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Propagation Properties of Partially Coherent Lorentz-Gauss Beams
in Uniaxial Crystals Orthogonal to the X-Axis

Guoquan Zhou1, *, Zhiyue Ji1, and Guoyun Ru2

Abstract—Analytical expressions of the elements of a cross spectral density matrix are derived to
describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to
the x-axis. The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam
propagating in uniaxial crystals orthogonal to the x-axis are also presented. The evolution properties of
the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences of the uniaxial
crystal and coherence length on the propagation properties of the partially coherent Lorentz-Gauss beam
in uniaxial crystals orthogonal to the x-axis are examined. The uniaxial crystal considered here has
the property of the extraordinary refractive index being larger than the ordinary refractive index. The
partially coherent Lorentz-Gauss beam in the direction along the x-axis spreads more rapidly than that
in the direction along the y-axis. With increasing the ratio of the extraordinary refractive index to the
ordinary refractive index, the spreading of the partially coherent Lorentz-Gauss beam increases in the
direction along the x-axis, but decreases in the direction along the y-axis. Meanwhile, the degree of
polarization in the edges of the long and short axes of the beam spot increases. With increasing the
coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less,
and the maximum degree of polarization in the edge of the beam spot decreases.

1. INTRODUCTION

Due to high angular spreading, Lorentz-Gauss beams are introduced to describe the radiation emitted by
a single mode laser diode [1, 2]. The beam properties including symmetry properties [3], focal shift [4],
beam propagation factor [5], and Wigner distribution function [6, 7] of Lorentz-Gauss beams have been
investigated, respectively. Also, the propagation of Lorentz-Gauss beams has been widely examined
in free space [3], in uniaxial crystals orthogonal to the optical axis [8, 9], through a fractional Fourier
transform optical system [10, 11], in a turbulent atmosphere [12], in a Kerr medium [13], and in a
strongly nonlocal nonlinear media [14]. Tight focusing properties of radially polarized Lorentz-Gauss
beam has been demonstrated [15]. A virtual source to generate the rotationally symmetric Lorentz-
Gauss beam has been proposed [16]. The research also shows that the Lorentz-Gauss beam can be used
to trap the particles with a refractive index larger than the ambient index [17].

In practical optical systems, laser beams are almost partially coherent [18], which indicates
that fully coherent laser sources are ideal cases. Therefore, the research on Lorentz-Gauss beams
has been further extended to partially coherent cases. Propagation of partially coherent Lorentz-
Gauss beams through a paraxial ABCD optical system has been investigated in free space and in
a turbulent atmosphere, respectively [19, 20]. The scintillation aspects of partially coherent Lorentz-
Gauss beams have been demonstrated via numerically integrating the average intensity and average
squared intensity expressions [21]. The analytical expressions of the beam propagation factor and
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the kurtosis parameter of a partially coherent Lorentz-Gauss beam have been derived in a turbulent
atmosphere, respectively [22, 23]. An approximate analytical expression of the beam propagation factor
for a truncated partially coherent Lorentz-Gauss beam has also been presented in free space [24].

Besides in free space, in a turbulent atmosphere and a nonlinear medium, laser beams also propagate
in an anisotropic medium such as uniaxial crystal, which is treated by solving Maxwell’s equations. Laser
beams propagating in uniaxial crystals can be used not only to determine the crystal orientation, crystal
structure, and mineral identification, but also to investigate crystal optical phenomena such as nonlinear
effect and light scattering. Moreover, the design of the crystal optical element such as polarizing prism,
optical compensator, and amplitude modulation device is also involved in laser beams propagating in
uniaxial crystals. Although the propagation of various kinds of laser beams in uniaxial crystals has been
reported [25–34], to the best of our knowledge, no literature has been reported on the propagation of
partially coherent Lorentz-Gauss beams in uniaxial crystals. In the remainder of this paper, therefore,
the propagation of the partially coherent Lorentz-Gauss beams in uniaxial crystals orthogonal to the
x-axis is to be examined.

2. PROPAGATION OF THE PARTIALLY COHERENT LORENTZ-GAUSS BEAMS
IN UNIAXIAL CRYSTALS ORTHOGONAL TO THE X-AXIS

In the Cartesian coordinate system, the z-axis is taken to be the propagation axis. The optical axis of the
uniaxial crystal coincides with the x-axis. The boundary plane is z = 0. The ordinary and extraordinary
refractive indices of the uniaxial crystal are no and ne, respectively. The relative dielectric tensor of the
uniaxial crystal reads as

ε =

⎛
⎝ n2

e 0 0
0 n2

o 0
0 0 n2

o

⎞
⎠ , (1)

The second order coherence and polarization properties of a partially coherent Lorentz-Gauss beam in
the boundary plane z = 0 is characterized by the following 2 × 2 cross spectral density matrix [35]

↔
W (ρ10,ρ20, 0) =

[
Wxx (ρ10,ρ20, 0) Wxy (ρ10,ρ20, 0)
Wyx (ρ10,ρ20, 0) Wyy (ρ10,ρ20, 0)

]
, (2)

with the matrix element being given by

Wij (ρ10,ρ20, 0) =
Aijw

2
0xw2

0y(
w2

0x + x2
10

) (
w2
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) (
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) (
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20

) exp
(
−x2
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10 + y2
20

w2
0

)

× exp
[
−(x10 − x20)2 + (y10 − y20)2

σ2

]
, (3)

where ρ10 = (x10, y10) and ρ20 = (x20, y20). w0x and w0y are the parameters related to the beam widths
of the Lorentz part in the x- and y-directions, respectively. w0 is the waist of the Gaussian part. σ
is the coherence length. Aij denotes the correlations of the x- and y-components. If i = j, Aij = 1.
If i �= j, |Aij | ≤ 1. Moreover, A∗

ij = Aji. The asterisk means the complex conjugation. The Lorentz
distribution can be expanded into the linear superposition of Hermite-Gaussian functions [36]:
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where N is the term number of the expansion. H2m1 and H2n1 are the 2m1-th and 2n1-th order Hermite
polynomials, respectively. The weight coefficients a2m1 and a2n1 have been given by [36]. The value of
a2m1 dramatically decreases with increasing the even number 2m1. a0 = 0.7399, a2 = 0.9298 × 10−2,
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and a10 = 0.3008 × 10−6. The cross spectral density matrix of the partially coherent Lorentz-Gauss
beam propagating in uniaxial crystals orthogonal to the x-axis is found to be

↔
W (ρ1,ρ2, z) =

[
Wxx (ρ1,ρ2, z) Wxy (ρ1,ρ2, z)
Wyx (ρ1,ρ2, z) Wyy (ρ1,ρ2, z)

]
, (5)

where ρ1 = (x1, y1) and ρ2 = (x2, y2). As the scalar case is a simple one, here we only consider the
scalar case. Within the framework of the paraxial propagation, the elements of the cross spectral density
matrix propagating in uniaxial crystals orthogonal to the x-axis are given by [37, 38]

Wxx (ρ1,ρ2, z) =
k2n2

o

4π2z2
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Wyx (ρ1,ρ2, z) = W ∗
xy (ρ1,ρ2, z) , (9)

where k = 2π/λ is the wave number in vacuum and λ the incident wavelength in vacuum. Using the
following mathematical formulae [39]:∫ ∞
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the elements of the cross spectral density matrix propagating in uniaxial crystals orthogonal to the
x-axis can be analytically expressed as
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where the auxiliary parameters are defined as follows:
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The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in
uniaxial crystals orthogonal to the x-axis are given by [35]

I(ρ, z) = Tr
↔
W (ρ,ρ, z) = Wxx(ρ,ρ, z) + Wyy(ρ,ρ, z), (33)

P (ρ, z) =

{
1 − 4det

↔
W (ρ,ρ, z)

[Tr
↔
W (ρ,ρ, z)]2

}1/2

, (34)

where Tr denotes the trace, and det stands for the determinant.

3. NUMERICAL CALCULATIONS AND ANALYSES

According to the obtained analytical expressions (Equations (14)–(16)), the properties of the partially
coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are numerically
demonstrated. The calculation parameters are set as follows: λ = 0.8µm, w0 = 20µm, w0x = w0y =
10µm, and no = 2.616 (rutile crystal). Fig. 1 represents the normalized intensity distribution of the
partially coherent Lorentz-Gauss beam in different observation planes of the uniaxial crystal. z0 = kw2

0/2
is the Rayleigh distance in vacuum. σ = 10µm and ne/no = 1.1 in Fig. 1. Equation (33) denotes that
the intensity of the partially coherent Lorentz-Gauss beam is independent of Axy. Upon propagation

 

(a) (b)

(c) (d)

Figure 1. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. σ = 10µm and ne/no = 1.1. (a) z = 0.1z0, (b) z = z0, (c)
z = 2z0, and (d) z = 5z0.
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(a) (b)

(c) (d)

Figure 2. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam
propagating in different uniaxial crystal. σ = 10µm and z = 2z0. (a) ne/no = 1.1, (b) ne/no = 1.3, (c)
ne/no = 1.5, and (d) ne/no = 1.7.

(a) (b)

(c) (d)

Figure 3. The normalized intensity distribution of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. ne/no = 1.1 and z = 2z0. (a) σ = 5µm, (b) σ = 10µm, (c)
σ = 20µm, and (d) σ = ∞.
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(a) (b)

(c) (d)

Figure 4. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. Axy = 0, σ = 10µm, and ne/no = 1.1. (a) z = 0.1z0, (b) z = z0,
(c) z = 2z0, and (d) z = 5z0.

(a) (b)

(c) (d)

Figure 5. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in different uniaxial crystal. Axy = 0, σ = 10µm, and z = 2z0. (a) ne/no = 1.1, (b)
ne/no = 1.3, (c) ne/no = 1.5, and (d) ne/no = 1.7.
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(a) (b)

(c) (d)

Figure 6. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. Axy = 0, ne/no = 1.1, and z = 2z0. (a) σ = 5µm, (b) σ = 10µm,
(c) σ = 20µm, and (d) σ = ∞.

(a) (b)

(c) (d)

Figure 7. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. Axy = 0.2, σ = 10µm, and ne/no = 1.1. (a) z = 0.1z0, (b) z = z0,
(c) z = 2z0, and (d) z = 5z0.
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in the uniaxial crystals orthogonal to the x-axis, the spreading of the partially coherent Lorentz-Gauss
beam in the direction along the y-axis is far slower than that in the direction along the x-axis due
to anisotropic effect of the crystals. As a result, the beam spot of the partially coherent Lorentz-
Gauss beam propagating in the uniaxial crystals is elongated in the direction along the x-axis. The
normalized intensity distribution of the partially coherent Lorentz-Gauss beam propagating in different
uniaxial crystals is shown in Fig. 2. σ = 10µm and z = 2z0 in Fig. 2. With increasing the value
of ne/no, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along
the x-axis, but decreases in the direction along y-axis, which results in the increased elongation of the
beam spot in the direction along the x-axis. Fig. 3 represents the normalized intensity distribution of
the partially coherent Lorentz-Gauss beam with different coherence lengths in the observation plane
z = 2z0. ne/no = 1.1 in Fig. 3. With increasing the coherence length, the beam spot of the partially
coherent Lorentz-Gauss beam shrinks uniformly in each direction. Therefore, the beam spot of a fully
coherent Lorentz-Gauss beam is the smallest.

Figure 4 represents the distribution of degree of polarization of the partially coherent Lorentz-Gauss
beam in different observation planes of the uniaxial crystal. Axy = 0, σ = 10µm, and ne/no = 1.1
in Fig. 4. The loop in the subfigures denotes that the normalized intensity inside it is not equal to
zero (hereafter). Here, we only discuss the degree of polarization at the region where the normalized
intensity distribution is larger than zero. The degree of polarization shows a symmetrical distribution.
The degree of polarization in the edges of the long and short axes reaches the maximum and second
largest values, respectively. As Axy = 0, the on-axis degree of polarization is always zero. Moreover, the
degree of polarization in the central region of the beam spot is also equal to zero. Upon propagation in
the uniaxial crystals orthogonal to the x-axis, the degree of polarization in the edge of the beam spot
first increases and then keeps stable without considering the expansion of the beam spot.

The degree of polarization of the partially coherent Lorentz-Gauss beam propagating in different
uniaxial crystals has different distribution, as shown in Fig. 5, in which Axy = 0, σ = 10µm, and
z = 2z0. It is shown that the degree of polarization in the edges of the long and short axes increases
with the increase of ne/no. With increasing the value of ne/no, the region along the x-axis where the
degree of polarization has the maximum value increases faster than the region along the y-axis where

 

(a) (b)

(c) (d)

Figure 8. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in different uniaxial crystal. Axy = 0.2, σ = 10µm, and z = 2z0. (a) ne/no = 1.1, (b)
ne/no = 1.3, (c) ne/no = 1.5, and (d) ne/no = 1.7.
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(a) (b)

(c) (d)

Figure 9. The distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam
propagating in the uniaxial crystal. Axy = 0.2, ne/no = 1.1, and z = 2z0. (a) σ = 5µm, (b) σ = 10µm,
(c) σ = 20µm, and (d) σ = ∞.

the degree of polarization has the maximum value. With increasing the value of ne/no, therefore, the
region difference where the degree of polarization has the maximum value between the directions along
the x- and y-axes widens. The region with the maximal value of the degree of polarization in the
direction along the x-axis is larger than that in the direction along the y-axis. Fig. 6 represents the
distribution of the degree of polarization of the partially coherent Lorentz-Gauss beam with different
coherence lengths in the observation plane z = 2z0. Axy = 0 and ne/no = 1.1 in Fig. 6. The magnitude
of the degree of polarization in Fig. 6(c) is larger than that in Fig. 6(b). However, their difference is
slightly smaller than 0.1, which leads to their same label in Fig. 6. With increasing the coherence length,
the maximum degree of polarization in the edge of the beam spot will decrease. As a result, the degree
of polarization of the fully coherent Lorentz-Gauss beam reaches the smallest value. Figs. 7–9 are very
similar to Figs. 4–6, respectively. The only difference is that Axy = 0 in Figs. 4–6 and Axy = 0.2 in
Figs. 7–9. Comparing Figs. 7–9 with Figs. 4–6, one can draw a conclusion that all the results obtained
from the case of Axy = 0 are also valid for the case of Axy = 0.2. Accordingly, the evolution properties of
the degree of polarization of the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals
orthogonal to the x-axis are similar for the different values of Axy.

4. CONCLUSIONS

Analytical expressions of the elements of the cross spectral density matrix are derived to describe
the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis.
Therefore, the intensity and degree of polarization for the partially coherent Lorentz-Gauss beam
propagating in uniaxial crystals orthogonal to the x-axis can be calculated. Then the evolution
properties of the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences
of the uniaxial crystal and coherence length on the propagation properties of the partially coherent
Lorentz-Gauss beam in uniaxial crystals orthogonal to the x-axis are examined. Here we consider
that the extraordinary refractive index of the uniaxial crystal is larger than its ordinary refractive
index. Upon propagation in the uniaxial crystals orthogonal to the x-axis, the spreading of the partially
coherent Lorentz-Gauss beam in the direction along the x-axis is faster than that in the direction along
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the y-axis, which results in the elongation of the beam spot in the direction along the x-axis. With
increasing the value of ne/no, the spreading of the partially coherent Lorentz-Gauss beam increases
in the direction along the x-axis, but decreases in the direction along the y-axis. With increasing the
coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less
in each direction. The degree of polarization of the partially coherent Lorentz-Gauss beam displays a
symmetrical distribution. The degree of polarization in the edges of the long and short axes of the beam
spot reaches the maximum and second largest values, respectively. Upon propagation in the uniaxial
crystals orthogonal to the x-axis, the degree of polarization in the edge of the beam spot first increases
and then keeps stable without counting the expansion of the beam spot. With increasing the value of
ne/no, the degree of polarization in the edges of the long and short axes of the beam spot increases,
and the region difference where the degree of polarization reaches the maximum value between the
directions along the x- and y-axes also widens. With increasing the coherence length, the maximum
degree of polarization in the edge of the beam spot decreases. This research is beneficial to the practical
applications of single mode diode laser.
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