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Analytical Electromagnetic Analysis of Multi-Phases Cage
Rotor Induction Motors in Healthy, Broken Bars

and Open Phases Conditions

Lazhar Roubache*, Kamel Boughrara, and Rachid Ibtiouen

Abstract—This paper presents an analytical calculation of magnetic field and electromagnetic
performances of 3-, 5-, 7-, 9-, 11-phases cage rotor induction machines in healthy, broken bars and
open phase’s conditions. This model is formulated to consider all types of multi-phase/multipoles
windings and used for the identification of electrical equivalent circuit (EEC) parameters It’s based
on the subdomain model and the resolution of Poisson’s, Laplace’s, and Helmholtz’s equations in each
subdomain issued from Maxwell equations using the method of separation of variables and Fourier series
when the machines are fed with sinusoidal current and voltage. The developed analytical model permits
the calculation of magnetic field distribution, eddy current, circuit model parameters, and unbalanced
magnetic radial force due to broken bars, electromagnetic torque and absorbed stator current. A
comparative analysis between the studied five multi-phases machines is done with considering identical
power rate. The analytical results are validated by those issued from the finite-element method (FEM).

1. INTRODUCTION

Polyphase cage rotor induction motors have many advantages, thanks to their easy and robust
construction. This type of machine is being extensively used in several applications [1–3]. In
the literature many multi-phases machine topics have been addressed, such as multi-phase machine
advantages, properties, modeling, and performance with different control techniques [2–5]. One further
advantage is that multi-phase machines are said to be fault-tolerant, offering greater security in mission-
critical applications [5].

The designs and developments of multi-phase induction machines depend on the existing computer-
aided analytical design tool. It’s possible to use numerical methods (i.e., finite elements or the finite
differences) [3, 6, 7] to analysis the electromagnetic performances of multi-phase induction machines,
and their react against fault in rotor bars or in ones of their phases. However these approaches are
time consuming and not suitable for the optimization problems. Some of recent 2-D static analytical
predictions of magnetic field distribution are proposed in [8–12]. The model presented in [8] which
takes into account rotor and stator semi-slots gives good results in the calculation of magnetic field,
eddy-currents, EEC parameters, and steady-state performances of three phase’s induction motors in
healthy and broken bar conditions.

In this paper, we generalize this model for n-phases cage rotor induction motors without rotor and
stator semi-slots in healthy case, broken bars and open phase’s conditions, and use it for analysis of 3-,
5-, 7-, 9-, 11-phases identical power rated multi-phase machines. To facilitate the evaluation of various
stator designs, the same phase current as well as flux per pole is used in all machines.
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The contributions of this paper are divided among the various sections. Section 2 includes the
machine design and specifications, and the differential equations to be solved in each part of the machine.
Section 3 presents the analytical solutions of Laplace’s, Poisson’s, and Helmholtz’s equations. Section 4
shows the identification of the EEC of the multi-phases machine parameters and the calculation of radial
force in the air gap created in broken bars condition. It is noticed that the radial force is null for open
phases condition. Symmetry of magnetic flux lines is also realized in this case. Results and validation
of the analytic model with FEM [14], and comparative study between the n-phase machines designed
is given in Sections 5 and 6. Finally, the conclusion in Section 7.

2. PROBLEM DEFINITIONS

In this paper, a subdomain analytical model based on Maxwell equations is applied to analyze the
electromagnetic performances of 3-, 5-, 7-, 9-, and 11-phases machines in healthy and fault conditions
and fed with current and voltage. The stator winding of the studied machines is distributed in slots
with integer number of slot per pole and per phase. The five machines have the same output power, to
get a comparative study and in the same time validate the analytical multi-phase model.

2.1. Machines Design

In this section, a low-voltage three-phase machine is used as reference for comparison with other multi-
phase machines. Fig. 1 shows the machine model where Region I represents the air-gap, Region II the
rotor bars, Regions III the stator slots.

Using principles of the design in [13], the other multi-phase machines are designed to accommodate
the constant volume rotors and obtain the same output power and phase current level. Hence, over the
parameters given in the following equations, all the other parameters are the same for all machines, the
five designed machines and their corresponding parameters are shown in the Table 1.

Figure 1. Studied multi-phases cage rotor induction machine.

1 The number of stator slots Qs which is selected for having an integer number of slots per pole and
per phase, and get the values close among all machines.

2 Opening angle slot (in degrees) is calculated from

c(n) =
360
Qs(n)

(1)

3 Number of turns per phase Nph assumed to be equal to

Nph(n) =
3Nph(3)

n
(2)

4 Number of conductors per stator slot Nc can be expressed as shown in

Nc(n) =
2nNph(n)

Qs
(3)
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5 The stator slot area is given by

S(n) =
Nc(n)
Nc(3)

S(3) (4)

6 External radius of stator slot
R4(n) =

√
2S(n)c(n) +R2

3 (5)

Table 1. Design details of the five studied machines.

Parameters Symbol Unit 3-ph 5-ph 7-ph 9-ph 11-p

Number of pole pairs p - 2 2 2 2 2

Number of stator slots per pole per phase q - 3 2 2 1 1

Number of stator slots Qs - 36 40 56 36 44

Number of turns per phase Nph - 90 56 40 30 24

Number of conductors per stator slot Nc - 15 14 10 15 12

Stator slot opening width c deg 5 4.5 3.21 5 4

Radius of external stator surface Rext mm 100 100 100 100 100

External radius of stator slot R4 mm 83 83.7 83.7 83 82.6

Internal radius of stator R3 mm 61 61 61 61 61

Number of rotor slot Qr - 30 30 30 30 30

External radius of rotor slot R2 mm 60 60 60 60 60

Internal radius of rotor slot R1 mm 40 40 40 40 40

Rotor slot opening width b deg 4.2 4.2 4.2 4.2 4.2

Stack length Lu mm 200 200 200 200 200

Conductivity of rotor bars σ MS/m 36 35 35 35 35

Peak phase current Im A 20 20 20 20 20

Peak phase voltage Vm V 175 105 75 58.3 47.7

2.2. Magnetic Field Equations

The analytical model is formulated in complex vector potential and two-dimensional polar coordinates
with the following assumptions.

• The stator and rotor core are assumed to be infinitely permeable with zero electrical conductivities;
• All multi-phases machines are supplied with a balanced n-phases sinusoidal currents or a balanced
n-phases sinusoidal voltage;

• The time variation of the magnetic field is assumed to be sinusoidal;
• The resistance of the end-rings connecting the rotor bars are not considered; The current density

in the stator slots has only one component along the z-axis;
• The stator and rotor slots are open and have radial sides without semi-closed slots, as shown in

Fig. 1.

The general partial differential equation issued from Maxwell’s equations in a continuous region in
term of vector potential A, which has one component in z-axis and independent of z, can be expressed
by [7] as

−Δ Az(r, θ, t) = μ0μrJs(r, θ, t) − μ0μrσ

(
∂ Az(r, θ, t)

∂t
+ Ω

∂ Az(r, θ, t)
∂θ

)
(6)

In static analysis of induction motors, the first harmonic of the magnetic potential is considered
dominant, and the relative movement between the stator and the rotor is represented by relative time
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pulsation. Therefore, we assume that the pulsation of the potential vector is ω in the air-gap/stator
regions and ωrm in the rotor regions by mean of speed addiction

ωrm = sω = ω − pΩ

where s is the slip, p the number of pole pairs, and Ω the constant angular velocity of rotor.
From the preceding considerations, Eq. (6) becomes

−Δ Az(r, θ, t) = μ0μrJs(r, θ, t) − μ0μrσ
∂ Az(r, θ, t)

∂t
(7)

and

Az(r, θ, t) = �e{Az(r, θ) ejωt} (8)
Js(r, θ, t) = �e{Js(r, θ) ejωt} (9)

in the air-gap and stator (i.e., Regions I, III)

Az(r, θ, t) = �e{Az(r, θ) ejωrmt} (10)

in the rotor (i.e., Regions II).
From Eqs. (7) to (10), the magnetic vector potential A(r, θ) in each region is given by

ΔAz(r, θ) = 0 In Regions I (11)
ΔAz(r, θ) = jμ0μrσωrmAz(r, θ) In Regions II (12)
ΔAz(r, θ) = −μ0Js(r, θ) In Regions III (13)

where Js(r, θ) = Ji is the stator slots current density, which is constant in each slot, σ the electrical
conductivity of the rotor bars, μr = 1 the relative permeability of the rotor bars, j =

√−1 the complex
number, and μ0 the permeability of vacuum.

The field vectors
−→
B and

−→
H , in the various regions, are coupled by

−→
B (r, θ) = μ

−→
H (r, θ) (14)

The radial and tangential components of the magnetic flux density are deduced from A(r, θ) [10].

3. MAGNETIC FIELD SOLUTION

Using the Fourier series analysis and the method of separation variables, the solution of Eqs. (11)–(13)
leads to determining the magnetic field distribution in all regions.

3.1. Solution of Laplace’s Equation in the Air-Gap

In Region I, which is located between the radii R2 and R3 in Fig. 1, the solution of complex Laplace’s
Equation (11) is

AzI(r, θ) = A10 +A20 ln(r) +
∞∑

k=1

(
A1kr

k +A2kr
−k

)
sin(kθ) +

∞∑
k=1

(
A3kr

k +A4kr
−k

)
cos(kθ) (15)

where k is the spatial harmonic orders, and A10 − A4k are complex integration constants in Region I.
This general solution accounts for the periodic boundary condition between 0 and 2π considering all
types of multi-phase/multi-poles windings.

3.2. Solution of Helmholtz’s Equation in the Rotor Bars

The jth rotor bar (i.e., Region II) is a slot with the classical boundary conditions shown in Fig. 2(a).
The solution of the complex Helmholtz’s Equation (12) is given by [8]

AzIIj(r, θ) =
∞∑

m=0

Bjmgm(r) cos
(
mπ

b

(
θ − gj +

b

2

))
(16)
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(a) (b)

Figure 2. The boundary conditions of (a) rotor and (b) stator slots regions.

where Bjm are complex integration constants, and m is the spatial harmonic orders. For a Qr rotor
bars, j varies from 1 to Qr and gj is the angular position of the jth rotor bar and b the bar opening in
radians. The expressions of gm(r) depend on the expression of α.

For α = (−jωrmσμ0)
1
2

gm(r) = Jmπ
b

(αr) −
Jmπ+b

b
(αR1)αbR1 −mπJmπ

b
(αR1)

Ymπ+b
b

(αR1)αbR1 −mπYmπ
b

(αR1)
Ymπ

b
(αr)

For α = (jωrmσμ0)
1
2

gm(r) = Imπ
b

(αr) −
Imπ+b

b
(αR1)αbR1 +mπImπ

b
(αR1)

−Kmπ+b
b

(αR1)αbR1 +mπKmπ
b

(αR1)
Kmπ

b
(αr)

where Jmπ
b

(αr), Ymπ
b

(αr), Imπ
b

(αr) and Kmπ
b

(αr) are the Bessel and modified Bessel functions of the
first and second kinds of the order mπ

b .

3.3. Solution of Poisson’s Equation in the Stator Slots

The magnetic field in the stator slots is calculated analytically by solving Poisson’s Equation (8). The
solution of Eq. (13) in the ith slot subject to the boundary conditions shown in Fig. 2(b) is given by

AzIIIi(r, θ) = Ci0 +
1
2
μ0JiR

2
4 ln(r) − 1

2
μ0Jir

2 +
∞∑
l=1

Cilhl(r) cos
(
lπ

c

(
θ − βi +

c

2

))

hl(r) = r
−lπ

c +R
−2 lπ

c
4 r

lπ
c

(17)

where Ci0 − Cil are complex integration constants and l is the spatial harmonic orders.

3.4. Interfaces Conditions

To determine Fourier series unknown constants, A10 − A4n, Bj0 − BQrM and Ci0 − CQsL of magnetic
field solutions in all regions, interfaces conditions should be introduced.

The interface conditions between Regions I and II at R2 are

AzI(R2, θ) = AzII(R2, θ) (18)
HI(R2, θ) = HII(R2, θ) (19)

The interface conditions between Regions I and III at R3 are

AzII(R3, θ) = AzIII(R3, θ) (20)
HII(R3, θ) = HIII(R3, θ) (21)
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The preceding four interface conditions permit to determine a linear system of equations which
depend on the harmonic orders (k, m, and l) choice in each region. Some details of the development of
interface conditions can be found in [8] and [10].

3.5. Broken Bars Condition

The broken rotor bars are represented by Region IId having an electrical conductivity equal to zero.
The resistance of rotor bars is infinity in this case and the eddy current is null.

The solution of Equation (12) becomes

AzIIjd
(r, θ) = Bj0 +

∞∑
m=1

Bjmhm(r) cos
(
mπ

b

(
θ − gi +

b

2

))

hm(r) = r
−mπ

b +R
−2mπ

b
1 r

mπ
b

(22)

3.6. Rotor Bar Current and Winding Definition

The eddy-current density induced in the jth rotor bar is given by
Jbj(r, θ) = −jωrmσjAzIIj(r, θ) (23)

The current in the jth rotor bar is

Ibj =

R2∫
R1

gj+
b
2∫

gj− b
2

Jbj(r, θ)drdθ (24)

It should be noticed that in the broken bars, the electrical conductivity is null, and the current density
is zero.

The stator current density in the slots for multi-phase single layer winding is defined by a connection
matrix between phase currents and stator slots as (for one pole)

C =

i︷︸︸︷
1
2
...

n+1
2

n+3
2
...
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1:q︷︸︸︷
1..1

q+1:2q︷︸︸︷
0..0

2q+1:3q︷︸︸︷
0..0 . . .

(n−2)q+1:(n−1)q︷︸︸︷
0..0

(n−1)q+1:nq︷︸︸︷
0..0

0..0 0..0 1..1 . . . 0..0 0..0
...

...
...

. . .
...

...
0..0 0..0 0..0 . . . 0..0 1..1
0..0 −1..− 1 0..0 . . . 0..0 0..0
...

...
...

. . .
...

...
0..0 0..0 0..0 . . . −1..− 1 0..0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where n is the number of phases and q the number of slots per pole and per phase.
It is important to notice that the proposed analytical model can be easily extended to double layer

winding.
For n-phase induction motors supplied by balanced sinusoidal current, stator current vector is

defined as
Is = Im

[
1 e−j 2π

n . . . e−j 2(n−1)π
n

]
Notice that in the open phase condition the current of phases is zero, and the current vector will be.

Is = Im

⎡
⎢⎣1 e−j 2π

n . . .

phOpen︷︸︸︷
0 . . . e−j

2(n−1)π
n

⎤
⎥⎦

The current-density in stator slots is

Ji =
Nc

S
[Is] · [C] (26)

where S is the surface of the stator slots and Nc the number of conductors in the slot.
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4. CIRCUIT MODEL PARAMETERS IDENTIFICATION, STATOR CURRENT,
TORQUE, AND RADIAL FORCES

The determination of the fluxes permits the calculation of lumped parameters of the equivalent circuit
of induction motor. Neglecting the iron losses and assuming the first harmonic hypothesis, the EEC
shown in Fig. 3 can be considered.

Figure 3. EEC of one phase for the cage rotor multi-phases induction motors.

In this circuit, the flux leakage inductance is lumped in the secondary branch. The electrical
components of the circuit are defined by:
1) Rs is the stator resistance which can be determined by classical analytical formula;
2) Lm is the stator inductance (i.e., the magnetizing inductance);
3) Xr(s) is the leakage inductance expressed in the rotor frame which depends on the slip;
4) Rr(s) is the equivalent resistance expressed in the rotor frame which depends on the slip.

The magnetizing inductance Lmi can be determined by performing a simulation of no-load operation
(i.e., s = 0). With an input n-phase currents, the resolution of the field equations allow determining
the magnetic flux vector Ψ = [ψ1 . . . ψn]. So we have.

Lmi = ψi/Isi

The complex phases flux vector is given by

Ψ = Nc [φ1 . . . φQs ] · [C]T (27)

where the flux linkage is calculated from the method based on Stokes theorem using the vector potential
in the stator slots

φi =
Lu

S

R4∫
R3

βi+
c
2∫

βi− c
2

AzIIIi(r, θ)rdrdθ (28)

where AzIIIi(r, θ) is the vector potential given by (14).
The calculation of the rotor parameters needs the simulation of the electromagnetic behavior for a

given value of the slip s �= 0. For load operation, an input phase current is imposed. The resolution of
the field equation allows determining the magnetic fluxes. Then, the secondary current Ir is determined
for each phase by

Iri(s) = Isi − ψi/Lmi (29)

The secondary impedance Zri(s) can be calculated for each phase by

Zri(s) = jωψi/Iri(s)
Rri(s) = s �e{Zri(s)}
Xri(s) = �m{Zri(s)}

(30)

This approach is adopted for the calculation of the EEC parameters by using both FEM and
analytical model presented in this paper. When the machine is fed with a constant n-phases voltage
Vs = Vm[1 e−j 2π

n . . . e−j
2(n−1)π

n ] the stator current for each slip can be determined for by the EEC as

Isi(s) = Vsi/(Rsi + (Zri(s)//Lmiω)) (31)
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In healthy condition the EEC parameters are the same for all phases, although in the case of broken
bars or open phase’s conditions, the EEC parameters are different between the phases, which induce
different phases current. The torque-slip characteristic can be obtained analytically and by FEM. Of
course, for a given stator current at a given slip, the torque is calculated by the Maxwell stress tensor
method in Eq. (33). The electromagnetic torque can also be determined using the EEC as

Tem =
Ptr(s)

ω
p

(32)

where Ptr(s) is the active power transformed to rotor.
According to the Maxwell stress tensor method, the electromagnetic torque Tem is computed using

the analytical expression

Tem =
LuR

2
g

μ0

2π∫
0

1
2
Re{BIr(Rg, θ) ·B∗

Iθ(Rg, θ)}dθ (33)

where Rg is the radius of a circle placed at the middle of the air-gap, Lu the axial length of the motor,
and BIr(Rg, θ) and B∗

Iθ(Rg, θ) are, respectively, the radial and tangential components of the flux density
in the middle of air gap.

The radial and tangential-components of magnetic pressure in function of the spatial angle of the
machine θ in the middle of air gap for giving slip s are defined as [11].

Pr(s, θ) =
1

2μ0

(
BIr(Rg, θ)2 −BIθ(Rg, θ)2

)
(34)

Pθ(s, θ) =
1
μ0
BIr(Rg, θ) · BIθ(Rg, θ) (35)

The x- and y-components of the radial force for giving slip are calculated as

Fx(s) = RgLu

2π∫
0

[Pr · cos(θ) − Pθ · sin(θ)]dθ (36)

Fy(s) = RgLu

2π∫
0

[Pr · sin(θ) + Pθ · cos(θ)]dθ (37)

The radial force magnitude is
Fr(s) =

√
F 2

x + F 2
y (38)

Notice that in the healthy bars conditions, the radial force is null because of the symmetry of magnetic
pressure created in each pole, but when ones of rotor bars broken, this pressure will be non-symmetric
and a radial force will appear.

5. RESULTS AND VALIDATION

In this section, the 5-phase machine is taken as reference to validate the analytical model. All results
are verified by FEM [14].

5.1. No-Load Condition with Current Supply

Under no-load condition (i.e., s = 0.0001), Fig. 4 shows the flux lines in the 5-phase machine obtained
with FEM. The radial and tangential components of the flux density distribution in the middle of the
air-gap are shown in Fig. 5. A very good agreement can be seen between the numerical and analytical
results.
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Figure 4. Flux lines for 5-phase machine at no-load condition (i.e., s = 0.0001) obtained with FEM.
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Figure 5. (a) Radial and (b) tangential components of the flux density in the middle of the air-gap
for 5-phase machine and no-load condition (i.e., s = 0.0001).

5.2. Locked-Rotor Condition with Current Supply

The flux lines, the real part of eddy-current density distribution in the middle of the rotor bar No. 8
and the real part of the current in each rotor bars are shown in Fig. 6. The radial and tangential flux
density waveform in the middle of the air-gap is shown in Fig. 7. Compared with the no-load results,
one can observe the influence of the eddy-currents on both the radial and the tangential flux densities.
It can be seen that the radial component of the flux density decreases.

5.3. Circuit Model Parameters, Stator Current, and Torque

The values of the self-inductances calculated by FEM at s = 0.0001 for the 5-phase machine is
Lmω = 7.48 while the analytical model gives Lmω = 7.49. Fig. 8 shows the evolution of parameters Rr

and Xr versus the slip. There is a good agreement between analytic and FEM results.
The comparison of FEM, circuit model, and analytical calculation of the current-slip and torque-

slip characteristics under constant voltage are shown in Fig. 9. It can be seen that the results obtained
analytically are in good agreement with FEM.
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Figure 6. (a) Flux lines for 5-phase machine, (b) flux lines for 3-phase machine, (c) real part of eddy-
current density distribution (A/mm2), and (d) the current in the rotor bars for 5-phase and 3-phase
machines at locked rotor condition (i.e., s = 1).
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Figure 7. (a) Radial and (b) tangential components of the flux density in the middle of the air-gap
for 5-phase machine and locked rotor condition (i.e., s = 1).
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Figure 9. (a) Current-slip and (b) torque-slip characteristics for 5-phase and 3-phase machines under
constant balanced voltage.

5.4. Magnetic Field and Eddy-Current On-Load at s = 0.02

Under constant voltage, on-load flux lines and current in each rotor bars at s = 0.02 are shown in
Fig. 10. The corresponding radial and tangential flux density waveforms in the middle of the air-gap
are shown in Fig. 11. A very good agreement can be seen between the numerical and analytical results.

5.5. Broken Bars Condition

In this section, the bars Nos. 9 and 10 are supposed broken as a machine fed with a balanced
constant voltage, the stator currents are not balanced (Fig. 13(a)). The flux lines, eddy-current density
distribution and the current in the rotor bars are shown in Fig. 12 in the case of bars being broken (i.e.,
σ9 = σ10 = 0). Fig. 13 shows the stator current, electromagnetic torque, and created unbalanced radial
force versus slip.

A comparison between one broken bar and two broken bars is shown in Fig. 14. One can see that
the influence of broken bars has been affected the torque and create unbalanced force.
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Figure 10. (a) Flux lines for 5-phase machine, (b) flux lines for 3-phase machine, and (c) the current
in the rotor bars for 5-phase and 3-phase motors on-load at s = 0.02.

0 30 60 90 120 150 180
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Angle (mech. degrees)

B
r(

T
)

Femm

Analytic

0 30 60 90 120 150 180
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Angle (mech. degrees)

B
θ
(T

)

Femm

Analytic

(a) (b)

Figure 11. (a) Radial and (b) tangential components of the flux density in the middle of the air-gap
for 5-phase machine on-load at s = 0.02.
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Figure 12. (a) Flux lines, and (b) the current in the rotor bars for 5-phase machine on-load at s = 0.02
and bars 9 and 10 broken.
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Figure 13. (a) Phases currents, (b) electromagnetic Torque, and (c) radial force versus slip for 5-phase
machine and two broken bars condition.
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Figure 14. Comparison between (a) radial force, (b) Torque versus slip characteristic for 5-phase
machine in healthy, one broken bar, and two broken bars conditions.

5.6. Open Phases Condition

In this section, the phases Nos. 1 and 2 are supposed open; therefore, their currents are null (Fig. 16).
The flux lines, eddy-current density distribution and the current in the rotor bars are shown in Fig. 15
in the case of 2 phases open (i.e., I1 = I2 = 0). Fig. 16 shows the stator current, the electromagnetic
torque versus slip. A comparison between one phase and two phases open are shown in Fig. 16(c). One
can see that the influence of open phases which has affected the torque.
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Figure 15. (a) Flux lines, and (b) the current in the rotor bars for 5-phase machine on-load at s = 0.02
and phases 1 and 2 open.

6. INFLUENCE OF NUMBER OF PHASE IN BROKEN BARS AND OPEN PHASES
CONDITIONS

In this section, a comparative study using the analytic model among all polyphase induction machines
in several states is presented. This study allows showing how the number of phases influences in the
fault case of polyphase machines in the rotor or in the stator. In healthy case (Fig. 17) all machines
have close characteristics for nominal running. The 11-phase machine has a more important maximum,
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Figure 16. (a) Phases currents, and (b)–(c) electromagnetic Torque versus slip for open phases
condition in 5-phase machine.
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Figure 17. (a) Electromagnetic Torque, (b) stator current versus slip in healthy case.

and start-up torque, and the same observation is noticed for stator currents.
Figure 18 shows torque versus slip characteristics for broken bars conditions. The electromagnetic

torque is not highly affected for nominal running, although the maximum and start-up torques decrease
by 37.5% for 3-phase machine and only 17.24% for 11-phase machine.
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Figure 18. Electromagnetic Torque for (a) one broken bar, (b) two broken bars.
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Figure 19. Electromagnetic Torque for (a) one open phase, (b) two open phases.

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

Slip

F
ra

d
ia

l(N
)

3-phase

5-phase

7-phase

9-phase

11-phase

0 0.2 0.4 0.6 0.8 1
0

400

800

1200

1600

2000

2400

Slip

F
ra

d
ia

l(
N

)

3-phase

5-phase

7-phase

9-phase

11-phase

(a) (b)

Figure 20. Radial force versus slip for (a) one broken bar, and (b) two broken bars conditions.
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For the open phase’s condition shown in Fig. 19, the torque is affected for all values of slip. This
effect is reduced for higher number of phases’ machine. For 11-phase machine, the torque decreases by
6% for nominal running and by 17% for start-up torque. Fig. 20 shows the radial force created by the
broken of one of the rotor bars. For a slip smaller than 0.2, the 11-phase machine is the least affected.

7. CONCLUSION

In this paper, we propose an improved analytical method for predicting magnetic field distribution,
electromagnetic performances and parameters of electrical equivalent circuit in healthy, broken bars,
and open phase’s conditions of cage rotor multi-phases induction motors. The presented analytical model
based on subdomain method is used to determine analytical expressions of eddy current, electromagnetic
torque, stator current and unbalanced magnetic force (UMF) in healthy, broken bars and open phase’s
conditions. Both cases are considered: the machine fed with sinusoidal current or voltage. Five identical
powers rated machines are designed with analyzing the effect of a number of open phases and broken
bars on electromagnetic torque, stator current and UMF. We have seen that the augmentation of
number of phases reduces the radial force due to broken bars which is null in healthy case for any
multi-phases machine. It is noticed that the start-up torque of the machine in broken bars or open
phase’s conditions is not highly affected for higher multi-phases machines which offer a greater security
in several applications.
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