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Study of the Shielding Effectiveness of Double Rectangular
Enclosures with Apertures Excited by an Internal Source

Jian-Hong Hao, Lu-Hang Jiang*, Yan-Fei Gong, and Jie-Qing Fan

Abstract—An analytical formulation has been developed to evaluate the shielding effectiveness (SE)
of two coplanar rectangular metallic enclosures with a circular aperture excited by an internal electric
dipole source. The formulation consists of three parts: First, the near-field electromagnetic interference
(EMI) of the electromagnetic leakage from the aperture is represented by the electric dipole in one
enclosure. Then, the aperture equivalent magnetic and electric dipole moments are calculated according
to the Bethe’s small aperture coupling theory. Finally, the electric field of the other enclosure is derived
by using the equivalent magnetic dipole field, equivalent electric dipole field and the corresponding
enclosure’s Green’s functions in the two fields. In this formulation, the electric field of the enclosure
can be expressed as a function of the observation point, the aperture’s center point, source point, shape
of the aperture and enclosure’s conductivity. The formulation then is employed to analyze the effect of
the above factors on the SE. The analytical results have been successfully compared with the full-wave
simulation software Computer Simulation Technology (CST) from 0.3 ∼ 2.4GHz.

1. INTRODUCTION

Electromagnetic field coupling into a metallic enclosure through apertures has become an important
issue in recent years. The shielding effectiveness (SE) of a mono-enclosure [1–3] or multiple enclosures [4–
6] with apertures has been especially studied by using numerical methods and analytical formulations.
Numerical methods, including the finite difference time domain (FDTD) method [7, 8], finite element
method (FEM) [9], method of moments (MoM) [10, 11], and transmission-line modeling (TLM)
method [12], are robust and accurate but always require large computational resources. Analytical
formulations such as the Bethe’s small aperture coupling theory [13–15], equivalent circuit method [1–
3, 16] and BLT equation [6, 17], although approximate, are much faster than numerical methods, and
more convenient in investigating the effect of design parameters on the SE. The SE of a shielding
enclosure is defined as the ratio of field strengths in the presence and absence of the enclosure.

The SE of double rectangular enclosures with apertures against an external plane wave is
investigated in [4–6]. It is far-field electromagnetic interference (EMI), and the field source is placed
outside the enclosure. However, there exist lots of situations in which the field source is required to be
placed inside the enclosure. The electromagnetic leakage of an apertured rectangular enclosure excited
by an internal electric dipole is studied in [15]. The electromagnetic field coupling with a transmission
line located in a rectangular enclosure excited by an internal electric dipole is studied in [18]. In
fact, with the rapid development of large-scale integrated circuit, the enclosure is always divided into
several regions mainly to reduce the near-field EMI from electronic devices and components of adjacent
enclosures through the apertures. Unlike far-field EMI, near-field EMI is more complex and destructive.
Therefore, it is necessary to study the universal near-field EMI between adjacent enclosures.

In this paper, an analytical formulation has been developed to evaluate the SE of two coplanar
rectangular metallic enclosures with a circular aperture excited by an internal electric dipole. First,
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the near-field EMI of the electromagnetic leakage from the aperture is represented by the electric
dipole in one enclosure. Then, the aperture equivalent magnetic and electric dipole moments are
calculated according to the Bethe’s small aperture coupling theory. Finally, the electric field of the
other enclosure is derived by using the equivalent magnetic dipole field, equivalent electric dipole field
and the corresponding enclosure’s Green’s functions in the two fields. In [4], the rectangular aperture
coupling with large length-width ratio is studied, and the aperture’s radiation can be represented only
with the magnetic polarizability, considering the negligible contribution of the electric polarizability. In
our model, both of the magnetic and electric polarizabilities are taken into consideration in order to
study the circular aperture coupling. Therefore, the analytical formulation proposed is more accurate in
most of the frequency band from 0.3 ∼ 2.4GHz than the model in which only the magnetic polarizability
is considered in evaluating the SE of the enclosure.

The rest of the paper is organized as follows. Section 2 presents the geometry and mathematical
formulas of the analytical model. Section 3 illustrates the verification with a conventional full-wave
simulation tool CST and analyzes the effect of some parameters of the enclosure on the SE. Finally,
some conclusions are drawn in Section 4.

2. THEORY

2.1. Analytical Model

The geometry of the analytical model is shown in Figure 1. It consists of two coplanar rectangular
metallic enclosures (enclosure 1 and enclosure 2) with a circular aperture on the plane z = ze excited by
an electric dipole in enclosure 1. The dimensions of the enclosures are both xe × ye × ze. The diameter
of the aperture is d, and the center point of the aperture is located at P0 (x0, y0, z0). The source
interference is an electric dipole oriented along the y-axis located at Ps (xs, ys, zs). The SE observation
point is located at P (x, y, z) in enclosure 2.
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Figure 1. Double rectangular metallic enclosures with a circular aperture excited by an internal electric
dipole.

According to the Bethe’s small aperture coupling theory, usually when the diameter of the circular
aperture is shorter than 1/10 wavelength of interest, the leakage field of enclosure 2 can be represented
by the aperture equivalent electric and magnetic dipole moments p and m [13]. The equations linking
the dipole moments and the unperturbed fields of enclosure 1, when it is totally closed, are [15]

p = αezε0Eu,zez (1)

m = −αmxHu,xex − αmyHu,yey (2)

where ε0 is the electric permittivity of vacuum; Eu,z is the unperturbed electric field along the z-axis;
Hu,x and Hu,y are the unperturbed magnetic field along the x-axis and y-axis, respectively; αez, αmx

and αmy are the electric polarizability along the z-axis, magnetic polarizability along the x-axis and
magnetic polarizability along the y-axis, respectively. The polarizability is dependent only upon the
shape and size of the aperture.

For a circular aperture with diameter d, the polarizability is [19]

αez ≈ d3
/
6, αmx = αmy = d3

/
3 (3)
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Eu,z, Hu,x and Hu,y are given by [15]

Eu,z =
−jωμ0Idl

k2 (xeyeze)

∞∑
n=0

∞∑
l=0

Γnl

(ye
2

)
×{sin k1 [ye − (y0 + ys)] + sgn (y0 − ys) sin k1 (ye − |y0− ys|)} × sin (k1ye)

−1 (4)

Hu,x =
−Idl

(xeyeze)

∞∑
n=0

∞∑
l=0

Γnl

(
ye
2k1

)

× [cos k1 (y0 + ys − ye) + cos k1 (|y0− ys| − ye)]× sin (k1ye)
−1 (5)

Hu,y = 0 (6)

where ω = 2πf ; μ0 is the magnetic permeability of vacuum; k is the free space wavenumber; I and dl
are the current and length of the electric dipole, respectively; n and l are the field mode number along
the x-axis and z-axis, respectively.

k1 =
√

k2 − (nπ
/
xe)2 − (lπ

/
ze)2 (7)

Γnl = ε0nε0l

(
lπ

ze

)
cos

(
lπz0
ze

)
sin

(
lπzs
ze

)
sin

(
nπx0
xe

)
sin

(
nπxs
xe

)
(8)

where ε0n and ε0l are Neumann factors, ε0n(l) = 1 for n(l) = 0 and ε0n(l) = 2 for n(l) �= 0.

2.2. Electric Field and SE Calculation for the Magnetic Polarizability

When the equivalent magnetic dipole moment is considered, enclosure 2’s Green’s function is presented
as follows [14]:

Gm = −
∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)[
sin(kxx0) cos(kyy0)

knm sin(knmze)

]
sin(kxx) cos(kyy)

×{cos [knm(|z + z0| − ze)] + cos [knm(|z − z0| − ze)]} (9)

where ε0m is Neumann factor, ε0m = 1 for m = 0 and ε0m = 2 for m �= 0. kx = nπ/xe, ky = mπ/ye,

knm =
√

k2 − k2x − k2y. m is the field mode number along the y-axis.

The electric field E is related to Gm as follows:

E = −jωμ0αmxHu,x(∇×Gm) (10)

Substituting Eq. (9) into Eq. (10), the electric field components of enclosure 2 may be derived as
follows:

Emx = 0 (11)

Emy = −jωμ0αmxHu,x

∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)[
sin(kxx0) cos(kyy0)

sin(knmze)

]
sin(kxx) cos(kyy)

×{sin [knm(ze − |z + z0|)] + sgn(z − z0) sin [knm(ze − |z − z0|)]} (12)

Emz = −jωμ0αmxHu,x

∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)
ky

[
sin(kxx0) cos(kyy0)

knm sin(knmze)

]
sin(kxx) sin(kyy)

×{cos [knm(|z + z0| − ze)] + cos [knm(|z − z0| − ze)]} (13)

We can therefore calculate the SE for the magnetic polarizability at observation point P by
superposition of the electric field components.

Em =
√

E2
mx + E2

my + E2
mz (14)

SEm = −20 log10

( |Em|
|E0|

)
(15)

where E0 is the electric field at P in the absence of both enclosure 1 and enclosure 2.
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2.3. Electric Field and SE Calculation for the Electric Polarizability

Similarly, when the equivalent electric dipole moment is considered, enclosure 2’s Green’s function is
presented as follows:

Ge =

∞∑
n=0

∞∑
m=0

∞∑
l=0

(
c2

xeyeze

)[
cos(kxx0) cos(kyy0) sin(kzz0)

ω2
nml − ω2

]
cos(kxx) cos(kyy) sin(kzz) (16)

where c is the velocity of light of vacuum, kz = lπ/ze, ωnml =
√
k2x + k2y + k2z − k2

/
c2.

Equation (16) is a triple series. In order to improve its convergence rate, it is simplified as
Equation (18) by using identical Equation (17)

∞∑
n=1

cosnx

n2 − a2
=

1

2a2
− π

2a2
cos(x− n)a

sinπa
(0 ≤ x ≤ 2π) (17)

Ge =
∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)[
cos(kxx0) cos(kyy0)

knm sin(knmze)

]
cos(kxx) cos(kyy)

×{cos [knm(|z + z0| − ze)]− cos [knm(|z − z0| − ze)]} (18)

The electric field E is related to Ge as follows:

E = −(jωαeε0Eu,z)×
[
(1/jωμ0ε0)∇

(
ε0

∂Ge

∂z

)
− jωε0Geez

]
(19)

Substituting Eq. (18) into Eq. (19), the electric field components of enclosure 2 may be derived as
follows:

Eex = −(jωαeε0Eu,z)
1

jωμ0

∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)
kx

[
cos(kxx0) cos(kyy0)

sin(knmze)

]
sin(kxx) cos(kyy)

×{sin [knm(ze − |z + z0|)]− sgn(z − z0) sin [knm(ze − |z − z0|)]} (20)

Eey = −(jωαeε0Eu,z)
1

jωμ0

∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)
ky

[
cos(kxx0) cos(kyy0)

sin(knmze)

]
cos(kxx) sin(kyy)

×{sin [knm(ze − |z + z0|)]− sgn(z − z0) sin [knm(ze − |z − z0|)]} (21)

Eez = −(jωαeε0Eu,z)
1

jωμ0

∞∑
n=0

∞∑
m=0

(
ε0nε0m
xeye

)
knm

[
cos(kxx0) cos(kyy0)

sin(knmze)

]
cos(kxx) cos(kyy)

×{cos [knm(z + z0 − ze)] + cos [knm(|z − z0| − ze)]} (22)

We can therefore calculate the SE for the electric polarizability at observation point P by
superposition of the electric field components.

Ee =
√

E2
ex + E2

ey + E2
ez (23)

SEe = −20 log10

( |Ee|
|E0|

)
(24)

2.4. Electric Field and SE Calculation for Both of the Magnetic and Electric
Polarizabilities

We can therefore calculate the total electric field components by superposition of Em components and
Ee components

Ex = Emx +Eex, Ey = Emy + Eey, Ez = Emz + Eez (25)
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Finally, we can calculate the total SE at the observation point by superposition of the total electric
field components

E =
√

E2
x + E2

y + E2
z (26)

SE = −20 log10

( |E|
|E0|

)
(27)

3. RESULTS AND DISCUSSIONS

In this section, the SE of the observation point is calculated by using the analytical model proposed
in Section 2. Various configurations including different positions of the observation point, aperture’s
center point and electric dipole, different shapes of the aperture, and different conductivities of the
enclosure are studied. So for verifying it, our results are compared with the CST simulation results in
the frequency range 0.3 ∼ 2.4GHz. It is important to notice that the electric dipole is oriented along
the y-axis in our model, so only the electric field along the y-axis and the magnetic field along the x-axis
have been considered in calculating the SE.

In Section 3.1, the SE for the magnetic polarizability, the SE for the electric polarizability,
and the total SE for both of the magnetic and electric polarizabilities are calculated, respectively.
The dimensions of the double enclosures are both 300mm×120mm×300mm. The aperture radius
is r = 5mm. The aperture’s center point is located at P0 (150, 60, 300)mm. The electric dipole
and observation point are located at Ps (150, 60, 20)mm and P (150, 60, 450)mm, respectively. In
Section 3.2, the effect of various parameters of the enclosure on the SE is analyzed.

3.1. Model Validation

Figure 2, Figure 3 and Figure 4 show the calculated SE for the magnetic polarizability, the SE for the
electric polarizability and the total SE for both of the magnetic and electric polarizabilities respectively
using the analytical model and the results from the CST. It can be seen that three resonant modes,
TE101, TE301 and TE303, have been identified corresponding to the enclosure resonant frequencies,
0.71GHz, 1.58GHz and 2.12GHz, respectively. Figure 5 shows the comparison of the calculated SE for
the magnetic polarizability, electric polarizability and both of the magnetic and electric polarizabilities.
In comparison of Figures 2, 3, 4 and 5, it can be seen that the result of Figure 4 is more accurate than
that of Figure 2 and Figure 3 from 0.3 ∼ 2.12GHz, and the result of Figure 2 is more accurate than that
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Figure 2. Calculated SE for the magnetic
polarizability using the analytical model and the
result from CST.
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Figure 4. Calculated total SE for both of the
magnetic and electric polarizabilities using the
analytical model and the result from CST.
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Figure 5. Calculated SE for the magnetic
polarizability, the electric polarizability and both
of the magnetic and electric polarizabilities.

of Figure 3 and Figure 4 from 2.12 ∼ 2.4GHz. Therefore, it is better to consider both of the magnetic
and electric polarizabilities under 2.12GHz.

3.2. The Effect of Various Parameters on the SE

By keeping the position of the electric dipole and the aperture’s center point unvaried, Figure 6 shows
the calculated SE for different observation points of (150, 60, 450)mm, (202, 60, 450)mm and (228, 60,
450)mm. It can be seen that the nearer the observation point is to the side wall, the higher the SE will
be. It is because when y and z of the observation point are unvaried, while x changes, the electric field
depends on the function |sin (nπx/xe)|. If mode n is odd, |sin (nπx/xe)| decreases monotonically with
the increase of independent variable x on the interval [150, 300] mm. The variation of the SE is similar
for x on the interval [0, 150]mm, considering the symmetry of the double enclosures about the electric
dipole and the aperture. Therefore, the nearer the observation point is to the side wall, the lower the
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Figure 6. Calculated SE for different observation
points with P0(x0, y0, z0) = (150, 60, 300)mm and
Ps(xs, ys, zs) = (150, 60, 20)mm.
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Figure 8. Calculated SE for different positions of the electric dipole with P0(x0, y0, z0) = (150, 60,
300)mm and P (x, y, z) = (150, 60, 450)mm.

electric field will be, and the higher the SE will be.
By keeping the position of the electric dipole unvaried, Figure 7 shows the calculated SE for different

aperture’s center points of (150, 60, 300)mm, (98, 60, 300)mm and (254, 60, 300)mm. In order to keep
the observation points on the central axis of the aperture, they are set at (150, 60, 450)mm, (98, 60,
450)mm and (254, 60, 450)mm, respectively. It can be seen that before the second resonant point, the
nearer the aperture’s center point is to the side wall, the higher the SE will be. However, that law is
not obvious after the second resonant point. In addition, the frequency points where the SE increases
rapidly differ in the three graphs. The reason is that the aperture is at zero points of the electric field
of the enclosure, which will change for different aperture’s center points.

By keeping the aperture’s center point at P0 (150, 60, 300)mm and the observation point at P (150,
60, 450)mm, Figure 8 shows the calculated SE for different electric dipole positions of (150, 40, 150)mm,
(150, 75, 150)mm and (150, 100, 150)mm. It can be seen that the SE remains almost the same except
in the frequency range at the very beginning. It is because according to Equations (4) and (5), the
change of the independent variable ys of the electric dipole contributes little to the unperturbed electric
field component Eu,z and the unperturbed magnetic field component Hu,x. Therefore, the graphs almost
keep the same in general.

By changing the polarizability of the aperture, Figure 9 shows the calculated SE for the rectangular
aperture using the analytical model and the result from CST. It can be seen that the result from
the analytical model is in good agreement with that from CST in most of the frequency band from
0.3 ∼ 2.4GHz. Figure 10 shows the comparison of the calculated SE for the rectangular aperture and
the circular aperture with the same size. It can be seen that the SE of the circular aperture increases
about 15 dB compared with that of the rectangular aperture.

The material of the enclosure is perfect conductor in the above model. Next, the effect of the lossy
material on the SE of the enclosure will be investigated. It is assumed that only the incident TEnm wave
will be considered in the following research. For a rectangular enclosure, the propagation constants γ1
and γnm are presented as follows [3]:

γ1 =

√
−β2

0 − (1− j)δ

[
ε0n
xe

(
k2c0 + β2

0

k2x
k2c0

)
+

ε0m
ye

(
k2c0 + β2

0

k2y
k2c0

)]
(28)

γnm =

√
−β2

0 − (1− j)δ

[
ε0n
xe

(
k2c0 + β2

0

k2x
k2c0

)
+

ε0l
ze

(
k2c0 + β2

0

k2z
k2c0

)]
(29)

where kc0 =
√

k2x + k2y is the cutoff wavenumber of the TEnm mode; β0 =
√

k2 − k2c0, δ =
√

2/(ωσμ) is

the skin depth of the lossy material; σ and μ are the conductivity and magnetic permeability of the lossy
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Figure 9. Calculated SE for the rectangular
aperture using the analytical model and the result
from CST.
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Figure 10. Calculated SE for circular aperture
and rectangular aperture with the same size.
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Figure 11. Calculated SE when the enclosure
1 is perfect and the enclosure 2 is lossy with the
conductivity of 60 S/m using the analytical model
and the result from CST.
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Figure 12. Calculated SE when the enclosure
1 and enclosure 2 are both lossy with the
conductivity of 150 S/m using the analytical
model and the result from CST.

material, respectively. The electric field of the lossy enclosure can then be derived by the substitution
of the parameters k1 and knm for the perfect enclosure [3].

k1 = −jγ1, knm = −jγnm (30)

Figure 11 shows the calculated SE for the double enclosures of which enclosure 1 is perfect and
enclosure 2 lossy with the conductivity of 60 S/m. Figure 12 shows the calculated SE for the double
enclosures which are totally lossy with the conductivity of 150 S/m. It can be seen that the results from
the analytical model are in good agreement with those from CST in most of the frequency band from
0.3 ∼ 2.4GHz. Although the SEs of the lossy enclosure in general have a slight decrease in comparison
with those of the perfect enclosure, the lossy material can lead to great suppression of SE reduction
resulting from the enclosure resonance effect and significant improvement of the SEs around the resonant
frequencies.
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4. CONCLUSION

An analytical formulation has been developed to evaluate the SE of two coplanar rectangular metallic
enclosures with a circular aperture excited by an internal electric dipole source. The electric field
components of the observation points are derived according to the Bethe’s small aperture coupling theory
and the enclosure’s Green’s function. The results from the analytical model are in good agreement with
those from the full-wave simulation software CST in most of the frequency band from 0.3 ∼ 2.4GHz. The
results show that the observation point, aperture’s center point, shape of the aperture, and enclosure’s
conductivity can all have a significant influence on the SE except the electric dipole source point. It is
relatively fast, accurate and convenient to evaluate the SE and analyze the effect of different factors on
it by using the analytical formulation proposed in comparison with numerical methods. The results are
helpful for guiding the design of more complex electromagnetic shielding enclosures.

ACKNOWLEDGMENT

The authors thank for the funding support from the National Natural Science Foundation
(No. 61372050).

REFERENCES

1. Shim, J., D. G. Kam, J. H. Kwon, and J. Kim, “Circuital modeling and measurement of shielding
effectiveness against oblique incident plane wave on apertures in multiple sides of rectangular
enclosure,” IEEE Trans. Electromagn. Compat., Vol. 52, No. 3, 566–577, 2010.

2. Hao, J.-H., P.-H. Qi, J.-Q. Fan, and Y.-Q. Guo, “Analysis of shielding effectiveness of enclosures
with apertures and inner windows with TLM,” Progress In Electromagnetic Research M, Vol. 32,
73–82, 2013.

3. Jiao, C.-Q. and H.-Z. Zhu, “Resonance suppression and electromagnetic shielding effectiveness
improvement of an apertured rectangular cavity by using wall losses,”Chin. Phys .B, Vol. 22,
No. 8, 1–6, 2013.

4. Song, H., D.-F. Zhou, D.-T. Hou, T. Hu, and J.-Y. Lin, “Hybrid algorithm for slot coupling of
double layer shielding cavity,” High Power Laser and Particle Beams, Vol. 20, No. 11, 1892–1898,
2008.

5. Hao, C. and D.-H. Li, “Shielding effectiveness of double-deck cavity with apertures,” Chinese
Journal of Radio Science, Vol. 29, No. 1, 114–121, 2014.

6. Luo, J.-W., P.-A. Du, D. Ren, and P. Xiao, “BLT equation-based approach for calculating shielding
effectiveness of double layer rectangular enclosures with apertures,” High Power Laser and Particle
Beams, Vol. 27, No. 11, 1–6, 2015.

7. Liu, Q.-F., W.-Y. Yin, M.-F. Xue, J.-F. Mao, and Q.-H. Liu, “Shielding characterization of metallic
enclosures with multiple slots and a thin-wire antenna loaded: multiple oblique EMP incidences
with arbitrary polarizations,” IEEE Trans. Electromagn. Compat., Vol. 51, No. 2, 284–292, 2009.

8. Liu, Q.-F., W.-Y. Yin, J.-F. Mao, and Z.-Z. Chen, “Accurate characterization of shielding
effectiveness of metallic enclosures with thin wires and thin slots,” IEEE Trans. Electromagn.
Compat., Vol. 51, No. 2, 293–300, 2009.

9. Shi, Z. and P.-A. Du, “Numerical simulation of near field shielding properties for aperture arrays
based on FEM,” Chin. J. Electron., Vol. 37, No. 3, 634–639, 2009.

10. Khorrami, M. A., P. Dehkhoda, R. M. Mazandaran, and S. H. H. Sadeghi, “Fast shielding
effectiveness calculation of metallic enclosures with apertures using a multiresolution method of
moments technique,” IEEE Trans. Electromagn. Compat., Vol. 52, No. 1, 230–235, 2010.

11. Dehkhoda, P., A. Tavakoli, and M. Azadifar, “Shielding effectiveness of an enclosure with finite
wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by
GMMoM,” IEEE Trans. Electromagn. Compat., Vol. 54, No. 4, 792–805, 2012.



76 Hao et al.

12. Nie, B.-L., P.-A. Du, Y.-T. Yu, and Z. Shi, “Study of the shielding properties of enclosures
with apertures at higher frequencies using the transmission-line modeling method,” IEEE Trans.
Electromagn. Compat., Vol. 53, No. 1, 73–81, 2011.

13. Bethe, H. A., “Theory of diffraction by small apertures,” Physical Review Second Series, Vol. 66,
163–182, 1944.

14. Rao, Y.-P., H. Song, and D.-F. Zhou, “Fast estimation of shielding efficiency of cavity with thin
slots,” High Power Laser and Particle Beams, Vol. 20, No. 8, 1327–1332, 2008.

15. Li, Y. Y. and C. Q. Jiao, “Analytical formulation for electromagnetic leakage from an apertured
rectangular cavity,” PIERS Proceedings, 257–261, Guangzhou, China, Aug. 25–28, 2014.

16. Liu, E.-B., P.-A. Du, and B.-L. Nie, “An extended analytical formulation for fast prediction of
shielding effectiveness of an enclosure at different observation points with an off-axis aperture,”
IEEE Trans. Electromagn. Compat., Vol. 56, No. 3, 589–598, 2014.

17. Luo, J.-W., P.-A. Du, D. Ren, and B.-L. Nie, “A BLT equation-based approach for calculating the
shielding effectiveness of enclosures with apertures,” Acta Phys. Sin., Vol. 64, No. 1, 1–8, 2015.

18. Boutar, A., A. Reineix, C. Guiffaut, and G. Andrieu, “An efficient analytical method for
electromagnetic field to transmission line coupling into a rectangular enclosure excited by an internal
source,” IEEE Trans. Electromagn. Compat., Vol. 57, No. 3, 565–573, 2015.

19. Frederick, M. T., L. Michel, et al., EMC Analysis Methods and Computational Models, 1st edition,
Wiley Interscience, New York, 1996.


