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Coupling of Two Rectangular Waveguides through a Diaphragm
with a Dielectric Slab in the Slot
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Abstract—A scattering problem for two semi-infinite rectangular waveguides coupling through a
narrow slot cut in the common end wall of the two waveguides is solved. The slot is partially filled
with a dissipative or perfect dielectric insert. A mathematical model based on continuity of tangential
components of magnetic field vectors on both surfaces of the diaphragm in the coupling waveguides is
proposed. The magnetic field in the slot is represented by a set of slot eigenwaves. The electrical field
distribution function is used as a basis function in the Galerkin’s procedure allowing to find unknown
amplitude coefficients. Simulation and experimental measurement have been carried out. Dependences
of scattering parameters upon the wavelength were studied for various geometric parameters, insert
position in the slot, and insert material permittivity and losses. A good agreement between simulation
results and experimental data is obtained. It was shown that an estimate of the insert permittivity and
losses can be done for unknown materials using experimental and simulated data.

1. INTRODUCTION

Narrow slots in waveguide walls are widely used as antenna radiators or coupling elements between
adjacent electrodynamic volumes of microwave devices with specified electrodynamic characteristics.
Resonant slots are of great interest, since they effectively radiate, do not shift the phase of a wave
transmitted through the slot, and can be used for creating radiation patterns of a special form. Many
interesting applications can be developed using slots partially filled with dielectric. A slot can be
resonantly tuned by varying its length. The tuning can be accomplished using the theory developed for
dipole and slot antennas in works of prominent scientists such as Pocklington [1], Hallen [2], Leontovich
and Levin [3], Watson [4], Feld [5], Stevenson [6], and others. The main problem of the theory consists
in formulating functional equations for electric or magnetic currents along a wire or slot, based on
boundary conditions. For the slots, continuity conditions of tangential components of magnetic field
vectors should be fulfilled on the common surfaces of adjacent electrodynamic volumes. When dyadic
Green’s functions for these volumes are known, the functional equations can be reduced to integral or
integral-differential equations of the Hallen or Pocklington type, which are equations of the first kind
with singular kernels. These equations cannot be rigorously solved. Thus, the problem is reduced to
solution of these equations, and the question of existence and uniqueness of solutions arises. For thin
wires and narrow slots, these equations can be reduced to one-dimensional equations. The kernel of
the Hallen-type equation has the logarithmic singularity, and such an equation has a unique solution
[7]. Regularization of the singular integrals equations can also be carried out using the semi-inversion
technique [8, 9].
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The kernel singularity of the Pocklington equation is of high order. The semi-inversion method was
developed for regularization of this equation in [10, 11], where the operator of the problem is represented
by a sum of singular and regular operators. The eigenfunctions of the singular operator were used as
basis functions in the Galerkin method. Thus, the first kind equation was transformed into a system of
linear algebraic equations (SLAE) of the second kind having very good convergence. A comprehensive
list of references on modern methods of problem solutions for coupling electrodynamic volumes can
be found in [12, 13]. In particular, in [12] it is emphasized that different approaches to the rigorous
solution of electrodynamic problems can be formally divided into two classes: 1) direct numerical and
2) numerical and analytical methods. The last ones combine an analytical formulation of the problem
with a method of moments, mainly, Galerkin method. During a solving the problem a number of
analytical transformations previously are carried out which provide a good convergence of resulting
matrix equations. For example, such approach was realized in [10, 11]. We shall focus on possibilities
of this approach application to our problem.

The integral equations for narrow slots are usually formulated by an approximation of an infinitely
thin waveguide wall. The actual thickness of the waveguide wall can be taken into account by introducing
an equivalent slot width [14]. But this concept cannot be applied if the slot is partially filled with
dielectric.

The waveguide wall thickness can be taken into account correctly if coupling between three
electrodynamic volumes is taken into account: an inner waveguide portion, where the incident wave
exists, a cavity of the slot, and an external waveguide portion into which the electromagnetic field
penetrates through the slot [15]. The continuity conditions for tangential components of a magnetic
field on boundary surfaces of these volumes allow us to formulate functional equations for unknown
electric fields. These equations may be reduced to a pair of integral equations [16] or to a system of
linear algebraic equations if the problem should be solved by direct methods.

The integral equations can be solved if Green’s functions for all coupled volumes are known. Since
a Green’s function cannot be easily built for the slot cavity with a dielectric insert, the dyadic Green’s
functions cannot be used for description of the electromagnetic field inside the slot. An alternative
method of solving this problem was first proposed in [17, 18] and then developed in [19] for obtaining
the rigorous and fast convergent solution for a rectangular waveguide coupling by a slot in the common
wall.

If the problem is solved by direct methods, for example, by the Galerkin method, the solution
convergence can be better if the basis functions correctly describe special features of E-field distribution
in a slot. So, it is very important to choose proper functions for approximation of the E-field distribution
inside the slot. A trigonometric basis, Chebyshev or Gegenbauer polynomials are often used for slots
homogeneously filled with dielectric or for unfilled slots. The distribution of the slot magnetic current
in the first approximation of an asymptotic method was presented in [20] as a sum of symmetric and
asymmetric functions, which take into account the structure of the exciting field.

The electromagnetic field in the slot partially filled with dielectric can be represented by the
eigenwave field of the slot cavity as a waveguide. This can also be done for unfilled slots. The
functions describing transverse electric field of eigenwaves may be used as basis functions for electric
field representation on both surfaces of the slot cut in a screen of finite thickness. Such functions were
used in [21] where coupling of two rectangular waveguides through a slot cut in a common wide wall of
waveguides and partially filled with dielectric was considered. In this paper we will study the properties
of a narrow transverse slot partially filled with a perfect or dissipative dielectric in the diaphragm inside
a rectangular waveguide.

2. THE PROBLEM STATEMENT AND SOLUTION

The system geometry is shown in Fig. 1. The waveguide is excited by the H10 wave incident at the
diaphragm. The transverse slot is cut in the diaphragm. The slot length, width and thickness are L, d
and t, respectively. The slot is partially filled by the dielectric insert. The problem solution consists in
finding the diaphragm reflection and transmission coefficients, which can be found if the electric fields
on the slot surfaces S1 (ξ = 0) and S2 (ξ = t) are known.

The electric field distribution on the surfaces S1 and S2 can be represented as the sum of the LEq0
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(a) (b)

Figure 1. The system under consideration. (a) General view of the waveguide with a diaphragm. (b)
Geometry of cavity of the slot.

waves in a waveguide with a three-layer dielectric. The resulting electric field �esi (i = 1, 2) on the slot
surfaces S1 and S2 on both sides of the diaphragm can be represented as

�esi =
Q∑

q=1

Vqi�eq, (1)

where Q is the number of basis functions taken into account, and Vqi are the complex voltage amplitudes
between slot edges in points of electric field maxima. The basis vector functions �eq can be written as

�eq = �η 0 (1/d) ϕq (ζ) . (2)

Here �η 0 is a unit vector directed along the positive η axis, and the functions ϕq (ζ) are defined as

ϕq (ζ) =

{ sin α1qζ, 0 ≤ ζ ≤ l1;
Aq sinα2qζ + Bq cos α2qζ, l1 ≤ ζ ≤ l1 + l2;
Cq sin α3q (L − ζ) , l1 + l2 ≤ ζ ≤ L.

(3)

The subscript q is a serial number of the dispersion equation root for the LEq0-mode, and αjq (j = 1, 2, 3)
are transverse wave numbers. The expressions for Aq, Bq, Cq and αjq are presented in Appendix A.

The unknown voltage amplitudes Vqi in Equation (1) can be found using the continuity condition
of the tangential component of magnetic field Hς on the surfaces S1 and S2 (Fig. 1(b)) as

H0
ς + H i

ς (�es1) = Hv
ς (ξ = 0) , on S1 (4)

Hv
ς (ξ = t) = He

ς (�es2) , on S2. (5)
The superscripts i and e designate the waveguide portions before and behind the diaphragm. The
superscript v defines the area within the slot cavity, and H0

ς is an exciting field in the semi-infinite
waveguide undisturbed by the slot.

The fields H i
ς (�es1) and He

ς (�es2) can be easily found, since the magnetic dyadic Green’s functions

Ĝm
(
�r/�r′

)
for the semi-infinite regions i and e are known [13, 22–24]. The component Gm

11

(
�r/�r′

)
in the

form used in our paper is presented in Appendix B. Let us find the fields Hv
ς (ξ = 0) and Hv

ς (ξ = t) in
the region “v”. The electromagnetic field in this region can be presented as the fields of LEq0 modes
propagating in the two opposite directions of ξ axis with amplitudes V ±

q . The superscript ± denotes
the wave propagation directions: the sign plus if ξ > 0 and the sign minus if ξ < 0. The components
of the electric Eηq and magnetic Hζq field vectors of the LEq0 wave at arbitrary point ξ between the
surfaces S1 (ξ = 0) and S2 (ξ = t) can be written as

Ev
ηq (ξ) =

[
V +

q exp (−ihqξ) + V −
q exp (ihqξ)

]
ϕq (ζ)

/
d. (6)

Hv
ζq (ξ) =

[
V +

q exp (−ihqξ) − V −
q exp (ihqξ)

]
ϕq (ζ)hq

/
(dkW0). (7)
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Here k = 2π/λ, hq is the longitudinal wave number of the wave LEq0. In the SI system of units
W0 = 120π. Using the representation in Equation (1) of the electric field on the surfaces S1, S2 and
the expression (6) at ξ = 0 and ξ = t, we can find the relationship between the coefficients V +

q , V −
q and

Vq1, Vq2 as

V +
q = − [Vq2 − Vq1 exp (ihqt)]/(2i sin hqt), (8)

V −
q = [Vq2 − Vq1 exp (−ihqt)]/(2i sinhq t). (9)

Substituting Equations (8) and (9) into Equation (7), we obtain the formula for the component �Hv
ζq (ξ)

of the magnetic field vector for the LEq0 wave at the arbitrary point ξ as

Hv
ζq (ξ) = −{[Vq2 − Vq1 exp (ihqt)] exp (−ihqξ)

+ [Vq2 − Vq1 exp (−ihqt)] exp (ihqξ)}ϕq (ζ)hq/(2i sin (hqt) dkW0). (10)

The expression for the magnetic field component on the surfaces S1 and S2 can be obtained substituting
ξ = 0 and ξ = t intoformula (10).

Hv
ζq (0) = Vq1

hq

i tan (hqt) dkW0
ϕq (ζ) − Vq2

hq

i sin (hqt) dkW0
ϕq (ζ) . (11)

Hv
ζq (t) = Vq1

hq

i sin (hqt) dkW0
ϕq (ζ) − Vq2

hq

i tan (hqt) dkW0
ϕq (ζ) . (12)

Let us denote

Rtq = hq/(iW0kd tan (hqt)) ; (13)

Rsq = hq/(iW0kd sin (hqt)) . (14)

Then, the component Hv
ζ of the magnetic field vector on the surfaces of the slot cavity ξ = 0 and ξ = t

can be written as

Hv
ζ (ζ, ξ = 0) =

Q∑
q=1

[Vq1Rtqϕq (ζ) − Vq2Rsqϕq (ζ)], (15)

Hv
ζ (ζ, ξ = t) =

Q∑
q=1

[Vq1Rsqϕq (ζ) − Vq2Rtqϕq (ζ)] . (16)

These equations allow us to reduce the functional Equations (4), (5) to the SLAE relative to the unknown
amplitudes Vq1 and Vq2 using the Galerkin method as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q∑
q=1

Vq1(Y i
11,pq + Y v

11,pq) +
Q∑

q=1

Vq2Y
v
12,pq = Fp,

Q∑
q=1

Vq1Y
v
21,pq +

Q∑
q=1

Vq2(Y e
22,pq + Y v

22,pq) = 0.

, p = 1, 2, 3, . . . , Q (17)

Here

Y i
11,pq = (−1)

∫
S1

[
�e∗p,H

i
ς (�eq) �ζ0

]
�ξ0dS; (18)

Y e
22,pq =

∫
S2

[
�e∗p,H

e
ς (�eq) �ζ0

]
�ξ0dS; (19)

Fp =
∫
S1

[
�e∗p,H

0
ς
�ζ0

]
�ξ0dS. (20)
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The expressions
[
�e∗p,H

i(e)
ς (�eq) �ζ0

]
�ξ0 in (18), (19) should be understood as �e∗p × �ζ0 · �ξ0H

i(e,0)
ς (�eq), in

Equation (20) and similarly in subsequent formulas.
Since S2 = S1,

Y v
11,pq = Y v

22,pq = Rtq

∫
S1

ϕq (ζ)
[
�e∗p, �ζ

0
]
�ξ0dS (21)

and
Y v

12,pq = Y v
21,pq = (−1)Rsq

∫
S1

ϕq (ζ)
[
�e∗p, �ζ

0
]

�ξ0dS. (22)

The fields H i
ς (�es1) and He

ς (�es2) can be obtained using the Green’s function for a semi-infinite waveguide.
The integrands in Equations (21) and (22) have been obtained using equalities in Equations (15) and
(16). The reflection and transmission coefficients S11 and S12 for the diaphragm considered can be
found according the theory elaborated in [25, 26] (the main concepts of this theory are reviewed in [27]).

S11 = −1 + A1, S12 = B1, (23)
where

A1 = − 2
N1

Q∑
q=1

Vq1

∫
S1

[
�eq, �H(−1)

]
�n dS, B1 = − 2

N1

Q∑
q=1

Vq2

∫
S2

[
�eq, �H(+1)

]
�n dS, and N1 = abkW0κ

2
10γ10,

κ10 = π/a, γ10 =
√

k2 − κ2
10, �H(±1) is a magnetic field vector of the H10-mode, propagating in z > 0

(sign +) and z < 0 (sign −) directions (see Fig. 1), and �n is a unit outward normal to the surface of
the slot. The amplitude coefficients Vqi (i = 1, 2) are to be found from the SLAE in Equation (17).

3. NUMERICAL SIMULATIONS AND EXPERIMENTAL RESULTS

The numerical simulations and experimental measurements were performed for the configuration similar
to that shown in Fig. 1(b). The cross section ratios of two identical semi-infinite waveguides were
b/a = 0.435. The slot was cut in the middle of the diaphragm which was of thickness t. The slot was of
length L and of width d. The dielectric insert with length l and relative permittivity εr > 1 was placed
in two positions: at the slot center and at the slot edge. The parameters of the insert corresponding to
the configuration of Fig. 1(b) should be: ε1 = ε3 = 1 and ε2 = εr, l2 = l, l1 = l3 = 0.5(L − l) when the
insert is at the slot center and l2 = l, l1 = L − l, l3 = 0 when the insert is at the slot end. Modules of
the reflection |S11| and transmission |S12| coefficients were calculated in waveband of the single-mode
waveguide using the relations in Equation (23).

The frequency or wavelength at which the minimum of reflection coefficient |S11| is observed will
be called the slot resonant frequency fres or resonant wavelength λres . Simulation results are shown
in Figs. 2–5. The convergence of results was evaluated by finding the number of approximating basis
functions Q required for the stabilization of the estimated resonant wavelength λres . The resonant
wavelength obtained with Q basis functions is denoted as λres,Q.

Figures 2(a) and 2(b) present the frequency dependency of the reflection coefficient |S11| obtained
nearλres,Q, for the two positions of the dielectric insert and various Q (Q = 1, 3, 5, 7, 11 15). The
curves for Q = 19, and Q = 23 which were calculated, are not shown in Fig. 2 because λres,23 and λres,19

differ from λres,15 not more than by 0.1%. So, three of them are practically not distinguishable, and
we may assume that λres,15

∼= λres . Let ΔλQ = λres − λres,Q, then Fig. 2 shows that the approach with
Q = 1 is better when the dielectric insert is located at the slot center (Δλ1/λres < 2%) than when the
insert is near the slot end (Δλ1/λres ≈5%). It can also be seen that Δλ7/λres ≤ 0.2% when Q = 7 and
Δλ11/λres ≤ 0.1% when Q = 11. The further calculations were carried out at Q = 11.

In order to obtain the same resonant wavelengths for the edge and central positions of the insert,
it must be three times longer at the edge position than when it is centered.

Dependence of the resonance wavelength on the permittivity εr for the two positions of the layer
is shown in Fig. 3. The resonance wavelength strongly depends on the permittivity and the length of
the insertion plate when it is placed in the center of the slot.
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Figure 2. The reflection coefficient |S11| versus normalized wavelength λ/λc, a × b = 23 × 10 mm2,
L = 12 mm, d = 1.2 mm, εr = 5, (a) the dielectric insert at the slot center, (b) the dielectric insert at
the slot edge.
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Figure 3. The resonant wavelength of the slot versus the insert permittivity, a × b = 23 × 10 mm2,
L = 12 mm, d = 1.2 mm, (a) the dielectric insert in the slot center, (b) the dielectric insert at the slot
edge.

Comparing the plots in Fig. 3(a) and Fig. 3(b), one can see that the position of the dielectric insert
has a significant influence on the slot resonant wavelength. For example, when l/L = 0.1 and εr = 10,
the slot resonant wavelength is almost 34% higher for the central insert position compared to its position
at the slot edge. This effect can be used for slot resonant tuning by varying the insert position in the
slot.

Let us now consider the reflection and transmission coefficients |S11| and |S12| when the insert is
made of perfect or non-perfect dielectric, tan δ = 0 or tan δ > 0. The wavelength dependence of |S11|
and |S12| plotted for the insert with εr = 10(1 − i tan δ) and for various tan δ are shown in Fig. 4. As
can be seen, the slot resonant frequency weakly depends upon the dielectric losses.

As can be seen from Fig. 4, the minimum of the reflection coefficient is |S11| = 0 for the perfect
dielectric insert, therefore VSWR = 1, and |S12| = 1. Thus, the incident power completely penetrates
through the slot into the waveguide behind the diaphragm. When the dielectric insert is lossy (tan δ > 0),
at the resonance inequalities VSWR > 1, |S11| > 0 take place. This causes the maximum of the
transmission coefficient |S12| to decrease (Fig. 4), so that inequality |S11|2 + |S12|2 < 1 is fulfilled, i.e.,
a part of the power is consumed for dielectric’s heating.

Let us now evaluate what part of the incident power is consumed for dielectric heating and introduce
the power absorption coefficient |Sσ|2, which can be defined from the power balance equation as

|Sσ|2 = 1 −
(
|S11|2 + |S12|2

)
.
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Figure 4. Wavelength dependence of the reflection |S11| and transmission |S12| coefficients for various
losses, a × b = 23 × 10 mm2, L = 12 mm, d = 1.2 mm, (a) reflection coefficients, (b) transmission
coefficients.
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Figure 5. The power absorption coefficient |Sσ|2 versus the wavelength, a × b = 23 × 10 mm2,
L = 12 mm, d = 1.2 mm.

The wavelength plots of the power absorption coefficient |Sσ|2 for various tan δ are shown in Fig. 5.
It can be seen that the coefficient |Sσ|2 increases with increasing losses till the reflection and transmission
coefficients, |S11| and |S12|, become equal to 0.5 (Fig. 4). The power absorption coefficient increases from
zero when tan δ = 0 to a maximum equal to 0.5, when tan δ = 0.05 in the case shown in Fig. 5. As tan δ
the further increases the resonant value of coefficient |Sσ|2 begins to decrease. An analogous effect can be
observed for a slot radiating from an infinite waveguide into free half-space: a resonant slot can radiate
no more than a half of the power, propagating from a generator [25, 26]. Thus, the coefficient |Sσ|2
defining the power spent for dielectric heating is, in certain aspect, similar to the radiation coefficient
|SΣ|2 of the slot radiating into the free-space or some other infinite electro-dynamical volume.

The numeric simulations have also revealed that the resonant wavelength λres of the slot increases
if the diaphragm thickness is increased, and approaches the critical wavelength of the waveguide,
equivalent to the slot with a dielectric. It was also observed that when l/L ≤0.1, εr ≤ 10 and t/L ≤0.1,
the losses defined by tan δ ≤ 0.1 do not vary the resonant wavelength of the slot. With an increase in
losses when tan δ ≥ 0.1 during the same geometry a slow decrease in the resonant frequency is observed.
For example at l/L ≤0.1, εr = 10, t/L =0.2 and tan δ = 0.4 resonance frequency is shifted by 1.1%
compared to an ideal dielectric.

Correctness of the model was validated by VSWR measurements for the configuration shown in
Fig. 1 (the waveguide cross section a × b = 28.5 × 12.6 mm2) for two positions of the insert: at the slot
center and at its edge. The measurements were carried out on the panoramic VSWR-meter P2-60 with
accuracy not less than 0.2%. The VSWR of the termination load was not higher than 1.06. The insert
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was made of the material PTFE-4 with permittivity in the range 1.92 ≤ εr ≤ 2.2 and tan δ = 0.0002 at
f = 10 GHz. Dielectric PTFE-4, which was produced in the USSR, is an analogue of Teflon (made in
the USA).

The VSWRs as function of the frequency plotted using the simulation and experimental data are
shown in Fig. 6 for the two insert positions. The parameters of the dielectric insert are given in the
plots. The simulation data were obtained for εr equal to 2.0, 1.98, 1.96, and 1.94 that belong to the
range of possible variation of the PTFE-4 permittivity 1.92 ≤ εr ≤ 2.2.
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Figure 6. The simulated and experimental VSWR versus the frequency (a× b = 28.5× 12.6 mm2): (a)
the dielectric insert at the slot center, (b) the dielectric insert at the slot edge.

The analysis of the plots shows that the slot resonant frequency for the four values of permittivity
varies in ranges from 6.8 to 6.75 GHz when the insert is at slot center. When the insert is at the
slot edge, the resonant frequency varies in the range from 7.36 to 7.34 GHz. In the latter case, the
frequency variation is about 0.3%, which is comparable with the accuracy of frequency measurement.
The measured resonant frequencies for both slot positions are in the ranges predicted by the model, and
thus confirm its validity. The simulation results show that the slot resonant frequency for the central
slot position is more sensitive to changes of the insert permittivity εr than for the edge slot position.
When the insert is located at the slot edge, small differences between the permittivity of the real insert
material and that used in simulation, for example εr =2, causes practically undistinguishable resonant
frequencies fres (Fig. 6(b)), as compared to that for the central slot position (Fig. 6(a)).

The simulation results shown in Fig. 3 combined with experimental data allow us to estimate
permittivity of the insert made of an unknown material. It can be done in the following way. Suppose
that we have calculated resonance wavelength depending on εr for the system considered. After this,
we experimentally determine the resonant wavelength for this system. Using the numerically obtained
dependency λres/λc versus εr like those shown in Figs. 3(a) or 3(b), one can estimate the corresponding
value of εr. The level of |S11| minimum at the resonance frequency shows us, according to Fig. 4, if
losses in the dielectric slab are present or not.

In Fig. 6(a), the dashed line corresponds to data obtained by numerical method (simulator FEKO)
for εr = 2. The resonance frequency on this curve (fres = 6.64 GHz) differs by 1.6% from one
(fres = 6.75 GHz), obtained in our calculations, and by 2% from experimental value (fr,exp = 6.78 GHz).
The reason for these minor discrepancies may be the following. The simulator FEKO, as we think,
automatically takes into account the electrical field singularity on the mathematically sharp slot edge.
Unlike the papers in [28–30], we did not supply the basic functions in Equation (2) with the factor
accounting the �E field singularity at the edges of the slot. Using 11 basic functions in Equation (1), we
obtained a good converged value for fres . It was astonishing that our numerical results matched with
the experiment much better than those obtained by using simulation FEKO. Perhaps the reason is that
we cannot reach the mathematical sharpness of edges in experimental samples. Let Δf = |fr,exp − fres |.
It happened so that, according to Fig. 6(a), for all εr from the interval 1.92 ≤ εr ≤ 2.2, the value
of Δf/fr,exp does not exceed the level of 0.045% which is less than a possible error of a frequency
measurement by the panoramic VSWR-meter P2-60.
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The reason for the differences in the experimental and calculated minima values of the VSWR in the
frequency dependence is as the following. In our case, the estimated values of VSWR at the minimum
for dielectric with low losses is equal to 1.011. Panoramic VSWR-meter does not allow to measure the
VSWR at a level below 1.06. Therefore, the difference inevitably exists between the calculated and
experimental minimal values of VSWR in Fig. 6.

4. CONCLUSION

The problem of dominant wave scattering by a slotted diaphragm in the rectangular waveguide has
been solved. The narrow slot cut in the diaphragm is partially filled with a dielectric insert. The
mathematical model of this structure is based on the idea of the field representation in the slot cavity
as a set of eigenwaves in a waveguide equivalent to the slot. The simulation results were obtained using
1, 3, 7, 11 and 15 basis functions. The mathematical model ensures a good convergence of the results
even if the slot electric field is approximated by a limited number of basis functions. The model validity
was confirmed by the experimental results.

The simulation results were obtained for the inserts made of perfect and non-perfect dielectric. It
was found that the losses in a thin dielectric insert with εr ≤ 10 and tan δ ≤ 0.4 did not shift the slot
resonant frequency, but significantly increased the resonant reflection coefficient. The maximum heating
of the non-perfect dielectric in the slot occurred when the resonant reflection coefficient of the slotted
diaphragm was 0.5. A comparative analysis of simulated and experimental data allows estimating the
insert permittivity and dielectric losses. The dielectric insert in the slot can be used as an additional
control element to vary the wavelength of the resonant slot. The results obtained in this paper can
also be used for the effective irradiation and heating of small dielectric samples and for studying their
electrical properties.

APPENDIX A.

Aq =
α1q

α2q
cos α1ql1 cos α2ql1 + sin α1ql1 sin α2ql1;

Bq = sinα1ql1 cos α2ql1 − α1q

α2q
sin α2ql1 cos α1ql1;

Cq =

α1q

α2q
sin α2ql1 cos α1ql1 + sin α1ql1 cos α2ql1

sin α3ql3
.

αjq =
√

k2εrj − h2
q , where hq is a root of the dispersion equation for LEq0-mode.

APPENDIX B.
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4π
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∑
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iγmn
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a
cos

nπy

b
cos
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b
cos γmnz′e−iγmnz.

Here εm = (2 − δom), εn = (2 − δon), the symbols δom, δon denote the Kronecker’s delta; x, y, z and
x′, y′, z′ (primed) are coordinates of observation and source points;

γmn =

√
k2 −

(mπ

a

)2 −
(nπ

b

)2
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