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A Waveguide Horn Antenna with Coupled Resonator Notch Filter
Designed by the Lagrangian Formulation for Metamaterials

Joshua W. Shehan* and Ryan S. Adams

Abstract—This paper presents the design and analysis of guided wave notch filters using the
Lagrangian formulation for metamaterials. It is shown that the application of the Lagrangian is a
convenient and effective way to select an appropriate filtering structure and determine the necessary
configuration for desired filter performance. A WR-187 waveguide horn antenna is investigated with
notch filters composed of broadside coupled and gap coupled split ring resonators. It is shown that
broadside coupling offers significant tunability in a compact size. The filter exhibits an operational
bandwidth from approximately 3.9–5.7 GHz with 40–150 MHz of instantaneous bandwidth. The
fabrication of the horn antenna and split ring resonators is presented along with simulated and measured
data that confirms the approach.

1. INTRODUCTION

Metamaterials research continues to progress due to the ability to control the propagation of
electromagnetic energy in unique ways [1–6]. Metamaterials have the ability to realize effective material
parameters whereby electrically small resonant scatterers can give very high, very low, and even negative
effective permeability or permittivity. A key characteristic of metamaterials where the effective material
exhibits either −μ or −ε is that no energy can flow through the material resulting in a stop band that can
be utilized to achieve effective filtering [5–11]. The response of a metamaterial structure is commonly
high-Q and narrow band resulting in notch band performance. However, as the frequency spectrum
becomes more crowded, there is an increasing need for narrow band notch and band reject filters for
interference mitigation.

Waveguide filters are generally desirable for their low-loss, high performance, and power handling
capabilities. Unfortunately, waveguide filters are generally bulky requiring large amounts of real estate.
As an alternative to traditional waveguide filter approaches, there has recently been significant interest
in metamaterial based approaches where considerable size reduction can be achieved using electrically
small metamaterial structures. Based on the effective medium approximation where a metamaterial
unit cell exhibits −μ or −ε, these electrically small resonators can be placed inside of guiding structures
to realize stop band performance. The authors of [7] present a dual band notch filter using split ring
resonators (SRRs) in WR-90 waveguide where the resonators are collocated for compact size. In [8],
the authors demonstrate the reduction of spurious modes in a waveguide using metamaterial based
filters comprised of a different unit cell. The authors of [9] demonstrate the horn antenna with a fixed
frequency filter comprised of a split ring resonator at X-band. In [10], the same authors present a
variation of the filter in [9] with some bandwidth enhancement. The concept for a horn antenna with
an integrated tunable notch filter designed for operation at X-band is proposed in [11].

Received 25 April 2016, Accepted 10 July 2016, Scheduled 21 July 2016
* Corresponding author: Joshua W. Shehan (jshehan@uncc.edu).
The authors are with the Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, USA.



18 Shehan and Adams

One of the challenges with metamaterial based filtering approaches is that it can be difficult to
design the filters based on equivalent circuit approximations especially when coupling effects need to
be taken into account. Furthermore, the filtering approaches discussed previously do not present a
detailed method for reconfiguring or tuning the filter for a different center frequency without a redesign
of the unit cell except for the work in [11]. In this paper, we present a notch filter design approach for
coupled resonator filters using the Lagrangian formalism for metamaterials. We show that, depending
on their orientation, coupled resonators can give a high degree of tunability based on manipulation of
the electric and magnetic coupling parameters. As a result, the response of the filter can be tuned
over wide bandwidths without a redesign of the fundamental resonant structures that make up the
filter. The formulation presented herein is an extension of the work presented in [11] which marked the
first account where a Lagrangian formulation was applied to guided wave filter design. Unfortunately,
the drawback to the standard Lagrangian approach is that image theory must be applied to take into
account coupling near metallic structures such as the walls of a waveguide. Here, we present the use of
field terms in the Lagrangian where the analysis can be performed without the need for image theory
creating a robust design method that can be applied to any guided wave structure.

A WR-187 waveguide horn antenna with two distinct notch filter configurations is also investigated.
Gap coupled and broadside coupled split ring resonators are considered where the relative spacing
between the rings is varied to tune the resonant frequency. It is shown that broadside coupling offers
tremendous advantages over gap coupling in terms of tunability. We also use the coupling parameters
to investigate the rejection of the broadside coupled filter over the tuning range. Numerical simulations
of the radiation patterns confirm that the filtering element exhibits minimal impact to the antenna
outside of the operating band of the filter. As a result, a compact solution can be realized by placing
the filtering element very close to the throat of the antenna where the waveguide walls begin to flare
out forming the horn. The horn antenna with three fixed broadside coupled filters is fabricated and
measured; measured results confirm simulations and the design approach.

2. LAGRANGIAN FORMALISM AND APPLICATION TO GUIDING STRUCTURES

The most important design parameter for a notch filter of any type is the location of the resonant
frequency. In metamaterial approaches, determination of the resonant frequency can be particularly
challenging when coupling effects need to be taken into account. The Lagrangian formulation for
metamaterials is used in several accounts to investigate the effects of coupling between structures forming
bulk metamaterials [12–14]. For electrically small resonant structures, the quasi-static assumption can
be applied for the response of the resonator at its lowest order mode, and the resonant dynamics of the
structure are well approximated as a driven harmonic oscillator. The Lagrangian is applied under this
assumption where the resonant frequency is determined based on the coupling coefficients calculated
from the self and mutual energies. This is similar to coupled mode theory [15] where the Lagrangian
formulation acts as a means for easily calculating the coupling parameters and backing out the resonant
frequencies.

Resonant frequencies for two closely spaced metamaterial structures such as the two split ring
resonators in Figure 1(a) are derived from the Lagrangian formulation as the result of two driven
harmonic oscillators. The driving functions are dependent on the electric and magnetic coupling
parameters, β and α respectively [12]. The resonant frequencies for two resonators in the presence
of coupling can be written as

f1 =

√
f2
01

Q1 + β12Df01f02Q2

Q1 + α12DQ2
(1)

and

f2 =

√
f2
02

Q2 + (f01f02/D) β21Q1

Q2 + (1/D) α21DQ1
(2)

where f1 is the shifted resonant frequency of resonator 1, and f2 is the shifted resonant frequency of
resonator 2. The term f01 is the resonant frequency of resonator 1 in the absence of coupling, and f02



Progress In Electromagnetics Research B, Vol. 69, 2016 19

is the resonant frequency of resonator 2 in the absence of coupling. The coupling parameters, α, β, and
D are found from the self and mutual energies as

α12 =
Wm,12√

Wm,11Wm,22

(3)

β12 =
We,12√

We,11We,22

(4)

D =

√
Wm,22

Wm,11
(5)

where We denotes the electric energy and Wm denotes the magnetic energy. It should also be pointed
out that the term Q in Equations (1) and (2) is the time dependent charge. This term serves as the
generalized coordinate by which the Lagrangian is defined for metamaterial structures. The charge is
assumed to be Q ∼ |Q|ejωt.

The self and mutual energies are calculated from the E and H fields along with the current and
charge distributions obtained from full wave electromagnetic analysis. It has been suggested that image
theory can be used to compute the coupling parameters in a waveguide based only on the current and
charge distributions. Unfortunately, it is not always possible to successfully apply image theory, and
inaccurate predictions of the resonant frequency may result. By using field terms, all electromagnetic
interactions are considered, so accurate results are achieved regardless of the guiding structure. The
electric and magnetic energies in terms of fields are written as

We =
1
2

[∫
v
εE ·Edv′ + ε

∮
s
V E · ânds′

]
(6)

Wm =
1
2

[∫
v
μH ·Hdv′ −

∮
s
(A× H) · ânds′

]
(7)

where the integration is taken over the area enclosing each resonant structure, and V and A are the
electric scalar potential and the magnetic vector potential respectively. Note that in some cases, the
terms containing V and A may be left out of Equations (6) and (7) as these terms fall off rather rapidly
with distance from the source. For completeness, these terms remain in the equations.

To apply the Lagrangian formulation using the fields analysis discussed herein, the medium
enclosing the resonant structure and the location where the second, coupled resonator would be placed
are discretized into small segments indicated in Figure 1. The resonant structure is also discretized into
small segments where the charge and current are assumed approximately uniform on each segment. The
necessary data is calculated for each volume or surface and extracted for post processing. The energy
equations become summations of Equations (6) & (7) and are written as

We,pq =
Kv∑

kv=1

1
2

[∫
v
εEp

kv
· Eq

kv
dv′

]
+
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c=1
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1
2
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ε
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V q

c Ep
ks
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]

(8)
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s
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Aq

c × Hp
ks

) · ânds′
]

(9)

where the superscripts p and q indicate the fields generated by the corresponding resonator. The self
energy is computed when p = q, and the mutual energy is computed when p �= q. The subscripts, ks and
kv, correspond to the respective surface or volume element for the discretized region surrounding the
resonant structure. The subscript, c, corresponds to the respective discretized segment of the resonator.

It is clear from Equations (1)–(5) that manipulation of α and β, or more specifically the mutual
energies, can be used to tune the resonant frequency. One way to do this is by varying the distance,
ΔX , between the resonant structures. The flow chart in Figure 2 illustrates the process for determining
the resonant frequencies for two coupled resonators with variations in ΔX . The following list further
clarifies the simulation and analysis procedure outlined in Figure 2:
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Figure 1. Two coupled split ring resonators (a) showing the alignment of the excitation field along
with the direction of propagation. An illustration for the discretization enclosing a split ring resonator
and coupled region (b) is also shown along with the discretization of a split ring resonator (c).

1. Simulate resonator 1 at f01 — resonator 1 is simulated in the operating environment at its resonant
frequency without including resonator 2. The data generated by this simulation alone is used to
compute the self energies We,11 and Wm,11.

2. Discretize region 1 and extract field data for We,11 and Wm,11 — the region within the guiding
structure that encloses resonator 1 and the resonator are discretized, and necessary data is extracted
for Equations (8) and (9).

3. Simulate resonator 2 at f01 — resonator 2 is simulated in the operating environment at the resonant
frequency of resonator 1. Resonator 1 is not included in this simulation. The simulation is
performed at f01 because we need to know the amount of coupling (electric and magnetic energy)
between resonators 1 and 2 at the frequency f01. The coupling at f01 determines the impact to the
resonant frequency f01 . The data generated in this simulation alone is used to compute the self
energies We,22 and Wm,22. The data generated in this simulation along with the data generated in
step 1 is used to compute the mutual energies We,12 and Wm,12.

4. Discretize region 2 and extract field data for We,22 and Wm,22 — the region enclosing resonator
2 and the resonator are discretized, and the necessary data is extracted for energy computations.
The data generated by this simulation is all that is necessary to calculate the self energies We,22

and Wm,22. Note that the volumetric discretization enclosing resonator 2 is performed to the same
level as that for resonator 1, i.e., the same number of data points are used at the same relative
positions. On the other hand, the discretizations of the two resonators may vary if the resonators
vary in geometry.

5. Discretize region 1 and extract field data for We,12 and Wm,12 — in the full wave model for resonator
2, the region where resonator 1 would be placed relative to resonator 2 is discretized. The field
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data generated by resonator 2 in the region that would enclose resonator 1 for the coupled scenario
is extracted to compute the mutual energies. This data along with the data extracted in step 2 is
used to compute the mutual energies.

6. Compute α12, β12, D — use the extracted field data to compute the energies and the resulting
coupling parameters.

7. Compute the shifted resonant frequency f1 — using the coupling parameters, compute the shift on
f01 as a result of coupling.

8. Repeat steps 5–7 for changes in resonator separation distance, ΔX — repeat these steps as needed
for various resonator spacings. Note that no full wave analysis is required following the simulations
of steps 1 and 3. All other steps are field extraction and data processing.

For this investigation, the resonant structures are simulated using the finite element solver in HFSS
to obtain the appropriate field data. MATLAB routines are used to perform the post processing and
calculate the coupling parameters. Extraction of the field data requires a bit of scripting, but once
the field data is extracted, the coupling terms and resonant frequency for a single value of ΔX are
computed in less than one second on a 2.6 GHz Intel Core i7 processor with 8 GB of RAM. It is evident
from Figure 2 that the Lagrangian design method is an iterative process to find the appropriate spacing
for a desired resonant frequency. However, the speed with which each iteration is performed enables
rapid convergence of a solution. Furthermore, this approach can be used as a rapid design tool to
investigate the tunability or sensitivity of a particular set of resonators. One full wave simulation of two
very simple split ring resonators at a single value of ΔX with the HFSS finite element method (FEM)
solver uses a mesh size up to approximately 30,000 tetrahedra to capture the resonant behavior of
the rings. The tetrahedra count can increase dramatically for multi-band solutions or resonators with
complex geometries leading to lengthy simulations. A full set of analyses to evaluate many filtering
positions could take considerable time and computing resources, and the Lagrangian approach provides
a fast alternative. Furthermore, the data generated by the Lagrangian analysis can provide physical
insight to the coupling mechanisms at work between coupled resonators. As an application example,
the Lagrangian formulation is applied to the design of a WR-187 horn antenna with integrated notch
filter.

3. HORN ANTENNA WITH COUPLED RESONATOR NOTCH FILTER

The analysis outlined in the previous section is applied here to realize a coupled resonator notch filter
for operation in the WR-187 waveguide band. The dimensioned HFSS model for the horn antenna
including the split ring resonator is shown in Figure 3. The horn antenna is designed according to [16]
for approximately 15 dBi of gain at a center frequency of 4.75 GHz. The split ring resonator is designed
for a resonant frequency of approximately 5.8 GHz in the absence of coupling. Split rings are selected as
the filtering elements due in part to the simplicity in design and fabrication. These resonators also give
very controllable filtering that exhibits little interaction with the incident field outside of the dominant
mode resonance location. This generally results in a very clean notch response with good performance
outside of the notch band.

In this paper, two coupled split rings are considered in two distinct orientations, broadside coupled
and gap coupled, as shown in Figure 4(b). The rings are configured with their axes aligned so that there
is no shifting between rings in the direction of propagation. The rings are varied by the amount, ΔX ,
only in the direction of the H-field transverse to propagation. The distance ΔX is swept over a range of
values initially to investigate tunability between the two configurations. In this case, the resonators are
identical so f01 = f02 , Wm,11 = Wm,22, We,11 = We,22, and Q1 = Q2. The coupling parameters reduce
to

α =
Wm,12

Wm,11
(10)

β =
We,12

We,11
(11)

D = 1 (12)
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1. Simulate resonator 1 at f 01

2. Discretize region 1 and extract
field data for W e,11 and W m, 11

3. Simulate resonator 2 at f 01

4. Discretize region 2 and extract
field data for W e,22 and W m, 22

5. Discretize region 1 from
resonator 2 simulation and extract

field data for W e,12 and W m, 12

6. Compute α12, β12, and D 8. Repeat for changes in
resonator separation distance, Δ X

7. Compute f 1

Figure 2. Flow chart illustrating the process to calculate resonant frequencies for coupled metamaterial
structures using the Lagrangian method.
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Figure 3. Horn antenna with SRR integrated into the feed portion. The isometric view (a) illustrates
the horn and split ring dimensions and the side view (b) shows the length of the horn and the feed
section. The split ring resonator is modeled on (1/32)” FR-4 with 1/2 oz. cladding. The SRR is
positioned centrally in the waveguide 2.2 cm from the throat of the horn.

and the system of resonators exhibits a resonant frequency given by

fr = f0

√
1 + β

1 + α
(13)

where fr is the operating frequency of the coupled resonator notch filter. This solution is known as the
symmetric coupling mode. As shown in [12] the other solution that satisfies the equations of motion
for the system of identical resonators is the asymmetric mode where Q1 = −Q2. This solution is the
result of resonance splitting and occurs when the current and charge are 180◦ out of phase between the
two rings. This mode is generally only present when the rings are shifted relative to one another in



Progress In Electromagnetics Research B, Vol. 69, 2016 23

0 2 4 6 8
Δ

X
 [mm]

4

4.5

5

5.5

6

R
es

on
an

t F
re

qu
en

cy
 [

G
H

z]

Predicted  - Broadside Coupled
Simulated - Broadside Coupled
Predicted - Gap Coupled
Simulated - Gap Coupled

(a)

ΔxΔx

Broadside Coupled Gap Coupled

(b)

Figure 4. Predicted and simulated resonant frequencies for broadside coupled rings and gap coupled
rings with various spacing, Δx, (a) and illustration for broadside coupled and gap coupled split ring
orientations (b).

the direction of propagation. As opposed to the approach in [11], the rings are allowed to shift only
transverse to propagation, and the asymmetric mode is avoided altogether eliminating the possibility
of unwanted resonances outside of the intended operating band of the filter.

To determine the coupled resonant frequencies, individual rings are simulated as outlined in the
previous section, and the necessary data is extracted for post processing. Following the numerical
analysis, the coupling parameters in Equations (10) and (11) are calculated in a matter of seconds
as described in the previous section, and the resonant frequencies are determined according to
Equation (13). In this case, the operating environment for numerical analysis is the feed portion of
the horn antenna pictured in Figure 3 where both rings are simulated individually in the center of
the waveguide. By simulating both rings in the center of the guide, we ignore the amplitude variation
of the excitation field due to the waveguide field distribution. We find that this provides sufficiently
accurate results. The Lagrangian predicted resonant frequencies are plotted in Figure 4(a) over the
range of ΔX . The coupled rings in each configuration are also simulated in HFSS for comparison.
For numerical analyses, the horn antenna including the filtering element is modeled with the FEM
solver in HFSS and uses mesh sizes ranging from approximately 15,000 to 30,000 tetrahedra. The
walls of the waveguide and horn along with the metal of the resonators are modeled as perfect electric
conductor (PEC). The dielectric of the SRRs is modeled as FR-4. All other space within the solution
domain is modeled as vacuum, and the solution domain is enclosed inside of a box whose walls are
separated from the antenna by λ0/4 at 3.5 GHz. A radiation boundary is assigned to the faces of the
box enclosing the solution domain. The end of the waveguide opposite to the opening of the horn is
covered with a waveport to provide the excitation. Predicted resonant frequencies correlate very well
with simulated data for distance variations in both split ring orientations. This illustrates the accuracy
of the Lagrangian solution. It is also apparent from Figure 4 that broadside coupled rings offer much
more tuning bandwidth than gap coupled rings.

The antenna performance is specifically investigated in HFSS for the rings in each configuration
with separation distances, ΔX , of 0.6 mm, 1.4 mm and 6.5 mm. These values for ΔX give resonant
frequencies of approximately 3.9 GHz, 4.6 GHz, and 5.7 GHz for the broadside coupled rings based on
the Lagrangian analysis. The simulated return loss and boresight gain data for the gap coupled rings
is shown in Figure 5 where the predicted resonant frequencies are confirmed. Even with significant
variation in the distance between the rings, there is very little variation in the resonant frequency. The
gap coupled filter with rings spaced 0.6 mm, 1.4 mm, and 6.5 mm gives notch frequencies at 5.75 GHz,
5.74 GHz, and 5.72 GHz. The bandwidth for the three filter spacings varies from approximately 110–
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Figure 5. Simulated return loss (a) and normalized gain (b) for the horn antenna with three fixed
filters of gap coupled split rings with Δx set to 0.6 mm, 1.4 mm, and 6.5 mm.
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Figure 6. Simulated return loss (a) and normalized gain (b) for the horn antenna with three fixed
filters of broadside coupled split rings with Δx set to 0.6 mm, 1.4 mm, and 6.5 mm.

150 MHz determined by where the boresight gain is reduced by 3 dBi.
The broadside coupled rings, on the other hand, exhibit considerable tunability as indicated by

the return loss and gain shown in Figure 6. The broadside coupled filter with rings spaced 0.6 mm,
1.4 mm, and 6.5 mm exhibits notch frequencies at 3.92 GHz, 4.58 GHz, and 5.68 GHz confirming the
predicted resonances. The bandwidth for the three filter spacings varies from approximately 40 MHz at
the lowest operating frequency to approximately 150 MHz at the highest operating frequency. Due to
the significant tunability of the broadside coupled rings compared to the gap coupled rings, broadside
coupling is the obvious choice for reconfigurable notch filter solutions. A gap coupled approach would
only complicate the fabrication process while offering little tuning advantage.

Tremendous tuning range is achieved with the broadside coupled configuration, but we also observe
a reduction in the amount of rejection by the filter at lower frequencies. This is due to the nature of
the coupling required for large shifts in the resonant frequency. The physical explanation for the
large tuning range in broadside coupled split rings can be found by looking at the charge and current
distributions. The gaps are oriented on opposite sides of the rings, and the current flow on the two rings
is in the same direction. Therefore, the electric potentials in the gaps of the two rings are oriented in
opposite directions as illustrated in Figure 7. What results is an odd-mode type of response where the
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Figure 7. Plot of normalized electrical coupling parameter, β, vs separation distance and simulated
return loss in dB vs separation distance for broadside coupled rings (a) and illustration of current and
charge at resonance for broadside coupled split rings (b).
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Figure 8. Simulated pattern data for the horn antenna integrated with the broadside coupled ring
notch filter. Patterns were plotted at 3.92 GHz, 4.58 GHz, and 5.68 GHz for the three different filtering
configurations with Δx = 0.6 mm (a), Δx = 1.4 mm (b), and Δx = 6.5 mm (c).
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electric fields between the two rings partially cancel reducing the scattered electric field and allowing
some energy to pass through the filter. This effect can also be observed through investigation of the
electrical coupling parameter, β, from Equation (13). Figure 7(a) shows a plot of the normalized return
loss along with the calculated value for β. The negative value for β comes as a result of the charge
distributions outlined in Figure 7(b), and the magnitude of β reveals the amount of electrical coupling
between the resonators. The higher the magnitude of β, the more electrical coupling there is between
the resonators. Although the magnitude of beta is relatively high for closely spaced resonators, there
is destructive interference that allows some energy through the filter. We find that this trend in β
corresponds very well to the trend in return loss over the values of ΔX . Fortunately, even with the
reduction in reflection for closely spaced resonators, we observe approximately 12 dB of filtering in the
center of the notch band at 3.92 GHz.

The far field patterns for the broadside coupled rings are also investigated numerically to ensure
minimal perturbation outside of the operating frequency of the notch filter. It is found that the patterns
are impacted insignificantly outside of the operating band of the filter as indicated by the patterns in
Figure 8 and the gain in Figure 6(b). As a result, the filtering element can be placed very close
to the throat of the horn antenna for an integrated, compact solution. However, it should be noted
that shifting the resonators closer to the throat of the antenna can cause slight shifts in the resonant
frequency. Along the same lines, shifting the rings transverse to propagation can also cause shifts in
the resonant frequency. Placement of the rings off-center in the waveguide along the direction of the
H-field can further cause less rejection by the filter as the rings are shifted out of the region of the
strongest E-fields. Movement of the rings out into the throat of the horn also results in less rejection
by the filter; however, this could be overcome by redesigning the rings to occupy more physical space
inside the throat of the horn.

4. PROTOTYPE FABRICATION AND EXPERIMENTAL RESULTS

A proof-of-concept horn antenna with wide tuning range is fabricated with fixed inserts of broadside
coupled split ring resonators to confirm the design approach. The mechanical structure for the horn
antenna is 3D printed out of ABS plastic using a Makerbot desktop 3D printer with design dimensions
corresponding to those in Figure 3. The inner portions of the antenna are lined with copper foil, and
the antenna is bolted together to make solid electrical contact. The fabricated structure is pictured in
Figure 9.

The split rings are milled out of single-sided (1/32)” FR-4 pcb board with 1/2 oz. copper cladding.
The rings are milled with dimensions corresponding to those in Figure 3(a) with FR-4 supports left on
either side of the ring as shown in Figure 9(d). The supports are used to position the rings in extruded
polystyrene foam as shown in Figure 9(a) where digital calipers are used to generate the appropriate
spacings for each set. As discussed in the previous section, the rings are spaced at approximately
0.6 mm, 1.4 mm, and 6.5 mm to generate notch bands at approximately 3.9 GHz, 4.6 GHz, and 5.7 GHz
respectively.

Table 1. Simulated vs. measured resonant frequency and bandwidth for three broadside coupled filters.

Simulated Measured

ΔX fr Bandwidth fr Bandwidth

0.6 mm 3.92 GHz 40 MHz 3.86 GHz 35MHz

1.4 mm 4.58 GHz 70 MHz 4.53 GHz 45MHz

6.5 mm 5.68 GHz 150 MHz 5.65 GHz 100 MHz

The return loss and power transmission are measured for the horn antenna with the three filter
inserts, and the results are plotted in Figure 10 along with the simulated results for comparison. The
return loss is measured using an Anritsu 37297D vector network analyzer, and the power transmission
is measured using a FieldFox N9938A spectrum analyzer. The horn antenna with coupled resonator
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Figure 9. Isometric view of fabricated horn antenna with coupled resonator filters (a), front view of
horn antenna with filter inserted into feed (b), top view of fabricated horn antenna (c), and fabricated
split ring resonators (d).

filter is used as the source antenna while an Aaronia HyperLog 6080 log periodic antenna is used as
the receive antenna. The measured return loss and power transmission agree well with simulated data
confirming the design approach and illustrating the wide tuning bandwidth for broadside coupled split
rings. It is found that the horn antenna does not operate quite as low in frequency as indicated by
simulations, but this is likely due to small tolerances in the 3D printed structures resulting in a slightly
undersized waveguide with a slightly higher cutoff frequency for the dominant TE10 mode. Fortunately,
there is no distinct impact to the filtering as the result of a slightly undersized waveguide. There are very
minor shifts in the operating frequencies and 3 dB bandwidths of the three measured filters compared
to simulation. The simulated and measured data is compared in Table 1. The slight shifts in the
resonant frequencies and bandwidths are the result of fabrication and positioning tolerances between
the rings. For a production solution, the rings would be precisely positioned using low loss dielectric
foam to ensure repeatability. We also observe less gain reduction for the measured filter in the notch
bands compared to simulated results. This is partly due to slightly less rejection by the fabricated filter
as a result of the rings being positioned slightly off-center in the waveguide. This is also likely due to a
small amount of noise in the measurement setup making it difficult to get very clean measurements for
power transmission in the notch bands. Nonetheless, effective filtering is demonstrated, and the design
approach is confirmed.
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Figure 10. Simulated (top) and measured (bottom) return loss (a) along with normalized gain and
power transmission, respectively (b) for the horn antenna with three fixed filters of broadside coupled
rings with Δx set to 0.6 mm, 1.4 mm, and 6.5 mm.

5. CONCLUSION

In this paper, the Lagrangian formulation for metamaterials is presented as a fast and accurate design
approach for guided wave notch filters. Using this approach, many filtering configurations can be
investigated in a matter of seconds where full-wave analysis could be computationally intensive and
time consuming. The formulation is presented using a fields approach making it suitable for the design
of a broad class of guided wave filters based on coupled metamaterials. A horn antenna with integrated
notch filter is presented where the filter could be reconfigured to operate over a very wide bandwidth. It
is shown that broadside coupled rings offer much more tunability than gap coupled rings. The rejection
of the filter over the tuning range is also addressed by investigation of the coupled filter electrical
response. This electrically small and versatile filtering approach can be implemented in a wide range of
guided wave devices, and tuning by mechanical means could be implemented for dynamic tuning.
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