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Simple Method to Calculate the Force between Thin
Walled Solenoids

J. José Pérez-Loya* and Urban Lundin

Abstract—We developed a simple method to calculate the axial force between concentric thin walled
solenoids. To achieve this, the force between them was mapped as a function of their geometrical
relations based on separation-to-diameter ratios. This resulted in an equation and a set of data. We
used them together to calculate axial forces between two coaxial thin walled solenoids. With this
method, direct evaluation of elliptical integrals was circumvented, and the forces were obtained with a
simple expression. The results were validated against solutions obtained with an existing semi-analytical
method and force measurements between high coercivity permanent magnets.

1. INTRODUCTION

The calculation of magnetic forces has a wide range of applications. It can be used, with certain
limitations, to calculate the force between coils, magnets, and superconductors. That is why their
calculation and simplification is the subject of many interesting scientific works. Beleggia et al. derive
analytical expressions for the force between a permanent magnet and a soft magnetic plate [1]. Robertson
et al. publish a simplified force equation for coaxial cylindrical magnets and thin coils [2]. Ravaud et al.
present a synthesis of analytical calculation of magnetic parameters for cylindrical magnets and coils [3],
expressions to calculate the force between thick rectangular coils [4], as well as analytical expressions for
the magnetic field of radially magnetized permanent magnets [5]. Akoun and Yonnet derive analytical
expressions for the calculation of forces between cuboidal magnets [6]. Yang and Hull present expressions
to obtain force and torque between square loops [7]. Babic et al. present formulas for the calculation
of magnetic forces between: coaxial cylindrical magnets and thin coils [8], thick rectangular coils and
thin walled solenoids [9], inclined circular coils [10], and misaligned thick coils with parallel axes [11].
Shiri and Shoulaie present a method that is useful to calculate the force between planar spiral coils [12],
and also calculates the electromagnetic force distribution on a coil [13]. Iwasa has a chapter devoted to
magnets, fields, and forces [14].

In this contribution, we will concentrate our efforts on simplifying the calculation of axial forces
between concentric thin walled solenoids with circular cross section. We will start from an expression
for the axial force between a pair of concentric thin coaxial coils. In order to find an expression for the
force between concentric thin walled solenoids, it will be integrated two times. We will derive a simple
equation that to be used will need a function that takes into consideration the geometrical relations
between the solenoids. Starting from existing semi-analytical expressions, we will find the data needed
to map that function. With the function and simple equation, we will be able to calculate the force
between concentric thin walled solenoids with good accuracy. Finally, we will compare the results with
those obtained using existing methods and with force measurements between high coercivity permanent
magnets.
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94 Pérez-Loya and Lundin

2. METHOD

2.1. Axial Force between a Pair of Thin Coaxial Coils

Consider two thin coaxial coils where their diameter is defined as d, the separation between them as
s, and their separation-to-diameter ratio as γ = s/d. A schematic drawing of the coils is shown in
Fig. 1(a). We express the axial force between them as:

Fab =
μ0

2
iaibf

′′(γ), (1)

where μ0 is the permeability of free space; ia and ib are electrical currents that respectively circulate in
each of the coils; f ′′(γ) is a function of their separation-to-diameter ratio.

2.2. First Integration, Axial Force between a Thin Coil and a Thin Walled Solenoid

We approximated the axial force between a thin coil and a thin walled solenoid, as those in Fig. 1(b),
as the summation of forces between n number of thin coil pairs with the following expression:

Fas =
μ0

2
ia

n∑
1

isnf ′′(γn). (2)

The surface current in the thin walled solenoid was defined as:

Is = isnn. (3)

And the interval Δγ partitioned according to:
1
n

=
Δγ

γβ − γα
, (4)

where γα and γβ are, respectively, the separation-to-diameter ratios between the first and the last pair
of coils of the summation. They are also the separation-to-diameter ratios between the thin coil and the
top and bottom parts of the thin walled solenoid. Combining Equations (2), (3) and (4), we rewrote
the expression in the form of a Riemman integral:

Fas = lim
n→∞

μ0

2
iaIs

γβ − γα

n∑
1

f ′′(γn)Δγ =
μ0

2
iaIs

γβ − γα

γβ∫
γα

f ′′(γ)dγ. (5)

Since f ′(γ) is the primitive function of f ′′(γ), the axial force between a thin coil and a thin walled
solenoid was rewritten as:

Fas =
μ0

2
iaIs

γβ − γα

[
f ′(γβ) − f ′(γα)

]
. (6)

2.3. Second Integration, Axial Force between a Pair of Thin Walled Solenoids

In a similar way as for the axial force between a coil and a thin walled solenoid, the axial force between
two thin walled solenoids, as those in Fig. 1(c), was expressed as a summation of forces, this time
between n number of coils and thin walled solenoids. We utilized Equation (6) for this purpose, the
summation becomes:

Fsz =
μ0

2
Is

n∑
1

izn
[f ′(γβn)]

(γβn − γαn)
− μ0

2
Is

n∑
1

izn
[f ′(γαn)]

(γβn − γαn)
. (7)

The surface current in the second solenoid was defined as:

Iz = iznn. (8)

The interval Δγ was partitioned for the first part of the summation according to:
1
n

=
Δγ

γχ − γβ
. (9)
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And for the second part:
1
n

=
Δγ

γβ − γα
, (10)

where γχ is the separation-to-diameter ratio between the furthermost edges of the thin walled solenoids.
In other words, γχ is the separation-to-diameter ratio of the magnetic gap. Combining Equations (7),
(8), (9) and (10), we rewrote the expression in the form of two Riemman integrals:

Fsz = lim
n→∞

μ0

2

IsIz

n∑
1

f ′(γβn)Δγ

(γβ − γα)(γχ − γβ)
− lim

n→∞
μ0

2

IsIz

n∑
1

f ′(γαn)Δγ

(γβ − γα)(γβ − γα)

=
μ0

2

IsIz

∫ γχ

γβ

f ′(γβ)dγ

(γβ − γα)(γχ − γβ)
− μ0

2

IsIz

∫ γβ

γα

f ′(γα)dγ

(γβ − γα)(γβ − γα)
. (11)

Since f(γ) is the primitive function of f ′(γ), the force between a pair of thin walled solenoids was
rewritten in the following form:

Fsz =
μ0

2
IsIz

(γβ − γα)

[
f(γχ) − f(γβ)

(γχ − γβ)
− f(γβ) − f(γα)

(γβ − γα)

]
. (12)

We found that with Equation (12), it is possible to calculate the axial force between two thin walled
solenoids provided that the surface currents, separation-to-diameter ratios γα, γβ, γχ, and f(γ) are
known. In the special case when the heights h of both solenoids are identical, the separation-to-diameter
ratios become:

γχ = 2γβ − γα. (13)

By combining Equations (12) and (13), we found that the force between concentric thin walled solenoids
with the same height is:

Fsz =
μ0

2
IsIz

(γβ − γα)2
[f(γχ) − 2f(γβ) + f(γα)] . (14)

(a) (b) (c)

Figure 1. (a) A pair of thin coaxial coils. (b) A thin coil and a thin walled solenoid. (c) A pair of thin
walled solenoids.

2.4. Finding f(γ)

The function f ′′(γ) defined in Equation (1) can be obtained from a carefully designed experiment, from
finite element simulations, or from an existing solution. For this contribution, we obtained it from
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existing semi-analytical solutions [14–16]. We rewrote the expressions in the following form:

f ′′(γ) =
√

1
/
γ2 + 1

{
k2K(k) + (k2 − 2) [K(k) − E(k)]

}
, (15)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind. The modulus k is
given by:

k2 = 1
/
(1 + γ2). (16)

From Equations (15) and (16), we calculated the values of f ′′(γ) for the interval 0.01 ≤ γ ≤ 5.5. We
utilized 5000 evenly distributed points. Afterwards, we numerically integrated the results twice to find
f(γ) for the same interval with the adaptive quadrature technique available in Matlab R2014a. With
the data at hand, we proceeded to curve fit f(γ).

2.5. Curve Fitting f(γ)

To further simplify the method, we have curve fitted f(γ). After evaluating thousands of possibilities
with the aid of pyeq2 and Matlab R2014a, we found that the following rational function, numerated by
a quartic polynomial and denominated by a linear binomial, offered a good balance between simplicity
and accuracy.

f(γ) = (Aγ4 + Bγ3 + Cγ2 + Dγ + E)/(γ + F ). (17)
With Equations (17) and (12), we calculated the axial force between thin walled solenoids using only
basic arithmetic operations. The relevant characteristics of the curve fit that we selected are summarized
in Table 1.

Table 1. Curve fit information.

Coefficient Values
A = 0.001032 D = 0.209100

B = −0.014560 E = −0.005901
C = 4.069000 F = 0.294100

Fit statistics
The sum of squares due to error: 0.0001786 R-square: 1

Adjusted R-square: 1 Root mean squared error: 0.0001891

2.6. Force Calculations between High Coercivity Permanent Magnets Using a Semi-
Analytical Method

Consider two identical thin walled solenoids, as those in Fig. 1(c). Their height is defined as h and
the separation between them as sα. They have a height-to-diameter ratio α = h/d and separation-to-
diameter ratio γα = sα/d. Since high coercivity permanent magnets can be modelled as thin walled
solenoids, the force between two identical coaxial thin walled solenoids, or between two high coercivity
permanent magnets, can be expressed as [17]:

F = (B2
r/2μ0)A ×

{√
1 + (α + γα)2(8/π)(α + γα) [K(k1) − E(k1)]

−
√

1 + (2α + γα)2(4/π)(2α + γα) [K(k2) − E(k2)] −
√

1 + γ2
α(4/π)(γα) [K(k3) − E(k3)]

}
, (18)

where Br is the remanent field and A the facing cross sectional area of the thin walled solenoids or
permanent magnets. The moduli k1, k2, and k3 for the complete elliptic integrals of the first and second
kind are:

k2
1 = 1/(1 + (α + γα)2). (19)

k2
2 = 1/(1 + (2α + γα)2). (20)

k2
3 = 1/(1 + γ2

α). (21)
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2.7. Force Measurements between High Coercivity Permanent Magnets

For this part of the method, we measured the axial forces between one pair of Nd-Fe-B permanent
magnets with a remanence of 1.35 T, diameter of 20 mm, and height of 10 mm. To keep the magnets
concentric at all times, they were firmly mounted on aluminum holders that were further mounted on
a drill bench as shown in Fig. 2. The force was measured with a Z-type load cell arranged in line with
the direction of the force. The displacement was measured with a digital gauge built in the drill bench.

Figure 2. Setup utilized to measure the force between permanent magnets.

3. RESULTS

3.1. f(γ) vs γ

In Fig. 3, the data of f(γ) vs γ obtained from the double integration of f ′′(γ) as described in Section 2.4
are plotted with solid red lines. The curve fit achieved, according to Section 2.5, is shown with blue
dots. With f(γ) and Equation (12), we were able to calculate the force between thin walled solenoids,
on one limit, when the gap sα was 100 times smaller than their diameter and on the other limit, when
the magnetic gap sχ was 5.5 times larger than their diameter.

3.2. Force Calculations and Force Measurements

The results of the measurements and calculations are shown in Fig. 4. The calculations were performed
utilizing the methods described in Section 2, and the equations were implemented in Matlab R2014a.
For the results plotted with a red solid line, we utilized the semi-analytical method that involves elliptical
integrals according to Equations (18)–(21). The results plotted in a blue dot-dashed line and the results
in a black dashed line correspond to calculations performed with the method proposed in this article.
For both cases, we utilized Equation (14). The difference between them is that for the first case, we
evaluated f(γ) from the curve fit presented in Section 2.5, and for the other case, we obtained f(γ)
directly from the data presented in Fig. 3. In all three cases, we performed 1001 evenly distributed
calculations for the interval 0.15 ≤ sα ≤ 20.5 mm. The computational time needed to calculate the
forces utilizing the curve fit was around 10 times faster than the time needed with the semi-analytical
method. On the other hand, the time needed to calculate the forces directly from the data took around
7 times longer than the semi-analytical method. As for the measurements, we performed 154 individual
measurements for the same range (interval 0.15 ≤ sα ≤ 20.5 mm). They are plotted in Fig. 4 with green
dots. As can be seen from the figure, there is good agreement with the measurements and calculations.
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(a)

(b)

Figure 3. (a) f(γ) vs γ from the integrations and its corresponding curve fit. (b) Data plotted in
logarithmic scale. In both insets, the solid line is the data obtained from the integrations and the dots
are the curve fit.

Figure 4. Measurements and calculations using different methods for the force between high coercivity
permanent magnets.

4. VALIDATION

4.1. Comparison between the Force Calculation Methods

We have compared the calculation methods presented in this article. For this purpose, we chose identical
solenoids with a surface current density equivalent to a 1T homogeneously magnetized permanent
magnet (795.8 kA/m) and calculated the force between them for a given range utilizing the formulas
described. In order to have realistic values, the range of height-to-diameter ratios utilized for the
solenoids selected was 0.2 < α < 2. Thinner magnets are easily demagnetized, and thicker magnets
are too far from the optimal yielding force ratio α ≈ 0.4 [17, 19–21]. The separation-to-diameter ratio
γα was varied from the point in which the separation between them was 100 times smaller than their
diameter (γα = 0.01) until the force was reduced to 5%. As can be seen in Fig. 5, the results showed
that there was virtually no difference between the forces calculated with the semi-analytical method and
the proposed method when we evaluated f(γ) directly from the data obtained from the integrations.
When we utilized the curve fit, there was a maximum overestimation of 6.8%.
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Figure 5. Relative error between the force calculated with the equations for the semi-analytical (18)
and the proposed method (12). The lines in red (dashed) are the relative error when the forces were
calculated using f(γ) from the data presented in Fig. 3. The results in blue (lines with markers), are the
relative force errors obtained when the forces were calculated using f(γ) from the curve fit presented
in (17). In both cases, the separation-to-diameter ratio was varied from γα = 0.01 until the force was
reduced to 5%. Each curve corresponds to solenoids with different height-to-diameter ratios (α). In the
case of the dashed lines, all of them overlap.

5. CONCLUSION

We presented a method to calculate the force between thin-walled solenoids. The resulting equations
were fairly compact, and there was no need for complicated expressions. It showed very high accuracy
when the force was calculated directly from the data obtained after numerically integrating the behavior
of a pair of thin coils two times. It also offered simplicity and fast computational times when the force
was calculated using a curve fit. This is an advantage in situations where computational power is
limited as in industrial robots. These machines have a limited memory and processors that favor
reliability over computational power. If control actions are needed in real time, it can be a challenge to
use a computationally heavy model. Since the use of elliptical integrals was circumvented, the presented
equations are relatively easy to implement especially in low level programming languages. An example
of a potential application is the automatic assembly of ferrite magnets for wave energy converters with
industrial robots [18]. If needed, the method can be easily extended to solenoids that do not have a
circular cross section.
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