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A New MIMO Channel Model Incorporating Antenna Effects

Qiuming Zhu*, Cuiwei Xue, Xiaomin Chen, and Ying Yang

Abstract—Antenna characteristics including mutual coupling and polarization/depolarization have
great effects on the performance of Multiple-input multiple-output (MIMO) system. In this paper, new
close-form expressions of signal vector, signal power and signal correlation incorporating mutual coupling
and polarization/depolarization are derived firstly. On this basis, we present a new MIMO channel
model, which takes into account antenna effects such as mutual coupling and antenna polarization, as
well as propagation effects such as scattering, clustering and channel depolarization. In particular,
the detailed expressions of a 2 × 2 MIMO channel considering mutual coupling and polarization
configurations of slanted ±45◦ and V/H are derived. Finally, these expressions are applied to the
propagation scene of suburban macro cellular to analyze the channel correlation and capacity, which is
very helpful in designing and optimizing a MIMO system.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems, where multiple antennas are used at both transmitter
and receiver, are expected to play a key role in improving the capacity of wireless communication
systems. However, insufficient antenna spacing and lack of scatterings will reduce capacity due to the
increased channel correlation [1]. Moreover, when antennas are placed close to one another, mutual
coupling (MC) could not be negligible, which will affect channel correlation significantly [2]. In [3],
a deeper understanding of MC mechanism between antennas was given and a MC matrix had also
been derived in particular. Wu and Bergmans in [4] presented a MIMO channel matrix considering
MC, and studied the effects of MC on spatial correlation. The channel capacity of MIMO channel
was simulated to study the significance of MC effects, which shows that capacity can be increased by
properly incorporating coupling in [5].

On the other hand, polarized antennas can offer a much better separation between channels, which
draws ever more attention in the design of diversity systems, as well as MIMO systems [6]. MIMO
systems where multipath fading is only partially correlated could use polarization diversity to provide
a higher diversity gain. In the fading environment, the performance of a MIMO diversity system is
improved [7], and the capacity gain can be obtained through polarization diversity [8]. As to polarization
diversity, [9] had discussed possible effects of different spatial correlation coefficients and average power
ratios due to different antenna array structures on the diversity gain. The polarized MIMO channel
model including 2D and 3D, was provided in detail, which took into account both azimuth and elevation
spectrum for different environments in [10]. Manh-Tuan Dao [11] proposed a new 3D polarized geometry
model and derived a close-form expression of spatial correlation, including both arbitrary antenna
structure and 3D propagation environment. A analytical upper bound and lower bound on the ergodic
capacity of polarized distributed antenna system and its relation with polarization effect are discussed
in [12]. Joung et al. [13] analyzed the effects of polarization mismatch and space-correlation to a
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multiple-input and single output (MISO) channel, and found that polarization mismatch decreases the
ergodic capacity by degrading signal power, whereas space-correlation does this by reducing diversity
gain.

Therefore, the effects of antenna array including spacing, pattern, orientation and polarization
should be taken into account to evaluate the performance of MIMO systems [14, 15]. In this paper,
the mechanism of MC and polarization is studied in detail, and on this basis the power and spatial
correlation expressions of MC and polarization are derived. Finally, a new MIMO channel matrix and
spatial correlation expression combining MC with polarization are given.

The paper is arranged as follows. Section 2 presents a system model of MIMO channel and derives
expressions of power and spatial correlation. Section 3 analyzes the effect of antenna configurations
which contains MC and polarization. Simulation results of spatial correlation and channel capacity of
2×2 MIMO channel with different antenna configurations are presented in Section 4. Finally, conclusions
are drawn in Section 5.

2. SYSTEM MODEL

We consider an MIMO system with Mt transmitting antennas and Mr receiving antennas, where
scatterers around the antenna arrays are grouped into clusters as shown in Fig. 1. The location of
clusters on transmitter and receiver sides is defined by mean angle of departure (AoD) and mean angle
of arrival (AoA) respectively. vr, θv

r and vt, θv
t are moving speed and direction of receiver and transmitter

sides.
The ray-based clustered approach is widely used to model MIMO channels [16], which has also

been adopted by WINNER channel model, 3GPP SCM, and IEEE 802.11n channel model. Using the
clustered channel model, the wide-band channel response matrix is given as

Ĥ(t, τ) =
L∑

l=1

Hl(t)δ(τ − τl) (1)

where Hl(t) is the channel matrix caused by the lth cluster of scatterers or the channel corresponding
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to the lth cluster. Hl(t) can be further represented by a normalized sum of sub-rays within the cluster,

[Hl]Mr×Mt =
∫∫

{φl
r , φl

t}
ej2πfctej2πfc

vt cos(φl
t−θv

t )+vr cos(φl
r−θv

r)
c

tp
(
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r

)
p
(
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)

�
{
yr

(
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)(
yt

(
φl

t

))T
}

dφl
rdφl

t (2)

Here, AoD and AoA within the lth cluster are denoted as φl
t and φl

r. p(φl
r) and p(φl

t) denote the
probability distribution function (PDF) of AoA and AoD, respectively. In this paper, we only consider
flat fading channel. yt(φt) and yr(φr) are the signal vectors of transmitter and receiver, which can be
expressed as

ync
t/r

(
φt/r

)
= gnc

(
φt/r

) · a (φt/r

)
(3)

where gnc(φt/r) is the antenna gain and a(φt/r) the antenna steering vector. In the following, we take
an example of receiver side due to the symmetry of two sides. Then the power of kth receiving signal
can be calculated by

Pnc
k =

∫
{φr}

|gnc
k (φr)ak(φr)|2 p(φr)dφr (4)

The definition of spatial correlation coefficient, also known as cross-correlation coefficient, between
antenna k and q can be expressed as

ρnc
k,q =

1√
Pnc

k Pnc
q

∫
{φr}

ync
k (φr)

(
ync

q (φr)
)∗

p(φr)dφr (5)

3. ANTENNA EFFECTS ON SIGNAL AND CHANNEL

3.1. Impact of Mutual Coupling

Mutual coupling describes the electromagnetic interaction among multiple antenna elements. When
antenna elements are very close, the field generated by one antenna will alter the current distributions of
others. In this way, radiation pattern and input impedance of each element are disturbed by the presence
of other elements, which is similar with signal crosstalk in circuit system. The Mt×Mr equivalent MIMO
channel model with MC is presented in Fig. 2. Vs1, Vs2, . . . , VsMt are voltage values of transmitting
antennas, and Zs1, Zs2, . . . , ZsMt are source impedances. ZA1, ZA2, . . . , ZAMt and ZA1, ZA2, . . . , ZAMr

are antenna impedances of transmitter and receiver, respectively. ZL1, ZL2, . . . , ZLMr are load
impedances.

Taking receiver as an example, the equivalent voltage of antennas can be obtained according to
circuit theory. Assuming load impedance, antenna impedance and source impedance of each branch
being equivalent, Cr can be deduced as

Cr = (ZL + ZA) (ZL + Zr)
−1 (6)

where ZL, Zr are load impedance matrix and mutual impedance matrix. Similarly, the coupling matrix
of transmitting side can be derived as

Ct = (ZS + ZA) (ZS + Zt)
−1 (7)

Here ZS,Zt are source impedance matrix and mutual impedance matrix of transmitter, and the elements
of mutual impedance matrix can be calculated by [14]

Zkq =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

30 [0.577 + ln(2π) − Ci(2π) + jSi(2π)] , k = q

30
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(8)
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where LA is the antenna length, and dk,q is the distance between antennas k and q. Ci(x) and Si(x)
denote cosine and sine integrals functions. In the presence of mutual coupling, signal vectors for both
transmitter and receiver should be revised as

yc
t/r

(
φt/r

)
= Ct/r · ync

t/r

(
φt/r

)
(9)

Taking receiver as an example, MC will make the signal of kth antenna to be a weighted summation
of all branch signals, and the weighting coefficients are the corresponding line of coupling matrix. Using
two half-wave dipole and omnidirectional antennas as an example, the magnitude of signal including
MC for several inter-element distances is given as Fig. 3. Here, the self-impedance is calculated by
Eq. (8) for the case of k = q, which is zA = (73 + 42.5j)Ω, and the load impedance is assumed to match
to self-impedance, zL = (73−42.5j)Ω. The received signal vector without coupling effects is also showed
in Fig. 3 for comparison. As we can see, MC will cause a distortion, which is related to the inter-element
distance. The distortion is not appreciable when d > λ, but it will be significant as d decreases. For
the 3rd generation (3G) mobile system, the radio wave length is about a few tens of centimeters, so it
is very difficult to avoid the effects of MC. In addition, the signal on antenna 1 is symmetrical to that
on antenna 2, which is the consequence of MC matrix’s symmetry.

Submitting Eq. (9) into Eq. (4), the received power with MC should be revised as

P c
k =

Mr∑
n=1

CknC∗
kn+

Mr∑
n=1

Mr∑
m=1, m�=n

CknC∗
kmρnc

n,m (10)
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Figure 3. Magnitude of signal vectors incorporating mutual coupling. (a) d = 0.15λ, (b) d = 0.5λ, (c)
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where ρnc
n,m denotes the correlation coefficient between antennas m and n without MC. Thus, the total

received power can be rewritten as P c
sum = P c

1 + P c
2 + . . . + P c

Mt/r
. Similarly, the modified correlation

coefficient incorporating with MC can be derived as

ρc
k,q =

1√
P c

kP c
q

⎧⎨
⎩

Mr∑
n=1

CknC∗
qn +

Mr∑
n=1

Mr∑
m=1, m�=n

CknC∗
qmρnc

n,m

⎫⎬
⎭ (11)

Under the same simulation parameters of Fig. 3, the ratio of total power between considering MC and
neglecting MC is given in Fig. 4. Here, we assume AoA following uniform distribution over [0, 2π). As we
can see, the power loss is significant and decreases with the increase of inter-element distance, when d/λ
is less than 0.5. If d/λ is larger than 0.5, the loss tends to be zero, and it fluctuates slightly between 0.97
and 1. We also find that the power loss is almost the same for different load impedances. The magnitude
of cross-correlation coefficients between two receiving antennas with different d/λ is calculated by (11)
and shown in Fig. 5. For comparison purpose, the theoretical cross-correlation coefficient in absence
of MC can derived from (5). As seen in Fig. 5, all correlation coefficient curves decrease rapidly when
inter-element distance increases, and the existence of MC will reduce the correlation. Moreover, different
load impedances have different effects on each curve, but the curves tend to be same as d/λ increases.

3.2. Impact of Polarized Antennas

The polarization effect including antenna polarization response and channel depolarization is of great
significance for polarized MIMO channel. As to antenna polarization response, we can decompose the
polarization into vertical and horizontal directions. Moreover, while the horizontal components tend
to mix with each other strongly, the mixture between horizontal and vertical components is relatively
small, with a path cross-polar discrimination (XPD) ratio typical larger than 6dB. Therefore, we need to
model four channels between transmitter and receiver, namely those connecting the horizontal/vertical
polarization on transmitter to the horizontal/vertical polarization on receiver, which results in the
decomposition of antenna patterns at both ends into vertical and horizontal.

Due to the consistency of transmitter and receiver, a 3D polarization antenna model on receiver
with polarization angle Φr is given in Fig. 6. In the figure, xyz and x′y′z′ are geographic coordinate
system (GCS) and element coordinate system (ECS). θ̂r and φ̂ denote vertical polarization direction
and horizontal polarization direction. Both of them are perpendicular to �k, which is the propagation
direction of electromagnetic wave. The full response vector of polarized antenna, denoted as �p,
includes vertical component and horizontal component which can be obtained by expressing �p in θr

and φr direction. In order to facilitate the research, we use GCS to show vector �p and θ̂r, which are
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(0,− sin Φr, cos Φr) and (− cos θr cos φr,− cos θr sin φr, sin θr) respectively. Vector φ̂r is perpendicular
to �k, and also perpendicular to vector θ̂r, so vector φ̂r is perpendicular to plan oAB. Move vector φ̂r

to xoy, it is also perpendicular to oB and can be expressed as (sin φr,− cos φr, 0). Thus, we obtain
bV
r (�p · θ̂r) and bH

r (�p · φ̂r), which are 3D polarization antenna response as[
bV
r

bH
r

]
=
[

cos Φr sin θr + sinΦr cos θr sin φr

sin Φr cos φr

]
(12)

For the special case of 2D model (θr = π/2, θ̂r = (0, 0, 1)), bV
r is equal to cos Φr while bH

r is equal to
sin Φr cos φr. Due to the effect of scatterers, the characteristics of polarized radio will be changed during
propagation. The scattering effect can be expressed by channel depolarization matrix, which is

S =
[

hV V hV H

hHV hHH

]
=

[
ejϕV V √

1/XPDejϕV H√
1/XPDejϕHV

ejϕHH

]
(13)

where ejϕV V
, ejϕV H

, ejϕHV
, ejϕHH

are random phases and follow uniform distribution over [−π, π].
XPD is the ratio of receiving power from co-polarized and cross-polarized channels, which is equal to
|hV V |2/|hHV |2. The higher the XPD is, the less energy is coupled to cross-polarized channel. Results of
field test show that XPD is usually a random variable following lognormal distribution, with the mean
and variance of 8 dB in urban environment [10]. For a Mt × Mr MIMO system, the signal vectors on
transmitter and receiver can be rewritten as

yp
t/r =

⎡
⎢⎢⎢⎢⎢⎣

cos Φ1
t/rg

1
t/ra

1
t/r sin Φ1

t/r cos φt/rg
1
t/ra

1
t/r

cos Φ2
t/rg

2
t/ra

2
t/r sin Φ2

t/r cos φt/rg
2
t/ra

2
t/r

...
...

cos Φ
Mt/r

t/r g
Mt/r

t/r a
Mt/r

t/r sinΦ
Mt/r

t/r cos φt/rg
Mt/r

t/r a
Mt/r

t/r

⎤
⎥⎥⎥⎥⎥⎦ (14)

and the power of kth signal including polarization effect can be expressed as

P p
k =

∣∣∣cos Φk
r

∣∣∣2 ∫
{φr}

ync
k (φr)(ync

k (φr))
∗p(φr)dφr

+| sin Φk
r |2
∫
{φr}

cos φr(cos φr)
∗ync

k (φr)(ync
k (φr))

∗p(φr)dφr (15)

Making use of (14) and (15), the cross-correlation coefficient can be revised as

ρp
k,q = cos Φk

r (cos Φq
r)

∗
/√

P p
k P p

q

∫
{φr}

ync
k (φr)

(
ync

q (φr)
)∗

p(φr)dφr

+ sin Φk
r(sin Φq

r)
∗
/√

P p
k P p

q

∫
{φr}

cos φr(cos φr)
∗ync

k (φr)
(
ync

q (φr)
)∗

p(φr)dφr (16)

Figure 7 gives the normalized power on polarized antenna with different polarization angles. As
we can see, the value is 1 when Φk

r is equal to 0◦, which is equal to the case of no polarization, and
it decreases when polarization angle changes away from 0◦. In order to compare correlation properties
between different antenna configurations, three pairs of polarization angle (0◦/0◦, 45◦/−45◦ and 0◦/90◦)
are adopted for simulation, and AOA is assumed to follow uniform distribution. Simulation results is
given in Fig. 8, which show that for the case of 0◦/0◦, cross-correlation is equal to the case of no
polarization effect. The cross-correlation of 45◦/ − 45◦ combination decreases in comparison to 0◦/0◦.
Particularly, when 0◦/90◦ combination is used, the cross-correlation coefficient is minimum and close to
zero.

3.3. Proposed MIMO Channel Model

Based on the above analysis, the MIMO channel with MC can be expressed by

[Hc]Mr×Mt =
∫∫

(φr ,φt)

{
ej2πfctej2πfdtp(φr)p(φt)

}
�
{
Cr

{
ync

r (φr)(ync
t (φt))

T
}

Ct

}
dφtdφr (17)
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where ync
t/r(φt/r) are shown in Eq. (3) and fd is equal to fc(vt cos(φl

t − θv
t ) + vr cos(φl

r − θv
r ))/c. On the

other hand, the MIMO channel with polarization can be modeled as

[Hp]Mr×Mt =
∫∫

(φr ,φt)

{
ej2πfctej2πfdtp(φr)p(φt)

}
�
{
yp

t (φt)
[

hV V hV H

hHV hHH

]
(yp

r(φr))
T

}T

dφtdφr (18)

here yp
t and yp

r are given as Eq. (14). Combining Eqs. (17) and (18), we can get the proposed MIMO
channel model incorporating both MC and polarization, which is

[Hp,c]Mr×Mt =
∫∫

(φr ,φt)
Q �

{
ej2πfctej2πfdtp(φr)p(φt)

}
�
{
Cr

{
ync

r (φr)(y
nc
t (φt))

T
}

Ct

}
dφtdφr (19)

where

Q =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

cos Φ1
t sinΦ1

t cos φt

cos Φ2
t sinΦ2

t cos φt

...
...

cos ΦMt
t sin ΦMt

t cos φt

⎤
⎥⎥⎥⎥⎦
[

hV V hV H

hHV hHH

]⎡⎢⎢⎢⎣
cos Φ1

r sin Φ1
r cos φr

cos Φ2
r sin Φ2

r cos φr

...
...

cos ΦMr
r sin ΦMr

r cos φr

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

T

(20)

According to the definition of channel correlation matrix, including the factors of transmitter, channel
and receiver, the channel correlation between hp,c

i,p and hp,c
j,q can be derived as

ρh,p,c
i,p; j,q =

∫∫
(φr ,φt)

[
Q �

{
Cr

(
ync

r (φr)(ync
t (φt))

T
)
Ct

}]
i,p[

Q �
{
Cr

(
ync

r (φr)(ync
t (φt))

T
)
Ct

}]
j,q

p(φr)p(φt)dφtdφr (21)

4. SIMULATION AND APPLICATION

4.1. 2 × 2 Channel Model

As an example, we consider a 2 × 2 MIMO system with half-wave dipole omnidirectional antennas
which has Φ1

t /Φ
2
t = 45◦/ − 45◦, Φ1

r/Φ
2
r = 0◦/90◦, and the antenna spacing is the same and equal to d.

According to Eq. (19), this channel including both polarization and MC can be derived as

[Hp,c]2×2 =
∫∫

(φr ,φt)

{
ej2πfctej2πfdtp(φr)p(φt)

}
�
{
Q�
{
Cr

[
1 ejτt

ejτr ejτrejτt

]
Ct

}}
dφtdφr (22)
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For the special case of only considering MC, polarization angles are Φ1
t /Φ2

t = 0◦/0◦ and Φ1
r/Φ2

r = 0◦/0◦.
The 2 × 2 channel matrix with MC can be rewritten as

[Hc]2×2 =
∫∫

(φr ,φt)

{
ej2πfctej2πfdtp(φr)p(φt)

}
�
[

G11 G12

G21 G22

]
dφtdφr (23)

where

G11 = ejϕV V
{

C11
r C11

t + C12
r C11

t ejτr + C11
r C21

t ejτt + C12
r C21

t ej(τr+τt)
}

G12 = ejϕV V
{

C11
r C12

t + C12
r C12

t ejτr + C11
r C22

t ejτt + C12
r C22

t ej(τr+τt)
}

G21 = ejϕV V
{

C21
r C11

t + C22
r C11

t ejτr + C21
r C21

t ejτt + C22
r C21

t ej(τr+τt)
}

G22 = ejϕV V
{

C21
r C12

t + C22
r C12

t ejτr + C21
r C22

t ejτt + C22
r C22

t ej(τr+τt)
}

(24)

here, τt = 2πd/λ sin φt, τr = 2πd/λ sin φr. Similarly, if we only consider polarization which makes
mutual impedances Z12 and Z21 equal to 0, MC matrix can be simplified as the unit matrix. Submitting
Φ1

t /Φ2
t = 45◦/−45◦, Φ1

r/Φ2
r = 0◦/90◦ to (22), the 2 × 2 channel matrix with polarization can be rewritten

as

[Hp]2×2 =
∫∫

(φr ,φt)

{
ej2πfctej2πfdtp(φr)p(φt)

}

�

⎡
⎢⎢⎣

√
2(hV V + hHV cos φt)

2

√
2ejτt(hV V − hHV cos φt)

2√
2ejτr cos φr(hV H + hHH cos φt)

2

√
2ej(τt+τt) cos φr(hV H − hHH cos φt)

2

⎤
⎥⎥⎦ dφtdφr(25)

4.2. Cross-Correlation

We apply our new model on the propagation scene of suburban macro cellular given by 3 GPP SCM
channel standard, where both AoA and AoD include six clusters, and each cluster follows Laplace
distributions, which is observed in many measurement tests [17] and can be expressed as

p(φr) =
1(

1 − e−
√

2π/2σ
)√

2σ
e−

√
2|φr−φ0

r|/σ,
∣∣φr − φ0

r

∣∣ ≤ π

2
(26)

Here Φ0
r and σ denote average value and angle spread. As one trial, the simulation parameter of XPD

is 8 dB, angle spread and average angle for AoA are 35◦ and [63.2◦; 100.4◦; 79.4◦; 9.4◦; 50.0◦; −23.5◦],
and the counterpart of AoD are 2◦ and [30.4◦; 30.7◦; 31.2◦; 25.7◦; 34.4◦; 38.9◦].

Figure 9 gives the simulation results of spatial correlation between different sub-channels of MIMO
channel, where the value of correlation represents the statistical average on six clusters. Fig. 9(a) shows
that for the case of double transmitters and single receiver channel (Φ1

t /Φ1
r = 45◦/0◦, Φ2

t /Φ1
r = −45◦/0◦),

correlation curve with MC shocks around the curve of no coupling, and correlation with polarization is
slightly less than the correlation without polarization.

Similarly, Fig. 9(b)–Fig. 9(d) show that for the cases of double receivers and single transmitter
channel (Φ1

t /Φ
1
r = 45◦/0◦, Φ1

t /Φ
2
r = 45◦/90◦), parallel channel (Φ1

t /Φ
1
r = 45◦/0◦, Φ2

t /Φ
2
r = −45◦/90◦)

and cross channel (Φ1
t /Φ2

r = 45◦/90◦, Φ2
t /Φ1

r = −45◦/0◦), cross-correlation curve with MC decreases
compared with that without coupling, correlation curve with polarization also decreases for different
polarization combinations. Thus, the curve combining MC with polarization decreases compared with
that without coupling and polarization. Moreover, when the distance is long enough, the effect of
coupling is very slight.
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4.3. Channel Capacity

Ergodic capacity of MIMO channel with the strategy of uniformly distributed transmitting power is an
important performance parameter for communication system and defined as

C̄ = EH

[
log2 det

(
INr +

ζ

Nt
Hp,c(Hp,c)H

)]
(27)

where ζ is the average signal-to-noise ratio (SNR) and I the identity matrix. To investigate the
characteristics of Hp,c, we can perform an SVD of Hp,c to diagonalize Hp,c and determine the eigenvalues.
The SVD expansion of matrix Hp,c can be expressed by

H = UΛVH (28)

where U and V are unitary matrices, and Λ is nonnegative and diagonal with entries specified by

Λ = diag
(√

λ1,
√

λ2, . . . ,
√

λq, 0, . . . , 0
)

(29)

where λ1, λ2, . . . , λq are the nonzero eigenvalues of Hp,c(Hp,c)H or (Hp,c)HHp,c. The SVD shows that
the channel matrix Hp,c can be diagonalized to a number of independent orthogonal sub-channels, where
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Figure 9. Cross-correlation comparison versus normalized antenna spacing. (a) Double transmitters
and single receiver. (b) Double receivers and single transmitter. (c) Parallel channel. (d) Cross channel.
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the power gain of the ith channel is λi. Thus, (27) can be rewritten as

C̄ = E

{
q∑

i=1

log2 (1 + (ζ/Nt)λi)

}
(30)

Making use of Eq. (30) on our new model, we can get the channel capacity incorporating polarization
and MC. Capacity curves versus SNR with d/λ = 0.1 and d/λ = 0.5 are given in Fig. 10, which shows
that independent channel Hiid has the best capacity than other cases. For the case of MC, channel
capacity is smaller than that without coupling and polarization. Moreover, the capacity loss decreases
when antenna space increases. As we see, the difference is very small as d/λ = 0.1, which means the effect
of MC can be ignored in this case. For the case of polarization, the results are more complicated. When
SNR is greater than 20 dB and d/λ = 0.1, channel capacity with polarization is more than that without
polarization and coupling, which is counter to that under low SNR. The main reason is polarization
antenna will reduce the channel correlation, while depolarization will lead to signal power loss. In other
words, the contributions to channel capacity of polarization and depolarization are opposite. When
polarization and MC are both considered, capacity is less than that without polarization and MC.
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Figure 10. Capacity comparison versus SNR. (a) d/λ = 0.1, (b) d/λ = 0.5.
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Moreover, the capacity with long spacing is more than that with short spacing. Finally, the capacities
of all cases increase with the increasing of SNR.

Figure 11 gives the relationship between capacity and antenna space when SNR is 10 dB and 20 dB.
As we can see, capacity of independent channel is the largest one and does not change for different spaces.
When MC is considered, capacity is less than that without coupling, and the difference becomes tiny
as d/λ ≥ 4. If we consider antenna polarization, when SNR is low, capacity is less than that without
polarization. Moreover, when SNR is large, capacity is more than that without polarization at small
distance, which verifies the results in Fig. 10. Considering both polarization and MC, capacity increases
with the distance, but it is smaller than that without polarization and coupling. In addition, when d/λ
is large, the effect of MC is little, and capacity curve approaches the curve of polarization.

5. CONCLUSION

In this paper, we develop a new MIMO channel model incorporating antenna effects based on
the clustered model. Our model accounts for antenna effects like element spacing, pattern,
polarization/depolarization and MC, as well as path loss, scattering and fading. At the same time,
we analyze the effects of MC and polarization/depolarization on signal vector, signal power and signal
correlation in detail, and derive their close-form expressions respectively. Analysis results show that
MC and polarization/depolarization will not only reduce cross-correlation but also reduce the power of
receiving signal. Finally, we apply our model to a 2 × 2 MIMO system under the propagation scene of
suburban macro cellular to verify the effects caused by polarization/depolarization and MC, which has
great significance in improving the performance of MIMO system.
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