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Correlation Effects on the MIMO Capacity for Conformal Antennas
on a Paraboloid

Christos Kalialakis1, *, Theodoros N. Kaifas2, and Apostolos Georgiadis3

Abstract—The use of conformal antennas in a MIMO link scenario is investigated. Conformal slot
antennas are considered both in the transmitter and the receiver. First, a new modified correlation
coefficient is derived that goes beyond the Clarke coefficient and takes into account the element
radiation pattern. Secondly, a hybrid formulation that accounts for the impact of the mutual coupling
and the pattern dependent correlation on the capacity is presented. The mutual coupling for slots
placed circumferentially on a paraboloid substrate is derived using a rigorous approach based on
Uniform Theory of Diffraction (UTD). The capacity is evaluated for the case of Rayleigh fading
channel considering the new pattern dependent correlation coefficient and the conformal antenna mutual
coupling. The planar case is included as a limiting case. It is shown that for conformal antennas on a
paraboloid the capacity degradation compared to the planar case is up to 0.5 bps/Hz due to coupling
and correlation.

1. INTRODUCTION

MIMO systems have drawn extensive interest as choices for high data rate wireless communications
systems. Alternatively, MIMO can offer diversity that results in an increased link reliability. These
advantages are possible by using multiple antennas both in the transmitter and the receiver while
utilizing signal processing techniques [1]. A quality measure of a MIMO link is its capacity. Theoretically
and under ideal conditions the capacity of the MIMO system increases with the number of antennas
used [2]. However, this only holds when the signals are completely uncorrelated, a condition that is not
true in the vast majority of practical situations [3–5]. The MIMO capacity (in bps/Hz) is evaluated
in an average sense [6, 7], considering the fading nature of the wireless channels usually described by
statistics.

Correlation has two constituents. The first correlation constituent is due to the effect of the
mutual coupling of the antenna array elements which is independent of the incoming wave distribution.
Mutual coupling is considered a complex problem that is dependent on the antenna type and the
element positions in the array. Several previous works have shown the effect of mutual coupling on
the system capacity for relatively simple antenna elements and only linear geometries. For example,
in [8] the capacity of a MIMO system was evaluated in the case of dipoles. In [9] inverted-F antennas
were considered in the system. In addition to coupling, the matching impact has been investigated
in [10] using dipoles and in [11] using microstrip patches. In these cases, the coupling is evaluated with
either equivalent circuit methods or measurements. Overall in order to properly determine the system
capacity, it is necessary to know the mutual coupling between the antenna elements. For complicated
antenna geometries such as conformal arrays full wave analysis and rigorous electromagnetic analysis is
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indispensable [12]. Conformal antenna arrays are utilized in airborne and space vehicles and also find
applications in situations where surface adaptation is required (e.g., environmentally friendly cellular
base stations) or flexible substrates [13–15]. Several conformal antennas have been suggested for MIMO
use focusing only on mutual coupling but without any capacity calculations [16–20].

The second correlation constituent originates on the angular distribution of the waves that are
being received. The distribution type is generally different in the case of a mobile terminal compared to
a base station antenna. Several correlation models are used such as Clarke’s model [21] for the terminal
and the model known as Geometrically Based Simple Bounce (GBSB) [22] in the case of a base station.
However, these models fail to account for the angular distributions of the antenna pattern because
of the underlying assumption of 2D omnidirectional patterns. The breakdown of such assumption is
especially prominent in the case of conformal antennas. In order to remedy this issue, full account of
the conformal antenna element pattern is taken into consideration in this work for the first time.

In Section 2, slot antennas on a perfectly conducting paraboloid are introduced and the mutual
coupling evaluation formulation is given based on an improved UTD and spectral domain approach [23].
In Section 3 the wave correlation coefficient that takes into account the angular distribution of the
antenna element pattern is derived for the first time. Furthermore, in Section 4, the capacity formulation
for multi-element antennas is introduced that utilizes the antenna array impedance matrix approach
for the coupling [24] and the pattern dependent correlation. Results are presented in Section 5 for
several link scenarios focusing on a 2× 2 antenna configuration Different mutual coupling scenarios and
correlation degrees among the slots are considered in order to determine the system performance in
terms of its capacity. Conclusions are drawn in Section 6.

2. MUTUAL COUPLING OF SLOTS ON A PARABOLOID

A conformal multielement antenna geometry which consists of slots placed circumferentially on a
paraboloid is utilized in this work. The geometry of this supporting structure and the position of
the slots are shown in Figure 1(a).

(a) (b)

Figure 1. Geometry of conformal slot antennas, (a) antennas placed on the ring circumferentially on a
perfectly conducting paraboloid along a ring of radius R and sharpness a, (b) dimension details of slot
antennas.

Points on the paraboloid surface have coordinates u, v which obey the following parametric
equations [25]:

x = au cos v y = au sin v z = −u2 (1)

where a is the sharpness/flatness parameter.
The rigorous method to evaluate the mutual coupling is adapted from [23, 25] and it is based on

the Uniform Theory of Diffraction, [23, 26, 27] due to the curved conducting surface.
Consider two slots positioned on a conducting paraboloid with S being the geodesic distance

(Figure 1). The first slot with dimensions A1 = a1b1 is placed at coordinates (u1, v1) while the
second with dimensions A2 = a2b2 is placed at (u2, v2). Using the dominant magnetic current mode
approximation (with M̄u and M̄v its ū and �v vector components) the mutual admittance Y12 is given
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by [23]:
−Y12 · N1 · N2

=
∫∫
A1

∫∫
A2

[
�Mu1

�Mv1

] [ û1 · t̂1 û1 · b̂1

v̂1 · t̂1 v̂1 · b̂1

] [
Tt1t2 Tt1b2
Tb1t2 Tb1b2

] [
t̂2 · û2 t̂2 · v̂2

b̂2 · û2 b̂2 · v̂2

] [
�Mu2

�Mv2

]
dA1dA2 (2)

The unit vectors t̂1 are tangent to the geodesic that connects the source with the detachment point that
is related with the far field calculation. The b vectors are along the short dimension of each slot. The
normalization constants N1, N2 are equal to

N1 =
√

a1b1/2, N2 =
√

a2b2/2 (3)
and the T coefficients are given in [26]. The off-diagonal elements of the T matrix are much smaller
than the diagonal ones i.e.,

|Tbt| � |Ttt| , |Tbt| � |Tbb| (4)
For circumferential slots i.e., along vector �v, the magnetic current mode component

�Mu = �0 (5)
and taking into account Equation (5), mutual admittance in Equation (2) becomes:

Y12 · N1 · N2

= −
∫∫
A1

∫∫
A2

Mv1

[(
v̂1 · t̂1

)
Tt1t2

(
t̂2 · v̂2

)
+
(
v̂1 · b̂1

)
Tb1b2

(
b̂2 · v̂2

)]
Mv2dA1dA2 (6)

A compact notation for the internal vector products in Eq. (6) is introduced,

s1 =
(
v̂1 · t̂1

)
c1 =

(
v̂1 · b̂1

)
s2 =

(
t̂2 · v̂2

)
c2 =

(
b̂2 · v̂2

) (7)

Expression (6) is transformed via Equation (7) as follows

Y12 · N1 · N2 = −
∫∫
A1

∫∫
A2

Mv1 [(s1s2) Tt1t2 + (c1c2) Tb1b2 ] Mv2dA1dA2 (8)

Equation (8) is used for the calculation of the results in Section 5. The mutual admittance for the planar
slots is given by the same expression but with T coefficients that take asymptotically the form [23]

Ttt → G0 + G1

Tbb → G1
(9)

where

G0 =
[−1 − jkoS + k2

oS
2

S3

]
G1 =

[
3 + 3jkoS − k2

oS
2

S3

]; ko = 2π/λo (10)

In case the slots are nearly parallel the Tbb term dominates, whereas when the slots are collinear, the
Ttt term dominates.

3. CORRELATION FORMULATION

3.1. Correlation: General Case

The correlation coefficient between two antenna elements, without mutual coupling, is defined by, [24,
Eq. (19.67)]:

ρOC
12 =

〈
V OC

1 · (V OC
2

)∗〉√〈∣∣V OC
1

∣∣2〉〈∣∣V OC
2

∣∣2〉 (11)
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where V OC
v , the open circuit voltage induced in the v-th receiving element. V OC

v is also the v-th element
of the VOC column vector:

VOC =
[

F1 (θ, φ) exp
(−jk̄r̄1

)
Fv (θ, φ) exp

(−jk̄r̄v

)
FN (θ, φ) exp

(−jk̄r̄N

) ]T (12)

In Equation (12), Fv(θ, φ) is the element field pattern given by:

Fv(θ, φ) = hv · Einc (13)

hv is the vector effective length of the v-th element. �rv is the position vector of the v-th element of the
array. Einc is the incident plane wave.

Due to Equations (12) and (13), Equation (11) takes the form:

ρOC
12 =

〈
F1 (θ, φ)F ∗

2 (θ, φ) exp
[−jk̄ (r̄1 − r̄2)

]〉√〈F1 (θ, φ) F ∗
1 (θ, φ)〉 〈F2 (θ, φ)F ∗

2 (θ, φ)〉 (14)

Equation (14) is the general expression for the correlation coefficient that takes into account the use
of directive radiators. Therefore, the most accurate correlation representation is possible when using
Equation (14).

3.2. Correlation: Circumferential Slots on a Paraboloid

Expression (14) is quite general. In this section, the correlation is found for the specific geometry of
slots placed on a paraboloid. For the horizontal plane where θ = π/2, Equation (14) is transformed to

ρOC
12 =

〈
F1 (π/2, φ)F ∗

2 (π/2, φ) exp
[−jk̄ (r̄1 − r̄2)

]〉√〈F1 (π/2, φ)F ∗
1 (π/2, ϕ)〉 〈F2 (π/2, φ) F ∗

2 (π/2, φ)〉 (15)

Taking into account that the following conditions hold, a) rotational symmetry b) same type elements
and c) the elements are arranged in a ring of radius R, then the element pattern obeys:

Fv (π/2, φ) = F (π/2, φ − φv) (16)

where φv is the azimuth angle of the v-th element.
The actual form of the element pattern can result from theory or radiation pattern measurements.

For the case under study i.e., circumferential paraboloidal slots, the element pattern can be
approximated by [23, 32]:

F (π/2, φ) =
(

1 + cos φ

2

)b

(17)

where b is the directivity exponent.
The nominator of the correlation coefficient in Equation (14) using Equations (6) and (7) is

calculated as follows,〈
F1 (π/2, φ)F ∗

2 (π/2, φ) exp
[−jk̄ (r̄1 − r̄2)

]〉
=

2π∫
0

dφf(φ)
(

1 + cos (φ − φ1)
2

)b(1 + cos (φ − φ2)
2

)b

exp
[−jk̄ (r̄1 − r̄2)

]
(18)

The following expressions are introduced to facilitate computation of Equation (18),

Δ�r = �k (�r1 − �r2) (19)
�r1,2 = R · (cos φ1,2x̂ + sin φ1,2ŷ) (20)

�k = −k (cos φx̂ + sinφŷ) (21)

The argument of the exponential term in Equation (18), utilizing Equations (20) and (21), is now
written as

Δ�r = k (cos φx̂ + sinφŷ) [R1 (cos φ1,2x̂ + R1 sin φ1,2ŷ + ẑ1)] [R2 (cos φ1,2x̂ + R2 sin φ1,2ŷ + ẑ2)] (22)
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Since the slots are placed on a ring then due to rotational symmetry,

φ1 = −φ2 = φ̄ (23)

The argument of the exponential term in Equation (22) can now be written as

Δ�r = [−k (x̂ cos φ + ŷ sinφ)]
[(

x̂R1(cos φ̄ + ŷ sin φ̄
)− (R2(cos φ̄x̂ − sin φ̄ŷ)

)]
(24)

Following some algebra, Equation (24) can be expressed as

Δ�r = −k (x̂ cos φ + ŷ sinφ)
(
ΔR cos φ̄x̂ + ΣR sin φ̄ŷ

)
(25)

Or equivalently
Δ�r = −k

(
ΔR cos φ̄ cos φx̂ + ΣR sin φ̄ sinφŷ

)
(26)

where

ΔR = R1 − R2

ΣR = R1 + R2

Assuming further that f(φ) = 1 and using Equations (26) and (29) the nominator of the correlation
coefficient is now expressed as〈

F1 (π/2, φ) F ∗
2 (π/2, φ) exp

[−jk̄ (r̄1 − r̄2)
]〉

=

2π∫
0

dφ

(
1 + cos

(
φ − φ̄

)
2

)b(
1 + cos

(
φ + φ̄

)
2

)b

exp
[
jk
(
ΔR cos φ̄ cos φ + ΣR sin φ sin φ

)]
(27)

Correspondingly, the denominator of the correlation coefficient is given by

〈F1 (π/2, φ) F ∗
1 (π/2, φ)〉 = 〈F2 (π/2, φ) F ∗

2 (π/2, φ)〉 =

2π∫
0

dφ

(
1 + cos φ

2

)2b

(28)

Usually expressions such as Equations (27) and (28) can be computed numerically. Apart from numerical
quadrature, a closed form evaluation is feasible in certain cases. For the case under consideration i.e.,
slots on a ring and for a directivity exponent b = 1, the closed form is derived in this work for the first
time as;

ρ =
2
3
J0(A)

[
1 +

1
2

cos 2ϕ̄
]

+ j
4
3
J1(A) cos ϕ̄ cos ξ − 1

3
J2(A) cos 2ξ (29)

where Jn(A) is the Bessel function of the first kind and

A = k

√
ΔR2 cos2(φ̄) + ΣR2 sin2(φ̄) (30)

ξ = tan−1

(
ΣR

ΔR
tan φ̄

)
(31)

Expression (29) is derived after some lengthy but standard analytical definite integral evaluations
which originate from expanding Equations (27) and (28) into sums of integrals.

4. MIMO CAPACITY EVALUATION MODEL

Consider a wireless link utilizing MTX antennas at the transmitter, MRX antennas at the receiver. The
link capacity C in bps/Hz [2] of the channel operating under a Signal-to-Noise Ratio SNR, is given by:

C = log2

[
det
(

IMR
+

SNR

MT
· H · H ′

)]
(32)

where IMRX
is the identity matrix of order MRX , H the system matrix, and the prime ′ indicates the

conjugate transpose of a matrix.
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When a Kronecker channel model is used [28] the system matrix H is separable in transmitter and
receiver matrices. Furthermore the model is valid for 2 × 2 MIMO that is used in this work and the
model is useful for NLOS situations that can be modeled by Rayleigh fading. The capacity for such a
model in a Rayleigh fading scenario reads [8, 11]:

C = log2

[
det
(

IMR
+

SNR

MT

1
C2

T

1
C2

R

KRHgKT H
′
g

)]
(33)

where Hg is a random complex Gaussian process that models a Rayleigh fading channel. The auxiliary
quantities KT , CT , CR, KR are given by

KR = ZR(dR)ρ12(dR)Z
′
R(dR) (34)

KT = ZT (dT )ρ12(dT )Z
′
T (dT ) (35)

CR =
ZR∗

11

ZR
11 + ZR∗

11

(36)

CT =
ZT∗

11

ZT
11 + ZT∗

11

(37)

where dT and dR are the distances between the elements in the transmitter and in the receiver arrays
respectively, ρ12(dR) and ρ12(dT ) are the correlation coefficients between the antennas at the transmitter
and receiver. ZR and ZT relate the impedance matrices ZT and ZR with the source and the load
impedances ZS and ZL. The source impedance is located at the transmitter and the load impedance is
located at the receiver. A reference impedance ZO = 50Ω is assumed. Conjugate matching of source
and load to the antenna elements is assumed. Equivalently admittances or S-parameters can be used
which can then be transformed to impedances via standard formulas [29].

The impedance matrix can be evaluated via computational methods or analytically using rigorous
electromagnetic analysis such as the UTD approach in the Section 2 [23, 25]. The matrix can be also
filled by using experimental data usually in the form of S-parameters [30].

5. RESULTS

5.1. Evaluation of Mutual Coupling

In this section, results are presented for the mutual coupling between two slots positioned
circumferentially (E-plane) on a perfectly conducting paraboloid. The slot dimensions are λ/2 × λ/5
and the sharpness parameter a is set equal to 1/2. For all computations using the azimuth angle, ϕ, as
a parameter, the position of the first slot is considered fixed at (u1 = 2, v1 = −π/2). The second slot is
moving on the path u2 ∈ (1, 3) and v2 = v1 + φ. For a set of given coordinates, a decreased value of
parameter α brings the slot closer and the coupling gets stronger.

In Figure 2 the mutual impedance between two slots on the paraboloid is shown for two different
values of the azimuth angle ϕ. Each slot is fed by a rectangular waveguide in the dominant vector mode.

5.2. The Pattern Dependent Correlation

The slot pattern dependent correlation has been evaluated both numerically using Equations (27) and
(28) and by the closed form in Equation (29) as a function of ϕ (Figure 3). The numerical integration
is done via a Legendre-Gauss quadrature. The required quadrature computations were performed
using the open source Matlab function lgwt.m [31]. Excellent agreement is observed between numerical
integration and the closed form in Equation (29).

5.3. Capacity under Mutual Coupling and a Pattern Dependent Correlation

A 2×2 MIMO link is assumed using slots on paraboloids for both the transmitter and receiver side. The
transmitter has two elements of a fixed size λ/2× λ/5 separated by 0.35λ for the frequency of interest.
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as a function of the slot separation (sharpness
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Figure 3. The correlation coefficient for the case
of two circumferential slots on a paraboloid as a
function of ϕ in the case of (u1, u2) = (2, 2).
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Figure 5. Average capacity of 2× 2 MIMO Link
as a function of the slot distance separation at the
receiver (ϕ = 20◦, SNR = 10 dB, 3000 samples
of the Gaussian process). The transmitter is
considered planar.

In case of a wideband signal transmission, the computation must be repeated for the corresponding
bandwidth. The capacity is calculated as function of the receiver element separation.

A Rayleigh fading channel is realized using random samples of a complex Gaussian process. Each
displayed capacity value in Figure 4 is an average over 3000 channel realizations and corresponding
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capacity samples. Ideal matching is assumed.
In Figure 4 the capacity is evaluated for different values of the azimuth parameter ϕ between the

receiver elements calculated as a function of the separation between the two slots whereas ϕ is fixed for
the transmitter. The planar case has also been evaluated. The transmitter is considered to be a pair of
conformal slots with a fixed ϕ separation.

In Figure 5 the capacity is evaluated for both planar and conformal receiver configurations but
with the transmitter now being a planar slot array.

It can be observed that the mutual coupling at the receiver has an impact on the capacity which
is more evident for small antenna separations. As the separation gets larger the coupling becomes less
pronounced and the variations are more due to pattern correlation.

The physical basis for the capacity degradation of the conformal case is the pattern dependent
correlation. In other words, due to the curvature and their different orientation the conformal antenna
elements do not face the incoming waves with the same phase. In the planar case, the antennas are in
a much larger degree exposed to the incoming waves in a similar way.

Overall the use of conformal geometry tends to lower the mean capacity, a fact to be taken into
account when using such arrays for a MIMO link.

6. CONCLUSIONS

In this work, a rigorous approach has been presented that take account for the wave correlation model
and the mutual coupling effect when a conformal antenna is used. A modified wave correlation coefficient
which takes into account the antenna element radiation pattern has been presented in the case of slots
on a paraboloid. A closed form was derived for the case of slots placed on a ring and compared
favourably with a numerical solution. The impact of the correlation on the capacity of a MIMO system
has been studied. The obtained results have shown how the capacity of the system is affected when
the slots are conformal. In the 2 × 2 case the capacity degrades by up to 0.5 bps/Hz and should be
taken into account when using such antennas. The hybrid method in this work can be extended to
other propagation models and other curved surfaces that support conformal geometries in order to
evaluate accurately any performance degradation due to coupling or correlation when MIMO operation
is required.
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