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Analytical Investigation into the S-Parameters

of Metamaterial Layers

Mohsen K. Meybodi* and Kian Paran

Abstract—Making use of mode matching method, a theoretical analysis of a metamaterial layer is
presented. The unit cell of the structure is modeled by a TEM waveguide, and the metamaterial
element is supposed as a discontinuity in the waveguide. Analyzing the structure using this model,
mathematical relations between s-parameters of a metasurface are extracted. It is evident that the
variation of each s-parameter is limited to an arc of circle on Smith chart. The key factors determining
the location of each circle on plane are specified. Moreover, a discussion on the role of metasurface
element in the determination of s-parameters of the structure is given. The variations of scattering
transfer parameters on the plane are determined, too. The steps needed to derive these relations are
described. Using these relations, simple and straightforward formulas are devised which can be used
to predict the response of the metasurface. Finally, some metasurfaces will be analyzed by full-wave
method. The new relations are well-agreed with simulation results.

1. INTRODUCTION

The advent and extension of metamaterial structures are one of the turning points in physics. The new
strange behaviors of these structures, which do not happen or less happen to available structures,
open new windows for the designers. Structure with near-zero or less than one refractive index,
new waveguide structures, controllable surfaces, angular-independent surfaces, impedance-matching
surfaces, thin absorbers, structures with ability to cloak an object, plasmonic nanowire, Negative
Refractive Index (NRI) transmission lines, THz switches, THz imaging, molecular sensing are some
of the evolutions occurring due to metamaterials in electromagnetics [1–10]. These structures help
engineers and investigators to design new devices and improve the operation of prevalent systems.

An arrangement of many similar microstructures in the form of three dimensional periodic network
creates a metamaterial structure [1–4]. In some cases, this arrangement happens in two dimensions.
In reality, they create a layer of metamaterial, which is called metasurface. Existence of metamaterial
elements increases the ability of structure to polarize electrically and magnetically. This effect can be
different from one direction to another. It can result in creating anisotropic medium. Some methods are
developed to determine the effective parameters of these structures, such as Nicolson-Ross-Weir (NRW)
and Generalized Sheet Transition Condition (GSTC) [2, 11–13].

Analysis of metamaterials and metasurfaces is a crucial part of papers and books published in the
context of metamaterials. This analysis can also be found in the subcategory of the study of periodic
structures. For periodically-repeating environment, it is sufficient to simulate a period of structure in a
specific box with suitable boundary conditions in sidewalls.

Reference [14] is one of the valuable publications about periodic structures. In [14], Marcuvitz
analyzed a metal-strip grating in two polarizations. He studied the behavior of these structures and

Received 8 July 2016, Accepted 26 August 2016, Scheduled 14 September 2016
* Corresponding author: Mohsen Kalantari Meybodi (mohsen kalantari@ymail.com).
The authors are with Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran.



88 Meybodi and Paran

presented relations for the equivalent admittance for each polarization. This work was continued by
Ulrich in Far Infrared frequencies (FIR) [15]. The supposed structure was a thin metal mesh or grid
which is embedded in free space. Ulrich found that the locus of reflection coefficient is an arc of a circle
in complex reflection coefficient plane. For this derivation, he simultaneously considered two equalities;
equality between total amplitude of propagating waves in both sides of the structure, and a relation
between reflection and transmission coefficients of structure because of its passivity. A relation between
phases of reflection and transmission coefficients versus amplitude of reflection coefficient was also found
by him.

Focusing on metasurface, more discussions about mode matching technique would be carried on in
the next section. TEM waveguide modeling helps to extract a simple equivalent circuit for metasurface.
It is continued by extracting the variation of reflection coefficient for a typical metasurfaces located in
the boundary of each two media. The locus of this variation is coincided with an arc of circle on the
Smith chart. The parameters which are effective in determining the center and radius of this circle
are given. Then, the role metasurface element in determining the reflection coefficient is described.
After that, the variation of reflection coefficient versus frequency is considered. In the next step, all the
remaining scattering parameters are obtained in terms of one of the scattering parameters. Variations
of scattering transfer parameters (chain scattering parameters) in plane are determined, as well. In
the third section, for some metasurfaces, the locus of reflection coefficient is extracted and could be
accommodated by the relations derived in previous section. It is compared by simulation results of
commercial software package. Finally, the summary of this discussion is mentioned in the conclusion.

2. MODAL ANALYSIS OF METASURFACE

As previously mentioned, the analysis of metasurface structure is reduced to the analysis of a unit cell
surrounded with suitable boundary conditions in sidewalls. This modeling is called TEM waveguide [16]
(Figure 1(b)). This model is simulated by different numerical methods, such as FDTD [17] and mode
matching technique [18–21], to get the scattering parameters of the main structure.

(a) (b) (c)

Figure 1. (a) Front view of a metasurface, (b) a unit cell of metasurface structure in the TEM
waveguide, and (c) profile of the hypothesis waveguide with incident, reflected and transmitted waves.

Using the TEM waveguide modeling shows that a metasurface element has the role of a transverse
discontinuity in hypothesis waveguide [18]. The existence of a discontinuity in the waveguide perturbs
the flow of power. In this situation, some part of the incident power reflects back and forms the reflected
wave, and the remaining power passes through metasurface plane, and forming the transmitted wave.
The plane, which is coplanar with metasurface element, divides the inner medium of the waveguide into
two media (Figure 1(c)), and it is called metasurface plane.

Based on modal analysis, each wave in the waveguide can be expanded in terms of different modes.
In order to determine coefficient of each mode in this expansion, the boundary conditions in both sides
of metasurface plane must be applied [22–27].
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2.1. Mode Matching Technique

For using mode matching technique, all modes supported by the waveguide must be determined
first. The TEM waveguide supports all TEM, TE and TM modes. The transverse component of
electromagnetic fields for these modes are as follows [16–21].
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where m and n indicate spatial variations of each mode in x and y directions, respectively. These
modes are taken for intended waveguide (Figure 1(b)) without any discontinuity in it. Note that these
modes make a set of orthogonal functions. The next step in using mode matching is to apply boundary
conditions in both sides of metasurface plane. The necessary boundary conditions that must be satisfied
are [24]; (
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where �Ei, �Er, �Et, �H i, �Hr and �Ht are incident, reflected and transmitted electric and magnetic fields,
respectively. Rm is the part of unit cell that is covered by metal (and comprises metasurface element).
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where A00, a00, c00 are the amplitudes of incident, reflected and transmitted waves for TEM mode.
βmn is propagation constant, and η0, ZTE

mn and ZTM
mn are characteristic impedance for TEM, TE and

TM modes, respectively. All βmn, η0, ZTE
mn and ZTM

mn in reflected and transmitted waves are related to
mediums I and II, respectively. The above relations are achieved with supposing that two media are
extended into infinity.

For calculating all coefficients based on mode matching technique, each of electric and magnetic
fields in Eq. (2) is substituted by expansions of incident, reflected and transmitted waves. This
substitution changes the domain from spatial into modal domain (spectral domain). In the modal
domain, we are faced with a system of linear algebraic equations. Computing all reflected and
transmitted coefficients depends on the solution of this system.

It should be noted that similar expression about electric field in Eq. (2) exists about transverse
electric fields in medium II. The transverse components of electric field are zero on Rm and are continuous
on aperture (Rc

m).
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The first relation in Eq. (4) means that there are no variations in the tangential component of
electric field through metasurface plane. Simultaneously considering this note with the modal expansions
of electric fields in Eq. (3) results in equality of total amplitude of each mode in both sides of element
in Eq. (4) (see Appendix A). Same as this analysis is used in [28, 29]. In [28], the authors propose a
wide-band equivalent circuit for a 2D array of scatterers with the aid of modal analysis. Also, this
analysis is used to illustrate the behavior of a 2D array of Split Ring Resonators (SRRs) in [29].

2.2. The Variations of S-parameters on Smith Chart

Considering Eq. (4) versus m = n = 0, it is possible to extract a relation between the reflection and
transmission coefficients of the structure;
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Repeating the last relation for a wave impinging on metasurface element in medium II, we have,
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where the equality between s12 and s21 is a result of reciprocity. Simultaneously considering Eqs. (5)
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If the TEM waveguide with metasurface element in middle is supposed in form of a two-port
network, the calculated parameters in above form the elements of the scattering matrix of this network
(S). Equations (5), (6) and (7) imply that all s-parameters of a typical metasurface are determined in
terms of one of them (here s11).

Since metasurface is a passive structure, then;
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The steps needed to derive Eq. (8) are expressed in Appendix B. The relation (8) is a circle
on complex reflection coefficient plane (Smith chart). The center and radius of this circle are
(−(η0)I/[(η0)II + (η0)I], 0) and (η0)II/[(η0)II + (η0)I], respectively. This circle crosses horizontal line
{Re(s11)} in two points (−1, 0) and ([(η0)II−(η0)I]/[(η0)II+(η0)I], 0). The point (−1, 0) is corresponding



Progress In Electromagnetics Research B, Vol. 69, 2016 91

to when the metasurface element completely covers the unit cell. When no element exists on the
boundary of two media, the return loss is equal to [(η0)II − (η0)I/[(η0)II + (η0)I] (second point).

Regardless of geometrical characteristics of metasurface element, the other s-parameters of
metasurface are located in specific circles, which are dependent on electromagnetic properties in both
sides of metasurface. The circles corresponding to s21 and s22 are;{
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Note that the circles s11 and s22 cross each other at least once. This common point is (−1, 0).
This point is corresponding to where a metal plate is sandwiched between two media. For metamaterial
structure, it happens when metamaterial element totally covers unit cell. Since the variation of each
s-parameter is on a circle, it is expected that the real and imaginary parts of each parameters are
expressed in terms of absolute value of that parameter. This is discussed in the following.

2.3. The Effect of Metasurface Element on the Scattering Parameters

The parameter s11 in above relations can be rewritten in terms of center and radius of circle;
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These relations separate the role of metasurface element from the effect of electromagnetic
properties of two media as well. As seen in Eq. (10), the center and radius of each circle depend
only on electromagnetic properties of two media. The geometrical properties of element (shape and
size) have no effect on determining them. The effect of metamaterial element reflects on the parameter
θ. Two media, surrounded the unit cell, are effective in determining the parameter θ, too. Comparing
these two factors, it could be said that the metasurface element has the main role in determining θ,
and the effect of surrounded media is weaker. In brief, the surrounded media determine the circle, and
geometrical specifications of the element determine the situation of s11 on the circle. With this notation,
determinant of the scattering matrix (S) is −ejθ.

2.4. The Variations of Real and Imaginary Parts of Reflection Coefficient

Here, we apply the principle of conservation of complex power about metasurface element in TEM
waveguide model. According to this principle, the summation of complex power incident on discontinuity
from two media is zero in Eq. (11).∫
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All functions in Eq. (11) are integrated over the surface of unit cell. The continuity of tangential
component of electric fields through discontinuity in Eq. (4) is used to simplify the above relation.

Impinging a TEM wave with parallel polarization on the metal-strip grating which is embedded in
air, leads to excite TEM and TE modes in reflected and transmitted waves (Figure 2). By substituting
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the expansions of all waves in the last relation of Eq. (11), it yields;∫
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The second relation in Eq. (12) is obtainable by directly multiplying the boundary conditions in
Eq. (2), too. In frequency range below of the first TE mode, all ZTE

m s are imaginary. Separating the
real and imaginary parts of last relation results into (A0 = 1);
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About the imaginary part of s11, the shape of element in the structure helps to select the sign. It
will be described more in the next section. For this structure, the plus sign must be selected. These
relations indicate that for any metasurface, it is possible to obtain the real and imaginary parts of s11 in
terms of absolute value of s11 (|s11|). When the metasurface is sandwiched between two different media,
these relations must be modified (Appendix C). Same as these relations are derived by [15] for angles
of s11 versus |s11|. The last expression in Eq. (13) is a relation between total energy, stored around
grating by excitation of higher order modes, and the imaginary part of dominant mode in reflected
wave. Drawing the real and imaginary parts of s11 versus |s11| shows that with increasing |s11| from
zero to one, Re(s11) uniformly decreases, while Im(s11) has an extremum in this range (at θ = 90). This
point is corresponding to when the excitation of higher order modes causes the highest stored energy
around the structure.

2.5. Locus of Scattering Transfer Parameters on the Plane

The scattering transfer parameters of metasurface structure can be obtained in terms of s-
parameters [30],
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As evident in Eq. (14), in the T11 plane {Re(T11) − Im(T11)}, T11 is a part of straight line
{Re(T11) = constant}. The real part of T11 is constant while the imaginary part of T11 varies dominantly
in terms of the specifications of element. The parameter T22 is symmetry of T11 about the Re(T11)-axis.
The parameters T21 and T12 are a part of straight, too. These parameters comprise the elements of
scattering transfer matrix (T ). Determinant of this matrix is 1 for the metasurface structures.

2.6. Equivalent Circuit

The TEM waveguide model used to simulate structure, is useful for extracting equivalent circuit for
metasurface (Figure 1(b)). Two transmission lines in equivalent circuit are representations of mediums
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(a) (b)

Figure 2. (a) A structure consisted of parallel
strips, (b) a unit cell of structure.

Figure 3. Equivalent circuit for metasurface
structure.

I and II in TEM waveguide (Figure 3). According to TEM waveguide model, each of these transmission
lines is an ideal parallel plate with width a and height b. Their characteristic impedances (η1

0 , η
2
0) and

propagation constants (β1
0 , β2

0) are characteristic impedances and propagation constants of TEM mode
for mediums I and II. The length of each transmission line is equal to the length of waveguide.

While the dimensions of unit cell are smaller than wavelength of incident wave, all higher order
modes, excited around the element, are evanescent. Excitation of these modes causes to store energy
around discontinuity. No power is transferred into source or loaded by these modes. This storage is
represented by a reactance or susceptance in equivalent circuit. Continuity of tangential components of
electric fields in Eq. (3) indicates that the voltage is constant at the connection point of two transmission
lines. Therefore, excitation of higher order modes appears in the form of a parallel susceptance in
equivalent circuit [24]. This susceptance is a function of frequency, geometrical specifications of element,
and electromagnetic properties of surrounded media. Figure 3 shows a simple equivalent circuit for
metasurface structure. More exactly equivalent circuit is presented in [31–33].

With considering the equivalent circuit, input admittance, seen by medium I, is equal to parallel
combination of the characteristic impedance of medium II and the susceptance of metasurface. It is
consistent with what were obtained in the previous discussions. The circles s11 and s22 are accordant
with constant-G circle of Smith chart. The characteristic impedance of transmission line determines
the constant-G circle.

Figure 4. The frequency variations of s11 and
s21 for metal grating (parallel polarization).
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3. SIMULATION RESULTS

In this section, several structures are analyzed using mode matching method. This method is
implemented by MATLAB. To prove the validity of results and derived formulas, all simulations are
repeated by HFSS. In the following simulations, it is supposed that two media are extended into infinity,
and the reference planes located 10 mm away from discontinuity in both sides. For demonstrating the
results on Smith chart, all parameters are calculated on the metasurface plane.

The first structure is a metallic strip grating illuminated by a wave which polarization is along
the grating (Figure 2). A unit cell of this structure is shown in Figure 4. Table 1 specifies
the geometrical characteristics of metasurface element. The frequency variations of reflection and
transmission coefficients are plotted in Figure 4 for this structure. Figure 4 shows that the major
part of incident power is reflected back in medium I. The frequency variations of s-parameters on Smith
chart are demonstrated in Figure 5. The variations of s12 and s22 for this structure are the same as
the variations of s21 and s11, respectively. The dash lines on Figure 5 are drawn based on relations (8)
and (9). The metallic strips in this structure behave in the same way as parallel inductance in equivalent
circuit. Figure 6 displays the frequency variations of equivalent inductance for the metal grating with
dimensions specified in Table 1. As seen, this equivalent inductance is approximately constant in
intended frequency range.

Figure 7 shows the variations of reflection and transmission coefficients versus the width of strip for
10 GHz. According to Figure 7, the more the parameter w increases, the closer to −1 the parameter s11
moves. In the limit, when each strip covers all area of unit cell, s11 goes to −1. In general, with increasing
the area of metasurface element, the parameters s11 and s22 move to −1 along the corresponding circles
(θ → π in Eq. (10)). Also, the parameters s21 and s12 move to origin (Γ = 0) along the corresponding
circle (in counterclockwise direction). Note that with decreasing frequency, the parameter θ goes to π
for this structure, so that when θ equals to π, the value of s11 is −1. It is predictable from the model
used for simulating metasurface. If the frequency is zero, two conductors of ideal parallel plate in model
are shorted by the strip. The variations of real and imaginary parts of s11 versus |s11| are shown in
Figure 8 for this structure. Since this structure has the inductive properties, then + sign for Im(s11) is
selected. Clearly seen, with increasing |s11| from zero to one, real part of s11 uniformly decreases, while

Table 1. Physical dimensions of grating structure
for the first structure.

a w Medium I Medium II
2.5 mm 0.5 mm air air

Table 2. Physical dimensions of grating for the
second example.

a w Medium I medium II
2 mm 1.5 mm air Teflon

0 5 10 15 20
0

1

2

3

4

5

x 10

frequency (GHz)

L
   

(H
)

e

-10

Figure 6. The variations of equivalent
inductance versus frequency.

Figure 7. The variation of reflection coefficient
versus the width of strip (10 GHz).
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the graph of Im(s11) has a maximum where |s11| is equal to 1/
√

2 (θ = π/2 in Eq. (10)). This point
is corresponding to when the excitation of higher order modes causes the highest stored energy around
the structure.

The second structure is metal grating printed on Teflon. In this example, the strips are
perpendicular to polarization of incident wave (Figure 9). It causes to excite only TEM and TM modes
around metasurface plane. Physical dimensions of this structure is available in Table 2. Simulation
results for this structure are demonstrated in Figure 9. According to Figure 9, the major part of
incident power is transmitted through medium II. Figure 10 displays the frequency variations of s-
parameters on Smith chart for this structure. The scattering transfer parameters for this structure are
shown in Figure 11. As previously discussed, these parameters are located along the straight line.

In contrast to the previous structure, metasurface element in this structure plays the role of parallel
capacitance in equivalent circuit. The frequency variations of equivalent capacitance are shown in
Figure 12. Figure 13 shows the real and imaginary parts of the reflection coefficient in terms of |s11|.
In contrast to what happened about the previous structure, the imaginary part of reflection coefficient
is lower than zero, and it has a minimum. This point happens when the stored energy is maximum
around metasurface. The variations of real part of reflection coefficient is similar to the previous
structure. Same as the previous structure, the increment in w causes the parameters s11 and s22 to
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Figure 8. The variations of real and imaginary
parts of s11 versus |s11|.

Figure 9. The variations of s11 and s21 of metal
strips for perpendicular polarization.
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move to −1 along the corresponding circles. Decreasing and increasing frequency causes s11 to move to
((η0)II − (η0)I)/((η0)II + (η0)I) and −1, respectively.

The next example is a metasurface composed of square patches (Figure 14). Let metasurface
elements be printed on FR4. Physical dimensions of each element are presented in Table 3. Figure 14
displays simulation results of this structure. As seen, more of the incident power is reflected with
increasing frequency. The variations of the scattering parameters on Smith chart are presented in
Figure 15. The variations of scattering transfer parameters are demonstrated in Figure 16 for this
structure.

An array of square loops comprises the forth metasurface (Figure 17). Let metasurface elements are
located in the boundary between air and FR4. Geometrical properties of each element are available in
Table 4. Simulation results of this structure are presented in Figure 17. The variations of the scattering
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Figure 12. The frequency variations of
equivalent capacitance.
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Figure 14. The frequency variations of s11 and
s21 for array of square patches.
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Table 3. Physical dimensions of a metasurface
made up of square patches in 2D array.

a w Medium I Medium II
3mm 2 mm air FR4

Table 4. Physical dimensions of a metasurface
made up of square loops in 2D array.

a l w Medium I medium II

1mm 0.565 mm 0.13 mm air FR4
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parameters on Smith chart are plotted in Figure 18. The variations of scattering transfer parameters
are demonstrated in Figure 19 for this structure.

The last structure is square perforated metal plate. A unit cell of this structure is depicted in
Figure 20. Suppose that this structure is embedded in air. The geometrical properties of each element
are specified in Table 5. The frequency variations of s11 and s21 for this structure are plotted in Figure 20.
Figure 21 shows the variations of s-parameters for this structure on Smith chart. The variations of
scattering transfer parameter corresponding to this structure are demonstrated in Figure 22. The
variations of s-parameters for this metasurface is in the same way of first structure. The s11 for this
structure goes to −1 when w increases or frequency decreases. The TEM waveguide for this structure
prove this note. In zero frequency, the parallel plates are shorted by metasurface element. In contrast,
increasing frequency causes that the parameter s11 moves to 0 along circle.

Above figures show output of MATLAB and HFSS are well-agreed with the formulas derived in
the previous section.
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Figure 16. The frequency variations of
scattering transfer parameters.

Figure 17. The frequency variations of s11 and
s21 for an array of square loops.
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Figure 18. The frequency variations of s11 and
s21 on the Smith chart.
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Table 5. Physical dimensions of a square perforated metal plate.

a w Medium I Medium II
3mm 1 mm air air

Figure 20. The frequency variations of s11 and s21 for square perforated metal plate.
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Figure 21. The frequency variations of s11 and
s21 on the Smith chart.
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Figure 22. The scattering transfer parameters
for square perforated metal plate.

4. CONCLUSION

In this paper, the behavior of a metasurface structure is considered by mode matching technique. It
results in extracting new relations for predicting the behavior of metasurface structure. Regardless
of physical characteristics of metasurface element, the s-parameters of metasurface are located in
specific circles, which is dependent on electromagnetic properties in both sides of metasurface. It is
illuminated that the metasurface element does not play any role in determining the circle. In contrast,
the geometrical specifications of element are effective parameter in determining the location s-parameters
on the corresponding circles. These relations are free of any limitation about the geometrical properties
of metasurface element. These relations specify the variations of real and imaginary parts of reflection
coefficient versus magnitude of reflection coefficient. The scattering transfer parameters are obtained
in terms of scattering parameters. Simulation results prove that the new relations correctly predict the
response of metasurface structure.
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APPENDIX A.

The continuity of transverse electrical fields through transverse plane with the orthogonality property,
established among all modes, leads to equality between total amplitude of each mode in both sides of
metasurface element in the waveguide.(

�Ei + �Er
)

t
→

{
Ei

x + Er
x = Et

x

Ei
y + Er

y = Et
y

(A1)

For a supposed waveguide (Figure 1(b)) with considering Eq. (1), it is possible to expand all fields;

Ei
x + Er

x =
∑
m,n

(
m
π

a
amn + n

π

b
bmn

)
ϕmn(x, y) Et

x =
∑
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(
m
π

a
cmn + n

π

b
dmn

)
ϕmn(x, y)

Ei
y + Er

y = A00 + a00 +
∑
m,n

(
−nπ

b
amn +m

π

a
bmn

)
ψmn(x, y)

Et
y = c00 +

∑
m,n

(
−nπ

b
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π

a
dmn

)
ψmn(x, y)

(A2)

Substituting these expansions into Eq. (A1);

Er
x − Et

x = 0 →
∑
m,n

(
m
π

a
(amn − cmn) + n

π

b
(bmn − dmn)

)
ϕmn(x, y) = 0

→ 〈
Er

x − Et
x, ϕpq(x, y)

〉
=

(
m
π

a
(amn − cmn) + n

π

b
(bmn − dmn)

)
δmpδnq (A3)

Ei
y + Er

y − Et
y = 0 → (A00 + a00 − c00)+

∑
m,n

(
−nπ

b
(amn − cmn)+m

π

a
(bmn − dmn)

)
ψmn(x, y)=0

→
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A00 + a00 − c00 = 0〈
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y + Er
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y, ψpq(x, y)
〉
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(−nπ
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)
δmpδnq
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c00 = A00 + a00{
mπ

a (amn − cmn) + nπ
b (bmn − dmn) = 0

−nπ
b (amn − cmn) +mπ

a (bmn − dmn) = 0
→

{
(amn − cmn) = 0 → cmn = amn

(bmn − dmn) = 0 → dmn = bmn
(A5)

The last relation shows that the total amplitude of each mode is equal in both sides of metasurface
element.

APPENDIX B.

Since metasurface structure comprises metal elements, no power loses in structure. It means that the
structure is passive,

|s21|2 + |s11|2 = 1 → (η0)I
(η0)II

(1 + s11) (1 + s∗11) + |s11|2 = 1

→ 2Re (s11) +
(

(η0)II + (η0)I
(η0)I

)
|s11|2 =

(
(η0)II − (η0)I

(η0)I

)

→ 2
(η0)I

(η0)II + (η0)I
Re (s11) + [Re (s11)]

2 + [Im (s11)]
2 =

(
(η0)II − (η0)I
(η0)II + (η0)I

)

→
{

Re (s11) +
(η0)I

(η0)II + (η0)I

}2

+ {Im (s11)}2 =
(

(η0)II
(η0)II + (η0)I

)2

(B1)

This is a circle which determines the variations of s11 on Smith chart.
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APPENDIX C.

Following the previous appendix, the variation of Re(s11) versus |s11| is,

2Re (s11) +
(

(η0)II + (η0)I
(η0)I

)
|s11|2 =

(
(η0)II − (η0)I

(η0)I

)

→ Re (s11) =
[(η0)II − (η0)I] − [(η0)II + (η0)I] |s11|2

2(η0)I

→ Im (s11) = ±
√

|s11|2 − [Re (s11)]
2 = ± |s11|

√
1 − |s11|2 (C1)
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