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Radiation Field and Optical Coupling Evaluation Using a New
Mathematical Model

Mansour Bacha1, 2, * and Abderrahmane Belghoraf1

Abstract—The mathematical model elaborated in this paper is based on the concept of intrinsic modes
in order to analyze and synthesize optical wave propagation along a non-uniform optical structure
which is used in integrated optics communication as tapered optical coupler. The new mathematical
model is simply developed by introducing modifications to the intrinsic integral, and its numerical
evaluation illustrates the electromagnetic field distribution inside a taper thin film and also outside
the waveguide constituted by the substrate and the cladding of lower refractive index. The proposed
method permits efficiently tracking the behaviour of the optical waves both inside and outside the
optical waveguide, and quantifying the radiation and optical coupling occurring from the taper thin film
of higher refractive index to adjacent mediums until a total energy transfer; this happens at thicknesses
lower than waveguide cutoff thickness of each mode. The new model can be applied to all types of
tapered optical coupler, made from different optical materials and having different wedge angles.

1. INTRODUCTION

Integrated optics, which allows the miniaturization of optical devices, has grown considerably in recent
decades and takes advantage of the relatively short wavelength of the light in this range, which permits
the fabrication of miniature components [1]. Typical dimensions for the optical waveguide are in the
order of a micrometer and the energy in these waveguides can be coupled to the adjacent mediums [1–
3]. The technology required to fabricate planar lightwave circuit components of such dimensions is
therefore common in the well-established micro-electronic technology, using the tools and techniques of
the semiconductor industry [1].

Though there exist several types of optical couplers [2–9], such as prism couplers, grating couplers
and directional couplers, the tapered optical coupler is characterized by its simplicity and compatibility
with planar technology circuits.

In order to analyze and synthesize the propagation, radiation and optical coupling occurring in
a tapered optical coupler, a new mathematical model based on the concept of intrinsic modes will be
proposed. The new model uses a spectral integral for assessing the behaviour of the optical waves within
the non-uniform thin film of greater refractive index, as well as in the substrate and the cladding of
lower refractive indexes.

The concept of intrinsic modes was first developed for the acoustic underwater applications [10, 11],
and for its importance and compatibility with the optical structure, it has been applied in integrated
optics for the non-uniform structure [12–17]. Intrinsic modes are solutions of Maxwell’s equations
satisfying the boundaries conditions at the interfaces of the optical waveguide.

One note that, for the evaluation of the optical propagation in optical waveguides, many analytical
and numerical methods have been applied, such as the beam propagation method (BPM), finite
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difference beam propagation method (FDBPM) and effective index method [18–22], the advantages
of the new method, introduced in this paper, are its simplicity and universality.

For the goal to make the intrinsic modes method applicable to all types of non-uniform waveguides
in integrated optics and thereby be able to determine the electromagnetic field distribution in all media
constituting the optical waveguide and evaluate the coupling efficiency, some modifications, to the
intrinsic integral already established [14, 15, 23], will be introduced.

2. ANALYSIS OF THE STRUCTURE OF TAPERED OPTICAL COUPLER

The structure of the non-uniform optical waveguide studied in this paper is illustrated in Figure 1. It
consists of a tapered thin film of higher refractive index (ng), sandwiched by a substrate and a cladding
of lower refractive indexes respectively (ns) and (nc). The refractive indexes values are defined as:
ng > ns > nc. The thickness ‘T ’ of non-uniform waveguide decreases linearly from the left to the right
(see Figure 1); the light is guided in the medium ng by successive reflections on the waveguide interfaces
Igc (between the mediums ng and nc) and Igs (between the mediums ng and ns).

The rays reach an observation point ‘X’ after undergoing several reflections on interfaces Igc and
Igs [3, 14, 15]. Each pair of reflections on waveguide interfaces increases the angle of incidence ‘θ’ on Igs,
by twice the wedge angle ‘a’, angle formed by the interfaces Igc and Igs. After m pairs of reflections, the
new angle of incidence will become (θ + 2ma) [3, 14, 15]. Consequently, at a certain point, the angle of
incidence will become larger than the critical angle θc, and the energy will thus start to be radiated to
the adjacent mediums nc and ns. After cutoff, the optical energy is coupled from the non-uniform thin
layer to adjacent mediums; for this reason, the tapered optical waveguide is considered as an optical
coupler, in addition to its guiding property [3, 23–26].

In order to analyze the propagation process of the light, one will track all optical rays reflected by
the waveguide interfaces; from an incident ray positioned at X0 to an observation point X, each ray
can be characterized by the number of times it hits the Igc and Igs interfaces. Four kinds of rays will
be defined, and discrete number of rays reaches the observation point X:

Rays that go first towards the interface Igc and will have even or odd reflections at interfaces Igc

and Igs will be defined respectively W+
e (X0,X) and W+

o (X0,X).
Rays that go first towards the interface Igs and will have even or odd reflections at interfaces Igc

and Igs will be defined respectively W−
e (X0,X) and W−

o (X0,X). The four kinds of rays are introduced
and demonstrated in [14, 15, 23].

In previous works applying the intrinsic method to the tapered waveguide [3, 13–15], the phase of
Fresnel coefficient at the interface Igc was posed equal to π, because they have considered the presence
of total and perfect reflection at this interface, and this supposition will not permit evaluation of the
electromagnetic field in the cladding medium nc, and the quantification of the radiation field and the
optical coupling will not be really exact. For these reasons, in our study, we will treat the general case,
using the exact phase of Fresnell coefficient depending on refracted indexes of each medium (ng et nc).
Some papers [12, 16, 17] use the exact Fresnel coefficient to determine the intrinsic integral, but they
follow a different approach from those used by [3, 14, 15, 23].

The phases of the Fresnel coefficients introduced at Igc and Igs interfaces, given below, use a
complementary angle of that given in [2] at each interface for Transverse Electric (TE) mode:
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The cumulative phases Φ+
e , Φ+

o , Φ−
e and Φ−

o [14, 15] of waves after even or odd reflections on Igc and
Igs interfaces are:
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Figure 1. Optical ray from the point X0(x0, r0) to an observation point X(x, r) after many reflections.
Xc(rc, xc) and Xs(rs, xs) represent positions points in the cladding and substrate respectively at
thickness Txc and Txs. Txg represents the tapered waveguide thickness.
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θ+−
m are the incident angles at the mth reflection respectively on Igc and Igs interfaces.

θ+−
n are the maximum incident angles respectively on Igc and Igs interfaces from X0 to X.

In Eqs. (3)–(6), incident angles θ+
m, θ−m are the angles difference after each reflection on Igc and Igs

interfaces: ∣∣θ+
m − θ−m

∣∣ = a (7)

At the mth reflections and on the same interface, the incident angle will be:

θ+−
m = θ+−

0 + 2 · a · (m − 1) (8)

After applying the Euler Maclaurin formula [15, 27] to Eqs. (3)–(6), and replacing the incident angle θn

by θ, we will obtain the expressions of the four kinds of rays for the TE mode as follows:
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In Eqs. (9)–(12), R+
e (θ0, θ), R+

o (θ0, θ), R−
e (θ0, θ) and R−

o (θ0, θ) are geometrical lengths, and
E+

e (θ, φ+(θ)), E+
e (θ, φ−(θ)), E−

e (θ, φ+(θ)) and E−
e (θ, φ−(θ)) are the errors introduced by Euler

Maclaurin formula [27] for the Eqs. (3)–(6).
The contribution of all species of plane waves incidents on the two interfaces Igs and Igc is as [14, 15]:

W (θ0, θ) =
n∑
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Modifications which have been introduced to the mathematical model of intrinsic integral, as it was
done previously, will allow obtaining a greater accuracy in the evaluation of the optical propagation and
radiation, occurring in the waveguide, as will be shown in the next section.

3. DETERMINATION OF THE NEW EXPRESSION OF THE MODIFIED
INTRINSIC INTEGRAL

The new expression of the modified intrinsic integral is obtained by first applying the Poisson
transformation [14, 15, 23, 27] to Eq. (13);

W (θ0, θ)=
∫
c

1
2a
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) · exp(−j · 2π · q · m)
)
dθ (14)

Eq. (14), represents an approximation of a spectrum of all incident waves inside the optical waveguide
where q represents the mode number of the propagation wave, and m is deduced from Eq. (8).

After transformations, Eq. (14) becomes:
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The previous analysis demonstrates the existence of four kinds of waves (see Eqs. (9)–(15)), but the four
waves are interrelated [15] because a wave, which moves first to the higher interface W+, once reflected
can be classified as a wave that goes to the lower interface W−, and the same remark can be applied to
a wave that goes to the lower interface W−, once reflected, it becomes W+.

One notices that the mathematical model introduced in this paper is difficult to use. To evaluate
the modified intrinsic integral, we will consider a fixed position of the light-emitting source and a
variable position of the observation point; that is to say, source parameters which are constants will
have stationary influence in the phase of the modified intrinsic integral during the propagation of optical
waves. For any observation point inside the waveguide as X(X, θ), we define the modified intrinsic
integral as:

W (X, θ) =
1
2a

∫
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(exp(j · P+
e (X, θ)) + exp(j · P+

o (X, θ))+exp(j ·P−
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o (X, θ)))dθ (16)

We have two possibilities to evaluate the modified intrinsic integral according to the remark given after
Eq. (15). The first is to consider the waves going first to upper interface Igc, which have even and odd
reflections on waveguide interfaces:

W+(X, θ) =
1
2a
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(exp(j · P+
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The second possibility is to consider the waves going first to lower interface Igs, which have even and
odd reflections on waveguide interfaces:
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1
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The field distribution in the substrate and cladding is obtained by using the Fresnel transmission
coefficient [11–13] at each interface in the modified intrinsic integral:
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The modified intrinsic integral can be applied to any tapered waveguide in optics or any other
electromagnetic applications governed by successive reflections on waveguide interfaces independent
of the position of the source, considered as source-free [3, 11, 14–17]. The same analysis used in this
work can be perfectly applied to the Transverse Magnetic (TM) mode.

4. RESULT AND COMMENTS

Various methods can be used to assess approximately the spectral integral W+(X, θ) or W−(X, θ):
one can name the Fast Fourier Transform (FFT), steepest descent path (SDP) and the numerical
method consisting in integrating directly along the real axis of the incident angles θ in the interval
(0 < θ < π/2) [3, 12–15, 17, 24].

In order to evaluate numerically the radiation field and optical coupling occurring in the tapered
waveguide, a new model, introduced in this paper, will be applied to: symmetric SiO2/Polymer/SiO2

(ng = 1.77, ns = nc = 1.45) and asymmetric Air/Polymer/SiO2 (ng = 1.77, ns = 1.45 and nc = 1)
waveguides at wavelength λ = 1µm [28], and also to symmetric AlGaAs/GaAs/AlGaAs (ng = 3.44,
ns = nc = 3.36) and asymmetric Air/GaAs/AlGaAs (ng = 3.44, ns = 3.36 and nc = 1) waveguides
at wavelength λ = 1.55µm [22]. We will approximately evaluate the modified intrinsic integral by
integration directly on the real axis of the incident angles θ corresponding to the contour ‘C’ of the
integral, because this numerical method is less difficult and more rapid than the two other methods,
cited before, and it permits computation of the electromagnetic field both in propagation wave and leaky
wave regions [3, 12–15, 17, 24]. Before interpreting Figure 2, it should be noted that for Figures 3–6, the
simulation results obtained correspond to the TE mode.
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Figure 2. Comparison of the cut-off thicknesses of non uniform optical waveguide for the modes:
1 ≤ p ≤ 10, of TE mode (� points) and TM mode (* points) applying the exact Fresnel coefficient given
in Eq. (1). (a) Air/polymer/SiO2 waveguide. (b) Air/AsGa/AlAsGa waveguide.
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Figure 3. Transverse distribution of third intrinsic normalised mode (q = 3) of a symmetric polymer
optical waveguide; the wedge angle is: a = 0.5◦. (a) At thickness T = 3µm, greater than the waveguide
cutoff thickness. (b) At thickness T = 0.7µm, lower than the waveguide cut-off thickness.

Figure 2, illustrates the variation of the waveguide cut-off thicknesses of two asymmetric waveguides
for ten modes (p) of the TE and TM modes using the dispersion equation given in [2] where the integer
p is defined as p ≥ 0. We note that for all modes (1 ≤ p ≤ 10), as shown in Figure 2, the waveguide
cutoff thicknesses of TM mode are greater than the TE mode ones.

The simulation results, given in Figures 3 and 4, show a normalised intrinsic field distribution of the
third mode (q = 3); this mode was chosen because, in our case, we consider odd modes as giving better
views of the symmetries of the field distribution in adjacent mediums. Intrinsic modes are normalized
to a maximum value of the third mode for two wedge angles, a = 0.5◦ and a = 5◦, respectively.

In Figure 3(a), we note symmetric distribution of the evanescent field in adjacent mediums, but the
electromagnetic field is concentrated in the tapered guide, and this is true before the waveguide cutoff.
For thickness lower than cutoff thickness (Figure 3(b)), majority of the field is radiated to adjacent
mediums (ns and nc) outside the tapered waveguide (ng).
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Figure 4. Transverse distribution of third intrinsic normalised mode (q = 3) of an asymmetric polymer
optical waveguide; the wedge angle is: a = 5◦. (a) At thickness T = 3µm, greater than the waveguide
cut-off thickness. (b) At thickness T = 0.8µm, lower than the waveguide cut-off thickness.
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Figure 6. Third mode (q = 3) Power distribution
in asymmetric non uniform optical waveguide
constituted by (Air/GaAs/AlGaAs) for the wedge
angle a = 10◦.

For asymmetric waveguide (Figure 4), before cutoff thickness, the field is, as for the symmetric
waveguide, concentrated in the tapered waveguide, but the evanescent fields distribution are not
symmetric in the adjacent mediums (Figure 4(a)). Figure 4(b), illustrates the field distribution after the
cutoff thickness. We note that the field is coupled by radiation phenomena, almost entirely to substrate
medium (ns); optical coupling to the cladding medium is small compared to the substrate, and it will
be insignificant with the decrease of the waveguide thickness.

Figures 5 and 6 show the power distribution of the third mode in different mediums of two tapered
couplers, for two wedge angles, respectively a = 1◦ and a = 10◦. Figure 5 depicts the gradual power
transfer from tapered waveguide ng to adjacent mediums nc and ns. We note, after the cutoff, that all
optical energy is transferred to adjacent mediums. For asymmetric waveguide, illustrated in Figure 6,
optical energy is principally transferred to the substrate.

Simulation results demonstrate the power of the new model introduced in this paper. The proposed
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method permits efficiently tracking the behaviour of the optical waves both inside and outside of the
optical waveguide and quantifying the radiation and optical coupling occurring in the optical tapered
coupler.

The new model of intrinsic integral developed gives a better view of the field distribution in different
mediums of the tapered waveguide and permits better evaluation of the optical coupling than old models,
as will be shown in the future results.

The new model can be perfectly used to evaluate the optical phenomena of propagation, radiation
and optical coupling occurring in all types of non-uniform optical waveguides which can be made from
different optical materials and having different wedge angles formed by the waveguide interfaces.

The results obtain by using the new intrinsic model are very close to experimental results [25] as
will be demonstrated in future works.

5. CONCLUSION

The new model of intrinsic concept introduced in this paper permits the efficient evaluation of the
electromagnetic field distribution in all mediums constituting the tapered optical coupler for different
refractive indexes and different wedge angles formed by the waveguide interfaces.

By using the modified intrinsic model, one can efficiently track the power distribution present in the
three regions of tapered optical waveguides before and after the waveguides cutoff and can also evaluate
the optical coupling occurring in the optical couplers from the tapered thin film to the adjacent mediums
by the radiation phenomena

The simulation results show, for thicknesses greater than the waveguide cutoff thickness, the
electromagnetic field concentrated in tapered optical waveguide (nc), and when the thicknesses become
lower than the cutoff thickness, the energy is radiated to the substrate and cladding medium (ns and nc).
The new model can be applied to all types of non-uniform tapered optical waveguide, thus modulate the
propagation and radiation of the electromagnetic field, and systematically evaluate the optical coupling
phenomena occurring in an optical coupler.
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