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Analysis of the Static and Dynamic Behavior of a Non Hysteretic
Superconductive Passive Magnetic Linear Bearing by Using

an Electromagnetic Integral Formulation

Efren Diez-Jimenez1, Antonino Musolino2, Rocco Rizzo2, *, and Ernesto Tripodi2

Abstract—In this paper the analysis of the static and dynamic behavior of a non-hysteretic
superconductive passive linear bearing is described. The high translational symmetry of the magnetic
field seen by the permanent magnet assures a usable long stroke in the order of several tens of millimeters.
The linear bearing in combination with an actuating system for only one degree of freedom can be used
for accurate long-stroke precision positioning systems for cryogenic environments with zero hysteresis
in the movement. The dynamics of the system is investigated using an integral formulation which
transforms the solution of the field equations in the solution of an equivalent electric network. The
knowledge of the currents in the equivalent network allows to evaluate all the electromagnetic quantities
(fields, forces, eddy currents, . . . ) in the system. Finally, the coupling with the equation of the rigid
body permits to simulate the electro/mechanical behavior of the system with six degree of freedom (6
DOF).

1. INTRODUCTION

In many high-tech areas (aerospace industry, biomedical laboratories, optical communication, and so
forth), the demand for very precise actuators, capable to operate in low temperature environment
(T < 100 K), is increasing due to their specific features [1–3]. In this field, in fact, conventional
mechanisms [4–6], which use bearings and joints, cannot be used, since lubrication fluids freeze at
very low temperatures. Also solid lubricants such as PFTE or MoS2, usually used in cryogenic
environment to mitigate the tribological problems, are not a very reliable solution due to a limited life-
time operation [7, 8]. Devices based on active magnetic bearings can be used only in special cases [9, 10].
Since they exploit electrical coils to produce magnetic force, the activation currents can cause thermal
problems in these temperature-sensitive environments.

The superconducting magnetic levitation (SML) seems to be a very suitable technology for
the development of devices capable to assure accurate long-stroke precision positioning in cryogenic
environments. SML assures the self-stable levitation of hard magnetic materials over a high temperature
superconductor (HTS) [11, 12]. Although at cryogenic temperatures HTS are naturally in the
superconducting state, two different behaviors should be considered. If the superconductor is not in the
Meissner but in the mixed state, the hard magnetic materials levitates above the HTS but the levitating
force-distance relationship is hysteretic [13], so depending on the applied field history. On the contrary,
if the superconductor is in the Meissner state, the levitation force vs distance is a non-hysteretic relation,
allowing to increase the stability region and the performance of the SML-based devices [14]. Anyhow,
the technological challenges to design stable levitating system while keeping the HTS in the Meissner
state are an open issue.
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Some mechanisms based on superconducting magnetic levitation were developed in the past, with
potential uses such as in precision positioning or magnetic confinement. Unfortunately, the main
drawback of these solutions is the length of the strokes when being applied to precise non-contact
actuators. For example, in [15] the stroke length was limited to a few millimeters (< 10 mm) with
a resolution in the range of µm, while in [16, 17] the authors described a SML-based linear bearing,
claiming a maximum stroke of 18 mm in one direction with very high resolution.

In a previous paper [18], the authors presented the mechanical design of a magnetic levitating
linear bearing, suitable for working in the non-hysteretic range of forces, also assuring a usable long
stroke of around ±90 mm with full performance and ±150 mm with reduced performance. In the same
paper, the analysis of forces and pressures for each direction was performed by using a finite element
model. The results demonstrated that the SML-based device provided stable equilibrium positioning
and restoring forces in all degrees of freedom (DOF) except for two (rotation and displacement along
the axis of motion) with a cylindrical magnet floating along the axis of revolution/displacement. The
linear bearing was investigated under static conditions, and the radial and axial stiffness of the bearing
was calculated.

From a numerical point of view, the coupled electromechanical analysis necessary to assess the
dynamical behavior of a 6 DOF system is a challenging task. Although the finite-element method
(FEM) is the most popular approach to simulate complex electromagnetic systems, it may suffer some
limitations especially when dealing with bodies in movement. The application of FEM to systems with
moving conductors presents some difficulties, mainly due to the coupling of meshes attached to bodies
in relative motion in all the spatial directions [19]. They usually require a large number of unknowns
to obtain a desired accuracy [20]. Furthermore, the meshes and consequently the matrices involved in
the calculations have to be updated during the motion and the analysis of unbounded domains requires
special treatments [21]. Alternative approaches, mostly based on integral formulations such as the
one used in this paper, have a number of characteristics that make them well suited for the analysis
of electromechanical systems [22]. In particular, the problem of coupling moving meshes does not
arise when integral formulation is used to simulate these kind of systems, since only the discretization
of the active regions is required. However, the integral formulations also present some limitations,
usually related to the numerical solution of the model. In fact, the main drawback is the matrix setup
time and matrix solution time. A device discretized in n elementary volumes requires the evaluation
of n2 multidimensional integrals of Green functions that are arranged in densely populated matrices.
Fortunately, integral formulations are inherently parallelizable [23], and the use of multicore CPUs or
GPUs can reduce computation times.

In the present work, the analysis of the statics and dynamics behavior of a non hysteretic
superconductive passive magnetic linear bearing is presented. With respect to the analysis described
in [18], the innovation point consists in the use of a different formulation capable to simulate also the
dynamic behavior of the superconductive device. In fact, in [18] only static FEM simulations of the
device with a reduced number of DOF were described. Unfortunately, in that paper the analysis of the
device cannot be satisfactorily extended to simulate the full 6 DOF dynamic behavior, due to the above
cited limitations of the FE model.

In this manuscript, instead, the investigation is performed by the use of an electromagnetic
numerical code based on a 3D integral formulation and capable to overcome the limitations of the
FEM model. This code (hereafter referred to as “Equivalent Network for Electromagnetic Modeling —
EN4EM” was developed in the past years at the University of Pisa for research purposes [24–26], and
it is here adapted to deal with SML-based devices, dynamically operating with 6 DOF.

2. BRIEF DESCRIPTION OF THE DEVICE CHARACTERISTICS

Refer to the cited paper ([18]) for a detailed description of this SML-based linear bearing and its
operation. For the sake of subsequent clarity, here below the main characteristics are described.

As shown in Fig. 1, the levitating device consists of a U-shaped superconducting (SC) surface and a
magnetic cylinder with magnetization orientation perpendicular to the U-shaped plane, which is parallel
to the x-axis. The superconducting material has been smoothed in the lateral sides in order to assure
that a cylindrical magnet can float along the x-axis, and can be into a stable equilibrium in the remaining
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Figure 1. Geometrical definition and reference frame.

degrees of freedom (DOF), due to restoring forces. This solution is very suitable for long-stroke precision
positioning systems for cryogenic environments with zero hysteresis in the movement. Furthermore, the
length of the motion range can be easily modified by simply increasing the superconducting guideway.

The numerical analysis was carried out considering the superconductor as a conductive material
with very low electrical resistivity (5×10−16 Ω·m) and really small depth (δ � 20×10−6 m). The profile
of the SC surface and the reference frame used in the numerical model are shown in Fig. 1.

The NdFeB permanent magnet (grade MPN 35H) has a remanence Br = 1.21 T and a coercivity
Hc = −920 kA/m. Assuming that the magnetization vector M is uniform inside the material, the magnet
can be simulated as a conducting sheet (see Fig. 2) with a thickness of the same order of magnitude of
the superconductor surface depth. As for the relative permeability of the magnet, although the accurate
value is about μr = Br/|Hc|/μ0 = 1.047, in order to simplify the numerical model it is approximated
to the unity. The equivalent magnetization current on the sheet has been calculated as a bound surface
current density starting from: Jsb(r′) = M(r′)× a′

s, where a′
s is a unit vector pointing out of the closed

surface of the magnet.

Figure 2. Permanent magnet model.

The total equivalent current flowing on the cylinder lateral surface is:

Isb =
Br

μ0
· hPM (1)

where hPM is the height of the cylinder magnet. Then, in order to avoid numerical inaccuracies, the
magnet has been modeled with a stack of circular loops each carrying a fraction of the total current:

Isbk
=

Br

μ0
· hPM

N
, with k = 1, 2, . . . , N. (2)
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In a real SML-based system, the current density inside the superconducting material is generated
by the motion of the PM cylinder from infinity (that is, from a point far enough to not excite the
SC) to a point in the vicinity of the U-shaped SC (i.e., the center of the reference frame). In the
numerical model, this physical transient phase can be simulated by placing the magnet in the center
of the reference frame and assuming that the equivalent magnetization current which model the PM
varies as a transient function of time t, described by the following equation and shown in Fig. 3.

Figure 3. Equivalent magnetization current transient.

3. THE NUMERICAL CODE: SYNTHESIS

The numerical code used to simulate the system is based on a 3D integral formulation; it can simulate
complex electromagnetic devices, transforming the solution of the field equations in the solution of an
equivalent electric network [24, 28]. In fact, the code allows to obtain a set of equations that can be
seen as the equilibrium equations set of an equivalent electric network. The currents in the branches
of such auxiliary network correlate with the currents in elementary volumes in which the devices are
discretized. Then, the knowledge of these currents allows to evaluate all the electromagnetic quantities
(fields, forces, eddy currents, . . . ) in the real devices. Coupling with the equation of the rigid body (6
DOF) is performed by the terms: vk × Bk and Jk × Bk.

The main numerical formulation characteristics are: (a) only active (usually conductive) parts of
a device must be discretized; (b) coupling with external lumped circuits is straightforward. The main
drawbacks, instead, are the matrix setup time and the matrix solution time. These matrices are densely
populated, and this may require (relatively) long computational times to get the solution. Anyhow,
since this formulation is highly parallelizable, recent improvements in multicore CPUs or GPUs, allows
to reduce the computation time [23, 26].

Consider two bodies in relative motion, with or without contact, and magnetically interacting (see
Fig. 4); they can be discretized with n and m elementary volumes. Then, connecting the centers of
nearby elements a 3-D grid can be obtained.

Assuming that inside each elementary volume the current densities (sources, induced,
magnetization) are uniform and have only one non-zero component, the Ohm’s Law is:

ρJk = Ek = −∇Vk − ∂Ak

∂t
+ vk × Bk; (3)

then, by using the additive property, it can be written as:

−∇Vk = ρJk +
N∑

j=1

∂Ak,j

∂t
− vk ×

N∑
j=1

Bk,j; (4)
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Figure 4. Scheme of the numerical code used for the simulations.

Figure 5. Equivalent electric branch.

where N = n + m is the number of elementary volumes, and the other quantities are the well-known
electromagnetic vectors/scalars.

Integrating the Ohm’s law in each elementary volume and averaging the result on the cross section
it is possible to obtain an equation which represents the electric equilibrium equation of a branch of a
network. As shown in Fig. 5, this branch can be drawn as a series connection of a resistor, an inductor
coupled with the inductors in other branches and controlled voltage generators that take into account
the motional effects. Then, it can be described by using the Kirchhoff’s voltage law.

Extending the procedure to the whole system it is possible to obtain a complete equivalent electric
network, which can be studied by the mesh analysis, yielding to a set of electrical equations.

Once the currents are known, the force fkj exerted on the kth elementary volume due to the jth one
can be calculated as follows [27]. In correspondence to a given configuration, the dynamic interactions
between couples of elementary volumes (one on the fixed body and one on the moving one) were firstly
evaluated in the hypothesis of unit current on them. In this way, it is possible to obtain the force
coefficients Λkj which are function of the geometric configuration of the system. Subsequently the
effective force on the elementary volumes which constitute the moving body can be calculated as:

fkj =
∫

Γk

Jk × BjdΓ = Λkjikij (5)

where k and j span respectively the elementary volumes of the moving body and of the fixed one, while
ik and ij are the effective currents flowing on them.

By summing the effects of all this terms, the resultant force on the k-th elementary volume of the
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moving body can be calculated:

Fk =
Nf∑
j=1

fkj k = Nf + 1, . . . , Nf + Nm (6)

The set of Fk represents the force distribution on the rigid body. Finally, summing up the
contributions to all the elementary volumes of the moving body, we obtain the resultant force and
torque, and consequently the complete set of coupled equations:⎧⎨

⎩
L(C(t))di(t)

dt +
[
R(C(t)) + K(C(t), Ċ(t))

]
i(t) = e(t);

m · ẍG = F(i,C(t));
TG(i,C(t)) = IGω̇ + ω̂IGω;

(7)

where: C(t) is the system configuration matrix (a function of the coordinates and Euler angles of the
center of gravity of all the elementary volumes), i(t) the vector of the currents in the elementary volumes
and e(t) the vector of the applied voltage generators. It is worth to note that i(t) include the equivalent
magnetization currents and that some of the currents may be imposed.

L(C(t)) denotes the inductance matrix, R(C(t)) is the resistance matrix, and K(C(t), Ċ(t))
considers the electromotive force due to the motional effects. In particular Ċ(t), termed as the
derivatives of the system configuration at the instant t, describes the velocity of every elementary
volume. F and T are, respectively, the resultant force and torque acting on the moving body, m is its
mass, and IG is the inertia tensor. The three components vectors ẍG and ω, respectively, indicate the
coordinates of the center of mass of the moving body and its angular velocity. It is worth to note that
F and T are functions of C(t) and of the currents on the elementary volumes.

Since the differential equations for the electrical and dynamic equilibrium are coupled, the resulting
system is nonlinear and time varying. However, the electrical equations are integrated by using a
conventional integration scheme (Single Step Time Marching) [27]. The solution of the model allows to
know all the electromagnetic and mechanical quantities which govern the operation of a given 6 DOF
device.

Figure 6 shows the mesh used by the numerical code to simulate the superconductive passive
magnetic linear bearing with the dimensions shown in Fig. 1. The total number of elementary volumes
used to model the whole system is N = 10 × 103; the magnet and the SC are discretized respectively
with n = 75 and m = 9925 elements.

Figure 6. The mesh used by the numerical code to simulate the whole system.

Although the code is able to deal with all the 6 DOF, in Section 4 some constraints reducing the
number of DOF have been introduced in order to allow the comparison with the results described in [18].
In Section 5 the system has been simulated considering only 3 DOF (preventing rotations of the PM)
in order to verify the consistency of the results.
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4. STATIC CALCULATIONS

4.1. Stable Levitation Position

The lift force was calculated in two different positions of the magnet. The first one is the center of the
reference frame (see Fig. 1) at z = 0.0 mm and the second one is on a height at which the lift force can
compensate the weight of the magnet (z = 2.3 mm). The results are displayed in Fig. 7.

Figure 7. Lift force versus time for z = 0.0 mm
and z = 2.3 mm.

Figure 8. Lift force versus z displacement for
x = 0.0 mm and y = 0.0 mm.

The transient behavior of the lift force is due to the profile of the magnetization current, used to
model the permanent magnet (see Fig. 3). At the time of about 200 ms the magnetization current has
reached its rated value and the lift force assumes the values of about 32.5 mN and 22.6 mN, when the
PM is positioned respectively at z = 0.0 mm and z = 2.3 mm.

In order to get the understanding how the lift force varies with respect to the magnet position on
the z-axis we performed a simulation forcing the magnet to slowly move on this axis. The evolution of
the lift force after the magnetization current have reached its rated value, was calculated. The results,
displayed in Fig. 8, are compared with the ones from [18], showing a very good agreement.

4.2. Passive Stable Position

From the previous equilibrium position, the magnet has been forced to move on the y direction in order
to determine the value and direction of the lift and lateral forces (Fz and Fy). Both results are presented
in Fig. 9. As can be seen, they are really close to the ones reported in [18]. Furthermore, the stabilizing
characteristic of the lateral force Fy is noteworthy. As the displacement increases along the positive
direction of the y-axis, the force Fy negatively increases, tending to bring the magnet in its original
position.

4.3. Border Effects

We also perform some simulations to see the behavior when the magnet reaches the end of stroke. The
results differ from the ones reported in [18] probably because of the different shapes of the SC edge.
As shown in Fig. 1, the two SC edges positioned at x = ±150 mm and simulated by the FEM code are
somehow smoothed, while the model simulated by the EN4EM code has sharp edges. This choice was
suggested by the fact that in the standard operating conditions, the permanent magnet is positioned
in the area near the center of the U-shaped superconducting surface, far from both ends. Then, in
order to avoid the increasing complexity of the numerical model, the simulated system is simplified in
this paper, cutting the edges at the ends of the U-shaped bed. The trend of the lift force is shown in
Fig. 10(a), while Fig. 10(b) shows the axial force Fx. It is interesting to note that when reaching the
stroke end, there is also a pitch torque, as shown in Fig. 10(c).
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Figure 9. Lift force Fz and lateral force Fy versus y displacement for x = 0.0 mm and z = 2.3 mm.

(a) (b)

(c)

Figure 10. The effect of the SC border: forces and torque as a function of x displacement, for
y = 0.0 mm and z = 2.3 mm. (a) Lift force Fz. (b) Axial force Fx. (c) Pitch torque Ty.

The comparison of the results of the present study with those reported in [18] shows that for all
the compared quantities described in Figs. 10(a) and 10(b) the maximum percentage error is always
below 5 ÷ 8%. On the contrary, when the permanent magnet reaches the end of the U-shaped SC, an
unsatisfactory agreement affects the comparison of results of the axial force Fx (see Fig. 10(b)). In
this case, the errors exceed 45%. Anyhow, it is noteworthy that when the magnet is positioned in the
standard operating range along the axis of the U-shaped SC (±90 mm), the results of the axial force Fx

obtained by the EN4EM code are in good agreement with the ones in [18].
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5. DYNAMIC CALCULATIONS

We also perform two simulations of the system with the magnet free to move with 3 DOF obtained by
preventing the rotations of the PM. Fig. 11(a) shows the simulation results of the dynamic behavior of
the system under the following conditions: in the time range [0÷ 0.2] s the magnet (PM) has been kept
blocked at x = 0.0 mm, y = 0.0 mm and z = 0.0 mm in order to reach the end of the transient phase of
the magnetization current. In this condition, the magnet is fixed in the origin of the reference frame,
and the force acting on the PM reaches its maximum value of about 32.5 mN. At the time 0.2 s, the
constraint has been removed, and the magnet, whose weight in term of gravity force is about 22.6 mN,
has been left free to move. Since the total force Fz is the vectorial sum of the lift force and the weight
of the magnet, at the time 0.2+ s, the PM feels a net force of about 10 mN. As a consequence, the
magnet starts to move on the z-axis increasing the displacement of its center of mass until the lift
force becomes zero. At this point, the gravity force tends to reduce the z-displacement, and when the
lift force equals the gravity force, it is about 2.3 mm. Anyhow, disregarding an eventual damping, the
permanent magnet moves on the z-axis with an oscillating behavior.

Another simulation has been performed with the center of gravity of the magnet starting in
x = 0.0 mm and z = 0.0 mm with a y displacement of 5.0 mm. The total force Fz (lift+PM weight)
and the lateral force Fy waveforms as function of time are shown in Fig. 11(b). Also in this case, the
magnet moves with an oscillating behavior.

(a) (b)

Figure 11. Dynamic behavior of the device. (a) The total force Fz (lift+PM weight) and Center of
mass displacement in the z axis. (b) The total force (Fz) and lateral force (Fy) dynamics starting from
x = 0.0 mm, y = 5.0 mm and z = 0.0 mm.

Anyhow, such forces tend to bring the permanent magnet in its equilibrium position.

6. CONCLUSION

The analysis of a non-Hysteretic Superconductive Passive Magnetic Linear Bearing has been presented.
The simulations have been performed by the use of a numerical code based on a 3D integral formulation,
previously developed at the University of Pisa for research purposes, and capable to simulate coupled
electro/mechanical problems with six degree of freedom (6 DOF). The static results have been compared
with the ones described in a previous paper, showing a quite good agreement. Furthermore, some
preliminary dynamic simulations have been described which are consistent with the expected behavior
of the device. The ongoing work is aimed at developing a suitable prototype, necessary to validate the
numerical model by means of experimental measurements.
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