)

N
or

m
al

iz
ed

 in
te

ns
ity

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Height(m)

N
or

m
al

iz
ed

 in
te

ns
ity

(e) (f) 
Figure 5. Comparison of the height imaging results of MUSIC, OMP and BOMP with different
baselines. (a) MUSIC with eight baselines, (b) MUSIC with four baselines, (c) OMP with eight baselines,
(d) OMP with four baselines, (e) BOMP with eight baselines and (f) BOMP with four baselines.
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imaging results, it can be seen that both OMP and BOMP provide good reconstruction in the case of
eight baselines. However, when the number of baseline decreases from eight to four, image quality of
OMP decays significantly, and it is almost impossible to achieve perfect recovery for OMP. Distinctively,
the imaging result obtained by BOMP exhibits clear profile of the target even with only four baselines.

In order to reflect detailed characteristics of the imaging results, the azimuth-slant range pixel
located at (0, 7050) is extracted for individual analysis. Moreover, the multiple signal classification
(MUSIC) algorithm is also utilized to verify the superiority of the proposed method. For the selected
azimuth-slant range pixel, Figures 5(a) and 5(b) show the normalized backscattered intensity in the
height direction obtained by MUSIC with eight and four baselines, respectively. Figures 5(c) and
5(d) show the normalized backscattered intensity in the height direction obtained by OMP with eight
and four baselines, respectively. Figures 5(e) and 5(f) present the normalized height reconstruction
results obtained by BOMP with eight and four baselines, respectively. With using neighboring pixels
to estimate the covariance matrix in MUSIC algorithm, the estimate performance decreases with the
decrease of the number of baselines. When the number of baselines reduces to four, the estimation error
is hard to accept, as shown in Figures 5(a) and 5(b). Furthermore, the pseudospectrum obtained by
MUSIC algorithm is not related to the signal power spectrum. That is to say, the peaks of the MUSIC
pseudospectrum only denote the existence of the targets. The reflectivities of the targets should be
estimated by the amplitude estimator. From Figures 5(c) and 5(d), it can be seen that as the number of
baselines decreases, it is almost impossible to achieve perfect recovery for OMP method with only four
baselines. However, as using neighboring pixels information in reconstruction, BOMP overcomes the
imaging quality limitation imposed by the low number of baselines, which provide a better reconstruction
quality than OMP and MUSIC, as shown in Figures 5(e) and 5(f).

5. CONCLUSIONS AND FUTURE WORK

In this paper, a novel imaging strategy capable of focusing tomography SAR data has been proposed.
The principle behind the method is based on using neighboring pixels information in reconstruction,
which can overcome the imaging quality limitation imposed by the low number of baselines. Raw data of
tomography SAR in L-band was simulated, and the focused images were achieved by MUSIC, standard
CS and the proposed method in the presence of additive gaussian noise. Simulation results have shown
that it is almost impossible to achieve perfect recovery for MUSIC and standard CS with just few
baselines. However, with using neighboring pixels information in reconstruction, the proposed method
provides a better reconstruction quality.

In the future, we may focus on the following: (i) deducing the minimum baseline numbers and
obtaining the optimal baseline distributions of tomography SAR; (ii) considering the adaptive selection
method for the neighboring pixels; (iii) employing other parallel techniques to solve the imaging problem
of tomography SAR, such as Bayesian optimization; (iv) applying graphic processing unit (GPU)
technique to improve the computational efficiency.
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