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Polarization Transformation by a Hyperbolic Metamaterial
on a Metal Substrate

Illia Fedorin*

Abstract—In the present paper we focus on the study of polarization properties of biaxial metamaterial,
which consist of alternate ferrite and semiconductor layers, located on an ideally conducted metal
substrate. The system is placed into an external magnetic field along the boundaries of the layers. The
effective medium theory is applied. Effective linear-to-elliptic polarization conversion has been shown,
by means of physical and geometrical parameters of the system under consideration.

1. INTRODUCTION

Recently, a lot of investigations are pointed to the periodical structures that include layers made from
natural or artificial materials with spatial dispersion. One-dimensional periodic structures have found
particularly wide application as filters and lasers. They are the basis of distributed Bragg reflection
lasers. Such structures realize the polarization transforming of waves in additional to their spatial and
frequency selections. Note that in a one-dimensional case a photonic crystal (PC) is nothing more than
a dielectric periodic layered structure. The PCs are now widely used in modern integrated optics and
optoelectronics, laser and X-ray techniques, microwave and optical communications [1–5].

Electromagnetic properties of materials that have artificially created periodic translation symmetry
are of great interest. There is a direct analogy between the wave processes in such structures
and the properties of wave functions of electrons moving in the periodic potential of a crystal
lattice. The translation symmetry significantly affects the spectrum of eigenwaves of such materials.
There are alternating bandwidths in which propagation of electromagnetic waves is either allowed or
forbidden [2, 6].

From the viewpoint of applications, it is obvious that not only the design of PCs but also the
control of the position and width of the band gap and polarization state is of great interest. One of the
ways to realize the control is using magnetic materials in the fabrication of PCs to produce so-called
magnetophotonic crystals (MPCs). Indeed, a biased external static magnetic field can alter permittivity
or permeability of MPC ingredients [2, 7].

From both fundamental and application points of view, the planar metamaterials placed on
substrates of different natures, namely ferrite, dielectric, metallic, are quite interesting objects because
they can be used successfully to design non-reciprocal magnetically controllable microwave devices. On
the other hand, magneto-optically active substrate can serve as a sensitive element for THz magnetic
near-field imaging in metamaterials. The polarization rotation of a near-IR probe beam revealed in
the substrate measures the magnetic near-field [8]. Thus, the knowledge about optical properties of
metamaterials based on the thin planar magnetic structures is especially important.

The research on effective control and manipulation of electromagnetic waves (EM) polarization
states in PCs and metamaterials has been especially intense within microwaves. Polarization is one of
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the basic properties of electromagnetic waves conveying valuable information in signal transmission and
sensitive measurements. Conventional methods for advanced polarization control impose demanding
requirements on material properties and attain only limited performance. Conventional state-of-the-art
polarization converters utilize birefringence or total internal reflection effects in crystals and polymers,
which cause phase retardation between the two orthogonally polarized wave components [1].

Polarization conversion is important in many polarization-manipulating devices such as modulators,
integrated switches, amplifiers, polarization splitters, and it has also been investigated theoretically
using slightly different systems, such as a combination of anisotropic materials and corrugated surfaces, a
dielectric-film waveguide with a corrugated cover layer, or a multilayered structure involving alternating
birefringent biaxial layers. Nevertheless, with these techniques, perfect polarization conversion is difficult
to achieve and the fabrication seems to be a demanding task [9].

Manipulation of wave polarization states is one of the essential and challenging tasks in the
terahertz regime. Over the last few decades, various designs of polarizer’s and wave plates have been
proposed, including sheet polarizer’s using anisotropic absorption media, prism polarizer’s, Brewster-
angle polarizer’s, wire-grid polarizer’s, as well as birefringence utilizing paper, liquid crystals, multi-layer
meander liners and chiral effect. However, more convenient, and flexible approaches are always desirable
to completely control the polarization states [10].

This has become possible with the advent of metamaterials that promise a variety of fascinating
physical phenomena, such as negative refraction, invisibility cloaking, superfocusing and miniaturized
antennas [10–17].

A number of papers are devoted to the solution of mentioned problems. For example, it has
been demonstrated in [1], ultrathin, broadband, and highly efficient metamaterial-based terahertz
polarization converters are capable of rotating a linear polarization state into its orthogonal one, and
the prototype structures capable of realizing nearperfect anomalous refraction. In [2], the polarization
properties of a magnetophotonic layered structure were studied at the frequencies close to the frequency
of ferromagnetic resonance. The investigations were carried out taking into account a great value of
dissipative losses in biased ferrite layers in this frequency band. In [12], the scattering and TE/TM
polarization conversion characteristics of LH-grating in the case of plane wave oblique incidence were
analyzed, and comparison between RH-gratings and LH-gratings was given with physical explanations.
In [8], the spectral and polarization properties of electromagnetic wave through a planar chiral structure,
loaded with the gyrotropic medium under an action of the longitudinal magnetic field, was studied. In
[14], the approaches for determining the eigenpolarizations in an arbitrary diffraction order of any
planar periodic structure (PPS) under arbitrary incidence has been proposed. In [15], a homogeneous
circular polarizer based on a bilayered chiral metamaterial with two enantiomeric wheel patterns
was proposed. The authors in [16] experimentally investigated the rotation of polarization plane
of electromagnetic waves by the metallic helices. The polarization properties of perfectly periodical
and defective one-dimensional photonic band gap structures with nonreciprocal chiral (bi-isotropic)
layers were studied in [5]. The reflection, transmission spectra and the polarization transformation of
linearly polarized waves in the ferrite-semiconductor multilayer structure were considered in [18]. In
the long-wavelength limit, the effective medium theory is applied to describe the studied structure as a
uniaxial anisotropic homogeneous medium defined by effective permittivity and effective permeability
tensors. The authors in [10] show that a specially designed planar metamaterial can be employed to
manipulate the polarization state of terahertz waves. By altering the geometric parameters of the
metamaterial unit cells, we experimentally and numerically demonstrate that the polarization of the
incident linearly polarized terahertz waves can be effectively converted. In our recent papers [19, 20],
polarization conversion by a 1-d photonic crystal, which consists of alternating semiconductor and
dielectric layers, located on isotropic and anisotropic substrates was considered.

Metamaterials have enabled the realization of many phenomena and functionalities unavailable
using natural materials. Many basic metamaterial structures, such as metal split-ring resonators,
exhibit birefringence suitable for polarization conversion, which has been mostly investigated in the
microwave frequency range. Broadband metamaterial circular polarizers have been demonstrated in the
optical regime using gold helix structures, and stacked nano-rod arrays with a tailored rotational twist.
Metamaterial based polarimetric devices are particularly attractive in the terahertz (THz) frequency
range due to the lack of suitable natural materials for THz device applications. However, the currently
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available designs suffer from either very limited bandwidth or high losses [1, 11, 21, 22].
With the aim to further clarify the interesting properties of metamaterials, in the present paper

we focus on the study of polarization properties of biaxial metamaterial on the metal substrate, which
is composed of periodically alternating semiconductor and ferrite layers and is placed into an external
magnetic field, parallel to the boundaries of the layers. The characteristic ranges near hybrid frequency
in semiconductor and frequency of ferromagnetic resonance in the ferrite layer are considered precisely.
The influence of dissipations is numerically investigated.

2. GEOMETRY OF THE STRUCTURE BASIC EQUATIONS

Let us analyze the polarization properties of the TE and TM arbitrary incident plane-wave by a
magnetoactive subwavelength metamaterial in an external magnetic field, which is placed on the ideally
conducting metal substrate. Consider a finite multilayered periodic structure, where the ferrite layers of
thickness d1 and the semiconductor layers of thickness d2 alternate (Fig. 1). Assume that the thickness
of the structure is L (L = Nd, where N is the number of periods, and d = d1 + d2 is the period of the
structure). Let the structure be placed into an external magnetic field H0 along y axis (parallel to the
boundaries of the layers). The z axis runs perpendicularly to the boundaries of the layers (periodicity
axis). The incident, reflected and transmitted wave vectors lie in the xz plane. In this case, we can put
∂/∂y = 0, omitting the dependence on the coordinate y in the equations.

Figure 1. Geometry of the structure.

For the chosen geometry of the structure, the Maxwell’s equations can be separated into the
equations for two modes with different polarizations. To analyze the polarization properties, we consider
both the TE-polarization with components Hx, Hz, Ey (ordinary waves) and TM-polarization with
components Ex, Ez, Hy (extraordinary waves).

To solve the problem, we use Maxwell equations in the ferrite and semiconductor layers, the
equations of continuity and the motion of charge carries. We seek the variables in these equations
in the form of exp[ikxx + ikzz − iωt]. We also apply boundary conditions for the tangential field
components at the layers interfaces.

The dispersion equation for TM-waves in the infinite periodic structure, which relates the frequency

ω and the Bloch wave number k
TM

, can be written as [23, 24]
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ferrite and semiconductor layers for TM-waves, respectively; kx is the longitudinal wave number; εF is
permittivity of the ferrite layer; εsf = ε∥+ ε⊥

/
ε∥ is the Voigt effective permittivity of the semiconductor

layer; ε∥ and ε⊥ are the components of semiconductor permittivity tensor, which for the investigated
THz region can be given as [6, 23]
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Here ε0 is the part of the permittivity attributed to the lattice; ωp =
√

4πe2n0

/
meff ε0 is the plasma

frequency; ωC = eH0/meff c is the cyclotron frequency; υ is the electron collision frequency; e, n0,
and meff are the charge, concentration, and effective mass of charge carriers. The permeability for
nonmagnetic semiconductor layer is µs = 1.

Similarly, the dispersion equation for TE-waves in the infinite periodic structure can be written
as [7, 25]
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of the ferrite permeability tensor; ωM = 2πegM/mc; ωH = egH0/2mc; g is the factor of spectroscopic
splitting; M is the saturation magnetization; ωr is the relaxation frequency; mis electron free mass.

It should be noted that we applied the “resonant model” of the “saturated” ferrite to calculate the
ferrite constitutive parameters, in the case when the static magnetic field H0 is stronger than the field
of the saturation magnetization 4πM .

When static magnetic field is quite small, the “non-resonant” model of “non-saturated” ferrite
should be applied. In this case, the current magnetization M is a function of the static magnetic
field [8].

Moreover, in the considered geometry, the external magnetic field affects the TE-wave properties
in a ferrite layer only (as ferrite transversal wavenumber kTE

z1 includes effective permeability µF ,
which is magnetic field dependent, whereas semiconductor transversal wavenumber kTE

z2 is magnetic
field independent), and the TM-wave properties in a semiconductor layer only (as ferrite transversal
wavenumber kTM

z1 is magnetic field independent, whereas semiconductor transversal wavenumber kTM
z2

includes Voigt effective permittivity εsf , which is magnetic field dependent).

Let us consider dispersion Equations (1) and (2) in the subwavelength approximation regime, that

is when kTE,TM
z1 d1, k

TE,TM
z2 d2, k

TE,TM
d << 1. Physically it means that the period of the multilayer

magnetoactive periodic structure is much less than the wavelength along z axis (d << λ). In this case,
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the Bloch wave numbers k̄TM,TE = kTM,TE
z are the effective transverse wave numbers of a bigyrotropic

metamaterial [7, 23, 25]
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Here µxx,µzz and εxx, εyy, εzz are the components of the effective permeability and permittivity
tensors, respectively:
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The Maxwell equations for the considered metamaterial, with the effective permittivity and
permeability tensors in Eqs. (4) and (5), can be generally split into the following equations for TM
and TE polarizations:
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The electrodynamics properties of the anisotropic structure depend heavily on the direction of the
wave propagation. The presence of a constant magnetic field brings about a number of specific features
in the interaction of waves.

Thus, the considered structure in the long wave approximation can be described using effective
medium theory, and it is possible to introduce effective permeability and permittivity tensors
components to describe the electrodynamics properties. As can be seen, the components of permeability
and permittivity depend heavily on the frequency, external magnetic field and physical and geometrical
parameters of the constitutive layers. The analysis of the TE polarization wave spectral properties has
been done in [7, 25]. So here we focus only on the specific features that are essential to the given work
including analysis of TM polarization waves.

Let us analyze the frequency and external magnetic field dependence of effective components of
permittivity, permeability, and Bloch wave numbers. The detailed analysis of expression for permeability
of ferrite layer and permittivity of semiconductor layer can be found for example in [7, 25] and [6, 23],
respectively. In order to be in accordance with the existent theoretical and experimental works [7]
and [25], let us use the same numerical values of parameters. The ferrite layers (brand 1SCH4, the
polycrystalline nickel ferrite NiO Fe2O3) have the following parameters εF = 11.1, g = 2, d1 = 0.05 cm,
and saturation magnetization M = 4800G. The semiconductor layer (n-InSb) has parameters εf = 17.8,
d1 = 0.05 cm, ωp = 2 · 1012 s−1. We ignore the collision frequency in the semiconductor layers and
magnetic damping in the ferrite, that is ν = 0, and ωr = 0.

As can be easily seen (Fig. 2, and Fig. 3), there are a number of specific features at the corresponding
dependencies, which correspond to the frequencies and magnetic fields where the components of effective
permittivities and permeabilities tend to zero or infinity (it should be noted hereinafter that in the
real material condition, when the dissipation processes are taken into account, the corresponding
dependencies are smoothed, and there are, in fact, no infinity values, and near zero values occur).

Thus, at frequency ωµxz0 =

√
(ωH + ωM )

(
ωH + ωH

df
df+ds

)
and at the corresponding magnetic field

Hµxz0, both µxx and µzz components of effective permeability tend to zero (Fig. 2). At the frequency of
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(a)  (b)

Figure 2. Permeability as a function of frequency (at constant magnetic field H0 = 5000Oe) and
external magnetic field (at constant frequency ω = 1011 s−1).

(a)  (b)

Figure 3. Permittivity as a function of frequency (at constant magnetic field H0 = 5000Oe) and
external magnetic field (at constant frequency ω = 4 · 1012 s−1).

ferromagnetic resonance ωµx∞ =
√

ωH (ωH + ωM ) and at corresponding magnetic field Hµx∞, the µxx

components of effective permeability of metamaterial and effective permeability of ferrite layer µF tend
to infinity (here µ∥ → 0). It can also be noted that at frequency ω = ωH parallel component of ferrite
permeability (µ∥) and imaginary part of perpendicular component (µ⊥) tend to infinity. At frequency
of anti-ferromagnetic resonance ωaf = (ωH + ωM ) and at the corresponding magnetic field, the effective
permeability of ferrite layer becomes zero µF → 0. Finally, at magnetic field Hµz∞ and at frequency
ωµz∞, the µzz component of effective permeability tends to infinity.

A similar situation takes place at the effective permittivity dependence as a function of frequency

and magnetic field (Fig. 3). Thus, at hybrid frequency ωεx∞ =
√

ω2
C + ω2

P and corresponding magnetic

field Hεx∞ = (meff c/e)
√
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s
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, the εyy component of effective permittivity tends to zero. At cyclotron frequency

ω = ωC , the permittivity semiconductor components ε⊥ and ε|| tend to infinity. At plasma frequency
ω = ωP , the εsyy component of semiconductor permittivity tensor tends to infinity. At frequency
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√
a22 − 4a1a3

)/
2 · a1 (a1 = dsε0+dfε

s
f , a2 = ω2
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4
p)

and at the corresponding magnetic field Hεxz0, both εxx and εzz components of effective permittivity
tend to zero. Finally, at magnetic fieldHεz∞ and at frequency ωεz1∞,εz2∞, the εzz component of effective
permittivity tends to infinity.
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Table 1. Effective permeability behavior.

Negative Positive

µxx
ωµx∞ < ω < ωµxz0

Hµxz0 < H0 < Hµx∞

ω < ωµx∞;ω > ωµxz0

H0 < Hµxz0;H0 > Hµx∞

µzz
ωµz∞ < ω < ωµxz0

Hµxz0 < H0 < Hµz∞

ω < ωµz∞;ω > ωµxz0

H0 < Hµxz0;H0 > Hµz∞

Table 2. Effective permittivity behavior.

Negative Positive

εxx
ω < ωεxz10;ωεx∞ < ω < ωεxz20

Hεxz0 < H0 < Hεx∞

ωεxz10 < ω < ωεx∞;ω > ωεxz20

H0 < Hεxz0;H0 > Hεx∞
εyy ω < ωεy0 ω > ωεy0

εzz
ωεz1∞ < ω < ωεxz10;ωεz2∞ < ω < ωεxz20

Hεxz0 < H0 < Hεz∞

ω < ωεz1∞;ωεxz10 < ω < ωεz2∞;ω > ωεxz20

H0 < Hεxz0;H0 > Hεz∞

We can sum up all previous analysis in the following tables, which show the regions where the
components of effective permittivity and permeability become negative.

As we can see, there exist a number of regions where the components of permittivity and
permeability become negative or positive. This behavior results in specific physical properties of such
metamaterials in the corresponding regions. Thus, for example, in the frequency range ωµz∞ < ω <
ωµxz0, there are simultaneously negative µxx and µzz components of effective permeability. Moreover, at
the used material parameters, in the mentioned frequency range, εyy component of effective permittivity
is also negative (it should be noted that these ranges may differ depending on the plasma frequency
value, external magnetic field value, and other physical parameters of materials that used). Thus, in this
frequency range, the metamaterial, optically, behaves as a left-handed metamaterial for TM-polarized
waves. By varying the material parameters, such as thicknesses of the layers, physical parameters
of materials, etc., it is possible to effectively control the corresponding properties in the considered
structure. However, when the dissipations are taken into account, the corresponding features are
smoothed, and a highly precise control is necessary to support this conditions.

The frequency ranges, where the components µxx − µzz and εxx − εzz have opposite signs, relate
to the so called hyperbolic metamaterials which are one of the most unusual classes of electromagnetic
metamaterials. They display hyperbolic (or indefinite) dispersion, which originates from one of the
principal components of their electric or magnetic effective tensor having the opposite sign to the
other two principal components. Such anisotropic structured materials exhibit distinctive properties,
including strong enhancement of spontaneous emission, diverging density of states, negative refraction
and enhanced superlensing effects [11].

These regions are of great interest because of unusual properties of structures in such conditions.
A number of interesting effects arise at mentioned characteristic frequencies and magnetic fields from
the view point of current study of polarization properties of metamaterial placed on a metal substrate.
This is described in the following sections.

As for dependencies of Bloch’s wave numbers of the metamaterial as a function of external magnetic
field and frequency (Figs. 4 and 5), they are in strong accordance with physical properties of effective
components of permittivity and permeability. Namely, there are a number of characteristic points where
Bloch’s wave numbers become zero or tend to infinity and hence, become pure real or pure imaginary
(it is possible only when dissipation is neglected, and in the real conditions, Bloch’s wave numbers are
complex). It means that these characteristic features influence the existence of allowed and forbidden
zones of the metamaterial.

Thus, at frequencies ωµx∞ and the corresponding magnetic fields Hµx∞, the transversal effective
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(a)  (b)

Figure 4. Bloch’s wave numbers of the metamaterial as a function of frequency (H0 = 5000Oe).

(a)  (b)

Figure 5. Bloch’s wave numbers of the metamaterial as a function of external magnetic field for
different frequencies: (a) ω = 1011 s−1; (b) ω = 4 · 1012 s−1.

wave number for TE waves tends to infinity kTE
z → ∞; similarly, at the frequency ωεx∞ and magnetic

field Hεx∞, the transversal effective wave number for TM waves tends to infinity kTM
z → ∞. At

frequencies ωεxz10,εxz20 and magnetic field Hεxz0, k
TM
z → 0. On the other hand, at frequencies ωµxz0,

ωεy0 and magnetic field Hµxz0, k
TE
z → 0.

To summarize the above results, we can effectively control the band structure of the effective
metamaterial by means of frequency, external magnetic field, and other physical and geometrical
parameters of the materials that form the structure. Both single-mode (TE or TM) and multimode
regime can be supported under the corresponding parameters of the metamaterial.

3. THEORETICAL ANALYSIS

Let us now assume that the structure located on an ideally conducting metal substrate. This geometry is
very useful from the view point of practical application as thin-films on the ideally conducting substrates
are widely used in optics and electronics.

It is well known that in this case, the tangential components of electric field and normal component
of magnetic field should be equal 0 at the metal boundary, that is Et = 0,Hn = 0 [26]. Using the
boundary conditions, it is easy to derive the equations for reflection and transmission coefficients for
the system under consideration

ATE =
−e2ik

TE
z L

(
kTE
z + kzvµxx

)
+
(
kzvµxx − kTE

z

)
−e2ikTE

z L (kzvµxx − kTE
z ) + (kzvµxx + kTE

z )
,

ATM =
e−2ikTM

z L
(
kzvεxx − kTM

z εv
)
+
(
kzvεxx + kTM

z εv
)

e−2ikTM
z L (kzvεxx + kTM

z εv) + (kzvεxx − kTM
z εv)

.

(7)
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Then the phase constants for TE and TM polarized waves can be written as

δTM = argATM = 2arctg

[
kTM
z εv
kzvεxx

tgkTM
z L

]
,

δTE = argATE = −2arctg

[
kTE
z

kzvµxx
ctgkTE

z L

]
.

(8)

The phase difference δ = δTM − δTE can be calculated as follows:

δ = 2

(
arctg

[
kTM
z εv
kzvεxx

tgkTM
z L

]
+ arctg

[
kTE
z

kzvµxx
ctgkTE

z L

])
. (9)

Let us analyze the phase change at electromagnetic waves reflection from the metamaterial on the
metal substrate.

Let’s analytically consider the obtained expressions for δTM and δTE .
TM-polarized waves:
— δTM = 0 when the Bloch wave number for TM-waves of the bigyrotropic metamaterial is equal

to zero (kTM
z = 0), and then tgkTM

z L = 0; this occurs at L = nλTM

2 , when n = 0, 1, 2, . . .. Thus, the

TM wave phase constant δTM becomes zero when the thickness of the structure is equal to the integer
number of half wavelength (in the case of so-called Bragg resonance). It can also be shown that this
condition is satisfied at the following incident angles:

θ0TM = arcsin

√
εzz

(
1− n2c2π2

ω2L2εxx

)
, n = 0, 1, 2, . . .

— δTM = 0, if εxx → ∞. Near this characteristic area (hybrid frequency or corresponding external
magnetic field value), there is a large number of closely located zones of phase difference fast changes.
This is due to the large values of kTM

z .

— δTM = ±π, at tgkTM
z L → ∞, that is when L = nλTM

4 , where n = 1, 3, 5, . . .. So this condition
takes place when the thickness of the structure is equal to the quarter wavelength or at the following
incident angles

θ±πTM = arcsin

√
εzz

(
1− n2c2π2

4ω2L2εxx

)
, n = 1, 3, 5, . . . ;

— δTM = ±π, when εxx = εzz = 0;

— at L = nλTM

8 ⇒ tgkTM
z L = ±1. Here the upper sign corresponds to n = 1, 5, 9..., and the lower

sign to n = 3, 7, 11, . . .. When this condition takes place, the phase of TM waves can be determined as
follows:

δTM = 2arctg

[
±kTM

z εv
kzvεxx

]
.

Analogously for TE polarized wave:

— δTE = 0, when ctgkTE
z L = 0,, that is at L = nλTE

4 , when n = 1, 3, 5, . . .. This condition takes
place when the thickness of the structure is equal to the quarter wavelength or at the following incident
angles

θ01TE = arcsin

√
µzz

(
εyy −

n2c2π2

4ω2L2µxx

)
, n = 1, 3, 5, . . . ;

— δTE = 0 when µxx → ∞. Analogously to the case of TM polarized waves, near this characteristic
area (ferromagnetic frequency and corresponding external magnetic field), there is a large number of
closely located zones of fast change of phase difference. This is due to the large values of kTE

z .

— δTE = ±π, whenctgkTE
z L → ∞, that is at L = nλTE

2 , where n = 0, 1, 2, . . . , or at the incident
angles

θ±πTE = arcsin

√
µzz

(
εyy −

n2c2π2

ω2L2µxx

)
, n = 1, 2, 3, . . . ;
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— δTE = ±π, when µxx = µzz = 0;

— at L = nλTE

8 , cot kTE
z L = ±1. Here the upper sign corresponds to n = 1, 5, 9, . . . , and the lower

to n = 3, 7, 11, . . .. When this condition takes place, the phase of TE waves can be determined as follows

δTE = −2arctg

[
±kTE

z

kzvµxx

]
.

4. NUMERICAL SIMULATION

Let us now perform numerical calculations of the above analytical expressions (8)–(9), depending on
the magnetic field and frequency.

Since the type and nature of the polarization state are mainly determined by the value of the phase
difference, let us first consider the dependence of polarization constants for TE and TM waves versus
frequency and magnetic field (Fig. 6, Fig. 7).

Numerical calculations, as before, are performed for the structure where the first layer is the ferrite
(brand 1SCH4, εF = 11.1, d1 = 0.05 cm, ωM = 8.44×1010 s−1, g = 2), and the second layer is an n-InSb
type semiconductor (ε01 = 17.8, d1 = 0.05 cm, ωP = 2.5× 1011 s−1). The thickness of the metamaterial
is L = 5(df + ds). We ignore the collision frequency in the semiconductor layers and magnetic damping
in the ferrite.

The inserted figures in Fig. 6(b) and Fig. 7(b) correspond to the low frequency range. The shaded
areas correspond to the forbidden bands of the metamaterial. As expected, there are a number of
characteristic points of unusual behavior, where the phase constants rapidly change from −π to π or
tend to zero. These features correspond to the mentioned above peculiarities of the effective components
of permittivity and permeability of the metamaterial under consideration.

(a)  (b)

Figure 6. Phase constant for TM-polarization as a function of frequency and external magnetic field.

(a) (b)

Figure 7. Phase constant for TE-polarization as a function of frequency and external magnetic field.
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(a) (b)

(c) (d)

Figure 8. Polarization state (left- and right polarization states) as a function of external magnetic
field (a), (b) and frequency (c), (d), H0 = 5000Oe) in different frequency ranges; (a) corresponds to
ω = 1011 s−1; (b) corresponds to ω = 4 · 1012 s−1; left polarization corresponds to sin δ < 0; right
polarization corresponds to sin δ > 0.

It can be noted that in the vicinity of ferromagnetic resonance frequency ωµx∞ and corresponding
magnetic field Hµx∞, there are a great number of closely located zones of fast change in the polarization
state arises of TE-polarized waves. This occurs because at these values of parameters, the Bloch wave
number for TE-polarized waves and µxx tend to infinity (particularly, have large values in real case,
when dissipations are taken into account). A similar situation takes place for TM-polarized waves at
hybrid frequency ωεx∞ and magnetic field Hεx∞, where kTM

z and εxx tend to infinity. At frequencies
ωεxz10,εxz20 and magnetic field Hεxz0 (where kTM

z → 0 and εxx = εzz → 0), and on the other hand,
at frequencies ωµxz0, ωεy0 and magnetic field Hµxz0 (where kTE

z → 0, kTM
z → 0, and µxx = µzz → 0),

the polarization constants for TM- and TE-polarizations become zero. Other features observed in the
dependences correspond to the cases when the optical thickness of the structure for particular wave is
equal to half wavelength, quarter wavelength or eighth wavelength (see the equations above).

Another interesting and important characteristic to be considered is the direction of polarization
ellipse rotation and more specific is the areas in which we have left (sin δ < 0) or right (sin δ > 0)
polarized electromagnetic wave, in the absence of dissipation (Fig. 8).

It can be seen that there are a number of bands in which the electromagnetic wave has left and
right polarization states, due to the specific features of the considered structure. As the general features
are similar to the considered above, let us only mention here, as earlier, of great interest representing
the frequencies in the vicinity of the hybrid resonance frequency and the frequency of ferromagnetic
resonance, where there are a number of closely located zones, where a small change in a frequency
or magnetic field results in the changes of direction of polarization ellipse bypass. So, by varying
the physical and geometrical parameters of the metamaterials, it is possible to effectively control the
polarization state.

The view of polarization ellipse versus different values of the external magnetic field is presented
in Fig. 9(a) and as a function of metamaterial thickness at Fig. 9(b) (ω = 4 · 1012 s−1, θ = π/6).

Thus, we can summarize that due to the anisotropy and specific features of the considered
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(a)  (b)

Figure 9. Polarization ellipse for different external magnetic field magnitudes and thicknesses of
the metamaterial without dissipations; at Fig. 9(a): 1 — H0 = 1300Oe; 2 — H0 = 1500Oe; 3 —
H0 = 1950Oe(N = 5); at Fig. 9(b): 1 — N = 5; 2 — N = 10; 3 — N = 15 (H0 = 2000Oe).

Figure 10. Polarization ellipse when the dissipation processes in the layers are taken into account; 1
— ν = 0, ωr = 0; 2 — ν ≈ 1010 s−1, ωr ≈ 108 s−1; 3 — ν ≈ 5 · 1010 s−1, ωr ≈ 108 s−1.

subwavelength metamaterial, effective control of the polarization state by mean of frequency, external
magnetic field, thicknesses of the layers and the entire metamaterial, physical parameters of materials,
composed the metamaterial is possible. Namely we can control the value of polarization ellipse axes,
axis inclination angle, as well as the left and right polarization states.

Moreover, it should also be noted that as can be seen, in some areas the effective linear-to-linear
and linear-to-elliptic polarization transformation is possible.

Finally, let us consider the effect of dissipations, namely the collision frequency in the semiconductor
layer and damping in the ferrite layer, on the polarization ellipse parameters (Fig. 10).

As already mentioned above, when the losses in the layers are taken into account, there are no
abrupt changes at the effective permittivity and permeability dependences, and consequently, the phase
differences dependences, and the corresponding curves are smoothed. This is because the components
of the permittivity and permeability of the considered metamaterial, and consequently, the Bloch wave
numbers become complex. With the reduction of the collision frequency, the effect of anisotropy of the
structure becomes more dominant, and more abrupt changes at the corresponding dependences occur
(Fig. 10).

Let us note that unlike the case, where there are no losses in the layers (curve 1), when we take
into account dissipation processes, the value of the polarization ellipse axis decreases, the inclination
angle changes, and the ellipse shape transformation takes place.



Progress In Electromagnetics Research B, Vol. 67, 2016 29

5. CONCLUSIONS

Thus, in this paper, it has been shown that it is possible to effectively control the polarization state
of the reflected electromagnetic wave (namely phase difference, polarization rotation angle, to name a
few) by means of altering magnetic field, thicknesses of the layers and physical parameters of materials,
which form the structure under consideration. In the vicinity of ferromagnetic resonance frequency and
corresponding value of external magnetic field, the optical width of the ferrite layers tends to infinity,
which leads to the formation of numerous narrow transmission bands, and bands of fast polarization
state change. The same situation takes place close to the hybrid frequency and corresponding magnetic
filed, where the width of the semiconductor layer tends to infinity.

The results of our investigations can be used in the implementation of the variety of microwave and
optical devices, for the analysis of various kinds of PCs, for exact measurement of an external magnetic
field, etc. Our work opens new opportunities for creating high performance photonic devices and enables
emergent metamaterial functionalities for applications in the technologically difficult terahertz frequency
regime. Thin films on a metal substrate have many practical uses. They are employed, for example,
to protect metallic mirrors and to increase their reflectivity. They may also be used to reduce the
reflectivity of a metal surface, in optics, electronics, and photovoltaic cell, to name a few [1–5].
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