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Near-Ground Transient Field of a High-Altitude Electromagnetic

Pulse (HEMP) Considering Nonlinear Air Conductivity
and Ground Reflection

Hong-Cheng Wei and Jean-Fu Kiang

Abstract—Transient field of a high-altitude electromagnetic pulse (HEMP) induced near ground is
simulated, of which the ground reflection can not be neglected. The Jefimenko’s equation is applied to
compute the incident electric field near the ground, attributed to both the primary and the secondary
currents in the source region. The field-dependent air conductivity in the source region is obtained
by solving three nonlinear governing equations iteratively, and the reflected field is computed in the
frequency domain.

1. INTRODUCTION

The γ rays generated by a high-altitude nuclear explosion strike air molecules in the upper atmosphere,
producing Compton electrons which move almost in parallel to the γ rays and constitute a primary
current [1, 2]. The Compton electrons also ionize air molecules, creating secondary electrons which in
turns modify the effective conductivity of the atmosphere [2, 3]. The electromagnetic field radiated by
the primary current, under the influence of the air conductivity, is conventionally called a high-altitude
electromagnetic pulse (HEMP).

The Lienard-Wiechert potentials were used to compute HEMPs radiated by the primary current [4],
where only the synchrotron radiation was considered, while the radiation attributed to frictional losses
(Bremsstrahlung radiation) was neglected. In [5], HEMP was computed by using the Jefimenko’s
equation as well as the CHAP’s code [3]. The characteristics of electric fields attributed to primary and
secondary currents were also discussed. In [6], the electric field of early-time HEMP was simulated with
different heights of burst (HOBs), explosive yields and observation locations.

The effective conductivity in the source region is nonlinearly related to the in situ electric field,
which can significantly affect the accuracy of simulated HEMP waveform near ground. In this work, we
propose an iterative method to compute both the electric field and the air conductivity distributions in
the source region. The incident electric field near ground is then computed by applying the Jefimenko’s
equation to both the primary and the secondary currents.

When the near-ground transient field in the first millisecond is concerned, reflected field components
are mingled with the incident field components radiated from the portion of source region away from the
line-of-sight path. The electric field reflected by the ground is computed by transforming the incident
field to the frequency domain and multiplying with the frequency-dependent reflection coefficient, then
transforming back to the time domain.

This paper is organized as follows: The theory to compute the primary current is briefly reviewed
in Section 2, the method of solving for the air conductivity and the secondary current is presented in
Section 3, the method to compute the reflected field is presented in Section 4, and simulation results
are discussed in Section 5. Finally, some conclusions are drawn in Section 6.
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2. COMPUTATION OF PRIMARY CURRENT

Figure 1 shows the coordinate systems used to compute the electric field distribution of an HEMP. The
burst point, which is at a height of h above the ground, is chosen as the origin O′ of the (x′, y′, z′)
coordinates, with the z′ axis aligned with the local geomagnetic field. The (x, y, z) coordinates are
defined to have the origin O lying directly below O′, with the x and y axes pointing in the local east
and north directions, respectively. A gamma ray propagates from O′, over a distance r′, to a point r̄d

in the source region. The source region is divided into small cubes labeled with indices [m,n, �]. The
primary and secondary currents in a small cube centered at r̄d will radiate electromagnetic wave, over
a distance R, to an observation point r̄s near the ground surface.

Figure 1. Coordinate systems for simulation of an HEMP.

The primary current density, under the influence of geomagnetic field, can be expressed as [2]

Jpri,r′(r̄′, t′) �− eζv0g(r̄′)
∫ Rγ/v0

0
dτ ′′ (cos2 θ′ + sin2 θ′ cos ωLτ ′′)

f

(
τ ′ − (1 − β cos2 θ)τ ′′ + β sin2 θ
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ωL

)
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(1)

where e = 1.6 × 10−19 coul is a natural unit of charge, ζ � 1; v0 = 0.95c m/s is the velocity of primary
electrons; c is the speed of light in free space; ωL = eB0/(γLme) is the cyclotron frequency; me is the
electron mass; B0 is the geomagnetic field; β = v0/c and γL = 1/

√
1 − β2; t′ = t − R/c, τ ′ = t′ − r′/c

and τ ′′ = t′ − t′′; t is the observation time at O, with the burst starting at t = 0. The electromagnetic
wave observed at (r̄, t) is contributed by the currents at (r̄′, t′); t′′ is the time when a γ ray strikes an air
molecule to create a primary electron; Rγ � 3 × 102ρ0/ρ (cm) is the mean distance a primary electron
travels in the atmosphere before being absorbed by an ion; ρ and ρ0 are the air densities at the height
of interest and on the ground, respectively.

Figure 2 shows the typical waveform of a γ-ray burst, which is represented as [7]

f(t) =
e−α1/t−α2tu(t)∫ ∞

0
dt′e−α1/t′−α2t′
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Figure 2. Typical waveform of a γ-ray burst [7]. Figure 3. Electron mobility in air [8]; ——:
fw = 0, −−−: fw = 0.01, − ◦ −: fw = 0.04.

where α1 = 2 × 10−8 s and α2 = 2 × 108 s−1 are empirical parameters. The g(r̄′) function characterizes
the generation of primary electrons, which is represented as [2, 7]

g(r̄′) =
Yα

Eray

exp

{
−

∫ r̄′

0
dr/�m

}

4πr′2�m

where �m � 3 × 104ρ0/ρ (cm) is the mean free-path of primary electrons.

3. COMPUTATION OF AIR CONDUCTIVITY

The secondary current density takes the form of Ohm’s law as [8]

J̄sec = σĒ (2)

where

σ(r̄′, t′, |Ē|) = eμe(r̄′, |Ē|)nsec(r̄′, t′) (3)

is the effective air conductivity [3], and μe is the electron mobility [8]. The number density of secondary
electrons, under the influence of geomagnetic field, can be computed as [2, 6]

nsec(r̄′, t′) � −q
v0

Rα
g(r̄′)

∫ τ

−∞
e−k1(τ−τ ′)dτ ′

∫ Rα/v0

0
dτ ′′f

(
τ ′−(1−β cos2 θ)τ ′′+β sin2 θ

sin ωLτ ′′

ωL

)
(4)

where k1 = 108(ρ/ρ0)2 s−1 is the attachment rate of electrons to oxygen molecules [3]. Fig. 3 shows the
electron mobility in the air, with the molecular fraction of water vapor being fw = 0, 0.01 and 0.04,
respectively [8].

The electric field in the source region satisfies the equation [2]

−∇′2Ē + r̂′
1

cε0
(∇′ · J̄)+

1
ε0
∇′ρe+

∂

∂τ ′

[
2
cr′

∂

∂r′
(r′Ē)+μ0(J̄−r̂′Jr′)

]
= 0 (5)

where J̄ = J̄pri + J̄sec. Within the first 1µs right after the burst (τ ′ ≤ 1µs), the spatial change rate of
current is in general smaller than the temporal change rate [7], hence (5) can be approximated as

∂

∂τ ′

[
2

cr′
∂

∂r′
(r′Ē) + μ0(J̄ − r̂′Jr′)

]
= 0 (6)

Since μe is a function of the local electric field Ē, (6) is a nonlinear equation of Ē, and will be
solved iteratively. First, we make an approximation that μ

(0)
e = 0.044ρ0/ρ, which is independent of Ē.
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The associated air conductivity becomes σ(0)(r̄′, t′) = eμ
(0)
e (r̄′)nsec(r̄′, t′), which is also independent of

the electric field. Then, the electric field is recomputed as

E
(1)
r′ (r̄′, τ ′) = − 1

ε0

∫ τ ′

0
dτ ′′Jpri,r′(r̄′, τ ′′) exp

{
1
ε0

∫ τ ′′

τ ′
dτ ′′′σ(0)(r̄′, τ ′′′)

}
(7)

E(1)
α (r̄′, τ ′) = −cμ0

2
1
r′

∫ r′

0
dr′′r′′Jpri,α(r̄′′, τ ′) exp

{
−cμ0

2

∫ r′

r′′
dr′′′σ(0)(r̄′′′, τ ′)

}
(8)

with α = θ′, φ′. The air conductivity is then updated as σ(1)(r̄′, t′, |Ē(1)|) = eμ
(1)
e (r̄′, |Ē(1)|)nsec(r̄′, t′).

Alternatively, the electric field is iterated as

E
(n)
r′ (r̄′, τ ′) = − 1

ε0

∫ τ ′

0
dτ ′′Jpri,r′(r̄′, τ ′′) exp

{
1
ε0

∫ τ ′′

τ ′
dτ ′′′σ(n−1)(r̄′, τ ′′′, |Ē(n−1)|)

}
(9)

E(n)
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2
1
r′
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2
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r′′
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}
(10)

with n = 2, 3, . . ., until E(n) converges. The convergent electric field is then substituted into Eq. (3) to
obtain the convergent air conductivity. Then, Eq. (2) is applied to obtain the secondary current density
over τ ′ ≤ 1µs.

4. COMPUTATION OF REFLECTED FIELD

The incident electric field at r̄s on the ground surface, induced by the electric currents in the source
region, can be computed by applying the Jefimenko’s equation as [9]

Ēi(r̄s, t) =
1

4πε0

∫∫∫
V ′

dr̄d

[
− J̄(r̄d, t

′)
cR2

+2R̄
J̄(r̄d, t

′) · R̄
cR4

+R̄
∂J̄(r̄d, t

′)/∂t′ · R̄
c2R3

− ∂J̄(r̄d, t
′)/∂t′

c2R

]
(11)

where R̄ = r̄s − r̄d and R = |R̄|. Eq. (11) can be transformed to the frequency domain as

Ēi(r̄s, ω) =
1

4πε0

∫∫∫
V ′

dr̄d

[
− J̄(r̄d, ω)

cR2
+2R̄

J̄(r̄d, ω) · R̄
cR4

+R̄
jωJ̄(r̄d, ω) · R̄
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− jωJ̄(r̄d, ω)
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]
e−jωR/c (12)

where

Ēi(r̄s, t) =
1
2π

∫ ∞

−∞
dωĒi(r̄s, ω)ejωt (13)

and the current density in the source region is transformed to

J̄(r̄d, ω) = e−jωr′/cJ̄0(r̄d, ω) (14)

with

J̄0(r̄d, ω) =
∫ ∞

0
dτ ′J̄(r̄d, τ

′)e−jωτ ′
(15)

By substituting Eq. (14) into Eq. (12), we have

Ēi(r̄s, ω) =
1

4πε

∫∫∫
V ′

dr̄d

[
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cR4

+R̄
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]
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which can be further decomposed into TE and TM fields as

Ēi(r̄s, ω) = ĒTE
i (r̄s, ω) + ĒTM

i (r̄s, ω) (17)
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Figure 4. Incident and reflected fields near ground, attributed to currents in a small volume in the
source region.

Figure 4 shows the schematic to compute the incident and reflected fields near ground, contributed
by the currents in a small cube in the source region. The reflected field at r̄s is the superposition of
reflected TE and TM fields, which are obtained by multiplying the incident TE and TM fields with the
corresponding reflection coefficients, respectively, namely,

Ēr(r̄s, ω) = [ΓTEq̂q̂ + ΓTM (p̂p̂ − ẑẑ)] · Ēi(r̄s, ω) (18)

where q̂ = x̂ sin θ1− ŷ cos θ1, p̂ = x̂ cos θ1 + ŷ sin θ1, with θ1 = cos−1
(
Rx/

√
R2

x + R2
y

)
; and the reflection

coefficients are represented as

ΓTE(r̄s, r̄d, ω) =
kaz − kgz

kaz + kgz

ΓTM(r̄s, r̄d, ω) =
jωε0(kgz − εrgkaz) − σgkaz

jωε0(kgz + εrgkaz) + σgkaz

(19)

where θi = θr = cos−1
(
−ẑ · R̂

)
, ka = ω

√
μ0ε0, kg = ω

√
μ0 (ε0εrg − jσg/ω), kaz = ka cos θi,

kap = ka sin θi, and kgz =
√

k2
g − k2

ap.
The reflected field at r̄s can thus be expressed as

Ēr(r̄s, ω) =
1

4πε0

∫∫∫
V ′

dr̄dĒr0(r̄s, r̄d, ω)e−jω(r′+R)/c (20)

with

Ēr0(r̄s, r̄d, ω) = [ΓTEq̂q̂ + ΓTM (p̂p̂ − ẑẑ)][
− J̄0(r̄d, ω)

cR2
+ 2R̄
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cR4

+ R̄
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c2R

]
(21)

Finally, the total electric field at r̄a near ground can be represented as

Ē(r̄a, t) = Ēi(r̄a, t) + Ēr(r̄a, t)

where

Ēr(r̄a, t) =
1

4πε0

∫∫∫
V ′

dr̄d
1
2π

∫ ∞

−∞
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ejω[t−(r′+R+R′′)/c] =
1

4πε0

∫∫∫
V ′
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′′)

with τ ′′ = t−(r′+R+R′′)/c, R̄′ = r̄a−r̄d, R̄′′ = r̄a−r̄s, R′ = |R̄′|, R′′ = |R̄′′|, and k̄r·R̄′′ = kaR
′′ = ωR′′/c.
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5. SIMULATIONS AND DISCUSSIONS

We will simulate an explosion of 10 kiloton yield, which is ignited at 100 km above ground. The
geomagnetic field is assumed to be B̄0 = ŷB0, with B0 = 0.4 Gauss. The source region is divided into
a finite number of cubes. The fields radiated from the induced currents at different cubes will arrive at
the observation point with different time delays. The effective time duration of the early-time HEMP
observed near ground is about 1µs.

Figure 5 shows the time of the first arrival signals from cubes in the source region, with the
observation point at (xa, ya, za) = (0, 0, 10) m and the height-of-burst (HOB) at 100 km. The region
contributing to the first 1µs (333.3µs ≤ t ≤ 334.3µs) of observed fields are highlighted with darker
tone. The vertical range of the effective source region is determined by the magnitude of current density,
which is in turns determined by the air density.

Figure 6 shows the temporal variation of air conductivity at (xa, ya, za) = (0, 0, 19) km, with the
molecular fraction of water vapor being set to fw = 0. By applying (9) and (10) iteratively, the field-
dependent air conductivity converges at n ≥ 7, and its magnitude turns out to be more than 20 times
higher than that computed without considering the field dependence.

Figure 7 shows the temporal variation of the x component of both the primary and the secondary

Figure 5. Time of the first arrival signals from cubes in the source region, the observation point is at
(xa, ya, za) = (0, 0, 10) m, and HOB = 100 km.

Figure 6. Temporal variation of air conductivity at (xa, ya, za) = (0, 0, 19) km; ——: σ(0), −−−: σ(7),
fw = 0.
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(c)

(a) (b)

Figure 7. The x component of primary and secondary current densities, fw = 0; ——: Jx,pri, − − −:
J

(0)
x,sec, − ◦ −: J

(7)
x,sec. (a) r̄a = (0, 0, 37) km, (b) r̄a = (0, 0, 28) km, (c) r̄a = (0, 0, 19) km.

current densities, at r̄a = (0, 0, 37) km, (0, 0, 28) km and (0, 0, 19) km, respectively. The associated z
components are shown in Fig. 8.

The secondary current density is computed as J
(n)
α,sec = σ(n)E

(n+1)
α , with α = x, z. The current

densities have negligible y component because the geomagnetic field points in the y direction. The
secondary current density computed with the field-dependent air conductivity appears to be larger than
that computed with field-independent air conductivity, and the former current density lasts longer than
the latter one. The current densities at a higher altitude last longer because Rγ is larger at higher
altitudes. The x component of the secondary current density is comparable to that of the primary one
due to the strong transverse electric field.

In [6], the transverse incident field at r̄a near ground was estimated as

Ēi(r̄a, t) = Ēb(r̄′b, τ
′)

r′b
ra

(22)

where Ēb is the electric field at the bottom surface of the source region; r̄′b is the intersection point of
the line from O′ to r̄a and the bottom surface of the source region; r′b and ra are the distances from O′
to r̄′b and r̄a, respectively. Note that (22) is used only to estimate the magnitude and polarization of
the impulse field.

Next, we will compute the transverse incident field at r̄a by using the following four different
approaches: (i) Compute the electric field Ēb at the bottom of the source region, with field-independent
air conductivity as in Eqs. (7) and (8), then apply the relation in Eq. (22) to compute Ēi(r̄a, t). (ii)
Compute the electric field Ē(1) within the source region, with field-independent air conductivity as in
Eqs. (7) and (8), obtain the secondary current density by using Eq. (2), then substitute both the primary
and the secondary current densities into the Jefimenko’s equation in Eq. (11) to compute Ēi(r̄a, t). (iii)
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(c)

(a) (b)

Figure 8. The z component of primary and secondary current densities, fw = 0; ——: Jz,pri, − − −:
J

(0)
z,sec, − ◦ −: J

(7)
z,sec. (a) r̄a = (0, 0, 37) km, (b) r̄a = (0, 0, 28) km, (c) r̄a = (0, 0, 19) km.

(b)(a)

Figure 9. Waveforms of Eix at (xa, ya, za) = (0, 0, 10) m, fw = 0, t0 = 333.3µs. − • −: approach (i),
−−−: approach (ii), − ◦ −: approach (iii), ——: approach (iv).

Compute the electric field Ēb at the bottom of the source region, with field-dependent air conductivity
as in Eqs. (9) and (10), then apply the relation in Eq. (22) to compute Ēi(r̄a, t). (iv) Compute the
electric field Ē(n) within the source region, with field-dependent air conductivity as in Eqs. (9) and
(10), obtain the secondary current density by using Eq. (2), then substitute both the primary and the
secondary current densities into the Jefimenko’s equation in Eq. (11) to compute Ēi(r̄a, t). Similarly,
the vertical incident field at r̄a will also be computed by using approaches (ii) and (iv), respectively.
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Figure 9 shows the waveforms of the transverse incident field Eix at (xa, ya, za) = (0, 0, 10) m,
with fw = 0. The peak values of Eix obtained by using approaches (i) to (iv) are −19, 685, −17, 413,
−15, 354 and −13, 153 kV/m, respectively. The peak value of Eix obtained with the field-dependent
air conductivity is smaller than its counterpart with the field-independent air conductivity by 4 kV/m.
Note that by using approach (iv), the polarity of Eix changes from negative to positive at about the
time when the secondary current becomes larger than the primary current, as shown in Fig. 7. The Eiy

component is close to zero because the geomagnetic field is polarized in the y direction.
Figure 10 shows the waveforms of Eix at (xa, ya, za) = (0, 0, 10) m, with fw = 0, attributed to the

primary and the secondary currents, respectively. Note that the right vertical axis increases downwards.
The electric field induced by the secondary current obtained with field-dependent air conductivity is
larger than that obtained with field-independent air conductivity.

Figure 11 shows the waveforms of the vertical incident field Eiz at (xa, ya, za) = (0, 0, 10) m,
with fw = 0. The peak values of Eiz obtained by using approaches (ii) and (iv) are −35.2 V/m and
−31.7 V/m, respectively. The secondary current obtained with field-dependent air conductivity is larger
than its counterpart with field-independent air conductivity, leading to a faster decay of Eiz with time.
The pulse width of the Eix waveform is narrower than that of the Eiz waveform.

Figure 12 shows the waveforms of the vertical incident field Eiz at (xa, ya, za) = (0, 0, 10) m, with
fw = 0, attributed to the primary and the secondary currents, respectively. Note that the right vertical
axis increases downwards.

(a) (b)

Figure 10. Waveforms of Eix at (xa, ya, za) = (0, 0, 10) m, fw = 0, t0 = 333.3µs. ——: Eix,pri, −−−:
E

(1)
ix,sec, approach (ii), − ◦ −: E

(7)
ix,sec, approach (iv).

Figure 11. Waveforms of Eiz at (xa, ya, za) =
(0, 0, 10) m, fw = 0, t0 = 333.3µs. ——:
approach (ii), −−−: approach (iv).

Figure 12. Waveforms of Eiz at (xa, ya, za) =
(0, 0, 10) m, fw = 0, t0 = 333.3µs. ——: Eiz,pri,
− • −: E

(1)
iz,sec, approach (ii), − − −: E

(7)
iz,sec,

approach (iv).



54 Wei and Kiang

(a) (b)

Figure 13. Waveforms of (a) Eix (——), Erx (− −−), Etx (− ◦ −) and (b) Eiz (——), Erz (− − −),
Etz (− ◦ −); at (xa, ya, za) = (0, 0, 10) m, t0 = 333.3µs.

Figure 13 shows the waveforms of the incident, reflected and total electric fields, respectively, at
(xa, ya, za) = (0, 0, 10) m, with a medium dry ground and fw = 0. The peak values of Eix and Erx

are −13, 153 V/m and 5, 517 V/m, respectively; and the peak value of Eiz is −31.7 V/m. The field
components observed at t − t0 > 100 ns are attributed to the cubes in the source region away from the
line-of-sight path. The polarity of Erx is opposite to that of Eix due to the ground reflection coefficient.

6. CONCLUSION

An iterative approach is proposed to determine the distribution of electric field and field-dependent
air conductivity in the source region. The Jefimenko’s equation is then applied to compute the HEMP
waveform near ground, induced by the primary and the secondary current densities in the source region.
The reflected waveform is computed in the frequency domain, in which the frequency dependence of
ground permittivity is incorporated. The field-dependent air conductivity in the source region is 20 times
higher than that computed without considering the field dependence. The electric fields, observed near
ground, contributed by cubes in the source region aside from the line-of-sight path can be significant
and last much longer than the impulse duration.
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