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A New Analytically Regularizing Method for the Analysis of the
Scattering by a Hollow Finite-Length PEC Circular Cylinder

Mario Lucido*, Marco D. Migliore, and Daniele Pinchera

Abstract—In this paper, a new analytically regularizing method, based on Helmholtz decomposition
and Galerkin method, for the analysis of the electromagnetic scattering by a hollow finite-length perfectly
electrically conducting (PEC) circular cylinder is presented. After expanding the involved functions in
cylindrical harmonics, the problem is formulated as an electric field integral equation (EFIE) in a suitable
vector transform (VT) domain such that the VT of the surface curl-free and divergence-free contributions
of the surface current density, adopted as new unknowns, are scalar functions. A fast convergent second-
kind Fredholm infinite matrix-operator equation is obtained by means of Galerkin method with suitable
expansion functions reconstructing the expected physical behaviour of the unknowns. Moreover, the
elements of the scattering matrix are efficiently evaluated by means of analytical asymptotic acceleration
technique.

1. INTRODUCTION

Integral equation formulations, in both spatial and spectral domains, are very frequently adopted when
dealing with the analysis of the electromagnetic scattering by finite objects in non-shielded media [1–38].
EFIE formulation is particularly suited for the analysis of the scattering by PEC surfaces, assuming the
surface current density as unknown [39]. However, due to the first-kind nature of such kind of integral
equations with a singular kernel, the approximate solutions obtained by using general discretization
schemes cannot converge to the solution of the problem, and the sequence of condition numbers of
truncated system can be divergent [40, 41].

Methods to overcome the problems mentioned above are collectively called methods of analytical
regularization [42]. They are based on the conversion of a first-kind integral equation in a second-
kind Fredholm integral equation (at which Fredholm theory can be applied [43]), which can be done
by inverting the most singular part of the integral operator (containing the leading singularities of the
kernel). It is interesting to observe that the regularizing procedure is in general neither trivial nor unique,
and that the computational cost of numerical algorithm is strictly related to the selected regularizing
scheme. As a matter of fact, different solutions have been proposed in the literature, ranging from the
explicit inversion of the most singular part of the integral operator [14, 22–24, 29] to the adoption of a
Nystrom-type discretization scheme [17, 25, 30].

Moreover, Galerkin method with a complete set of expansion functions which makes the most
singular part of the integral operator invertible with a continuous two-side inverse immediately
results in a regularized discretization scheme. This approach has been implemented in [4–
6, 9, 12, 13, 15, 16, 18, 20, 21, 26–28, 31–38] devoted to the analysis of propagation, radiation, and
scattering by PEC/dielectric polygonal cross-section cylinders and canonical shape PEC surfaces, by
choosing basis functions reconstructing the expected physical behaviour of the fields. As a consequence,
few expansion functions are needed to achieve accurate results, and the convolution integrals are reduced
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to algebraic products. Moreover, suitable techniques have been developed to make the matrix coefficients
rapidly converging integrals.

In this paper, the analysis of the electromagnetic scattering by a hollow finite-length PEC circular
cylinder is carried out by means of a new analytically regularizing method based on Helmholtz
decomposition and Galerkin method. After representing all the involved functions as superposition
of cylindrical harmonics, the problem is formulated as an EFIE in a suitable VT domain such that the
VT of the surface curl-free and divergence-free contributions of the surface current density, adopted as
new unknowns, are scalar functions. The obtained integral equation is discretized by means of Galerkin
method with a suitable choice of the expansion basis. First of all, the expansion functions used form
a complete set of orthogonal eigenfunctions of the most singular part of the integral operator leading
to a second-kind Fredholm infinite matrix-operator equation. Secondly, they reconstruct the expected
physical behaviour of the surface current density, i.e., few expansion functions are needed to achieve
highly accurate results. Moreover, they have closed-form spectral domain counterparts and, hence, the
elements of the scattering matrix result to be single improper integrals of oscillating functions efficiently
evaluable by means of analytical asymptotic acceleration technique.

This paper is organized as follows. In Sections 2 and 3, the formulation and proposed solution of
the problem are presented. The fast convergence of the method and comparisons with the literature
and the commercial software CST-MWS are shown in Section 4, while the conclusions are summarized
in Section 5.

2. FORMULATION OF THE PROBLEM

The geometry of the problem, depicted in Figure 1, shows a hollow finite-length PEC circular cylinder
(of radius a and length 2b) in vacuum.

Figure 1. Geometry of the problem.

Let us denote ε0, μ0 and k0 = 2π/λ = ω
√

ε0μ0 as the dielectric permittivity, magnetic permeability
and wavenumber of the vacuum, respectively, where λ is the wavelength and ω the angular frequency.
A Cartesian coordinate system (x, y, z) and a cylindrical coordinate system (ρ, ϕ, z) with x = ρ cos ϕ
and y = ρ sin ϕ are introduced so that the z axis coincides with the cylinder axis, and the origin is at
the centre of the cylinder itself. An incident field (Einc(r), H inc(r)), where r = xx̂ + yŷ + zẑ, induces a
surface current density J(ϕ, z) = Jϕ(ϕ, z)ϕ̂+Jz(ϕ, z)ẑ on the scatterer surface which, in turn, generates
a scattered field (Esc(r), Hsc(r)).

The revolution symmetry of the problem at hand with respect to the z axis suggests to expand all
the involved functions in cylindrical harmonics, i.e.,

f (ρ, ϕ, z) =
+∞∑

n=−∞
f (n) (ρ, z) ejnϕ. (1)

Due to the orthogonality of the cylindrical harmonics, in the following we can refer directly to the
general (n-th) harmonic whenever possible.

By imposing the tangential component of the n-th harmonic of the electric field to be vanishing on
the cylinder surface, an EFIE is obtained

Esc(n) (a, z) = −Einc(n) (a, z) (2)
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for |z| ≤ b, where [6]

Einc(n) (a, z) =

(
E

inc(n)
ϕ (a, z)

E
inc(n)
z (a, z)

)
, (3)

Esc(n) (a, z) =

+∞∫
−∞

G̃
(n)

(u) J̃
(n)

(u) e−juzdu, (4)

the following definition of Fourier transform with respect to the z axis

J̃
(n)

(u) =
1
2π

+∞∫
−∞

J(n) (z) ejuzdz (5)

has been introduced,

J(n) (z) =

(
J

(n)
ϕ (z)

J
(n)
z (z)

)
, (6)

G̃
(n)

(u) = − π

2ωε0a

(
k2
0a

2Ã(n) (u) − n2B̃(n) (u) nuaB̃(n) (u)
nuaB̃(n) (u)

(
k2
0a

2 − u2a2
)
B̃(n) (u)

)
, (7)

Ã(n) (u) =
B̃(n−1) (u) + B̃(n+1) (u)

2
, (8)

B̃(n) (u) = Jn

(
a
√

k2
0 − u2

)
H(2)

n

(
a
√

k2
0 − u2

)
, (9)

Jν(·) is the Bessel function of first kind and order ν, and H
(2)
ν (·) is the Hankel function of second kind

and order ν [44].
Now, an alternative expression for the tangential component of the n-th harmonic of the scattered

electric field on the cylinder surface (useful for what will be done later) can be obtained by introducing
the following vector transform pair of order n (VTn)

˜̄J
(n)

(u) =
1
2π

+∞∫
−∞

T̃
(n)

(u)J(n) (z) ejzudz ⇔ J(n) (z) =

+∞∫
−∞

T̃
(n)

(u)˜̄J
(n)

(u) e−jzudu, (10)

where

T̃
(n)

(u) =
1√

n2 + u2a2

( −n ua
ua n

)
(11)

and the following relation can be readily established

˜̄J
(n)

(u) = T̃
(n)

(u) J̃
(n)

(u) ⇔ J̃
(n)

(u) = T̃
(n)

(u) ˜̄J
(n)

(u) , (12)
which allows us to conclude that the VTn of a vector function exists if and only if the Fourier transform
of the same function exists.

Hence, by substituting Eq. (12) in Eq. (4) it is simple to obtain

Esc(n) (a, z) =

+∞∫
−∞

T̃
(n)

(u) ˜̄G
(n)

(u) ˜̄J
(n)

(u) e−jzudu, (13)

where

˜̄G
(n)

(u)=
1

n2 + u2a2

( ˜̄G(n)
CC (u) ˜̄G(n)

CD (u)
˜̄G(n)

DC (u) ˜̄G(n)
DD (u)

)

=− π

2ωε0a

(
k2
0a

2 − n2 − u2a2 0
0 k2

0a
2

)
B̃(n)(u)−πωμ0a

2

(
n2 −nua

−nua u2a2

)
Ã(n) (u)−B̃(n) (u)

n2+u2a2
. (14)
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3. PROPOSED SOLUTION

In this section, starting from the integral equation (2), a second-kind Fredholm infinite matrix-operator
equation is obtained by means of the introduction of new unknowns via Helmholtz decomposition and
the discretization of the integral equation with a suitable choice of the expansion basis in a Galerkin
scheme.

3.1. Change of the Unknowns

The physical behaviour of the components of the surface current density can be readily established
starting from Maxwell’s equations and Meixner’s theory [45]

Jt (ϕ, z) =

{ [
1 − (z/b)2

]pt

J̄t (ϕ, z) |z| < b

0 |z| > b
, ϕ ∈ [0, 2π) (15)

for t ∈ {ϕ, z}, where pϕ = −1/2, pz = 1/2, and it is supposed to be J̄t(ϕ, z) ∈ C(1)([0, 2π) × [−b, b]).
Hence, by means of Helmholtz decomposition, the surface current density can be written almost
everywhere with the superposition of a surface curl-free contribution JC(ϕ, z) = ∇sφC(ϕ, z) and a
surface divergence-free contribution JD(ϕ, z) = −ρ̂ ×∇sφD(ϕ, z), which we assume as new unknowns,
where ∇s = ϕ̂ 1

a
∂

∂ϕ + ẑ ∂
∂z , and φC(ϕ, z) and φD(ϕ, z) are suitable potential functions [46].

In order to characterize the functional spaces to which the surface curl-free and divergence-free
contributions belong, it is convenient to refer to the general cylindrical harmonic. As a matter of fact,
the behaviour in Eq. (15) can be stated even for the components of the n-th harmonic of the surface
current density (due to the orthogonality of cylindrical harmonics), i.e.,

J
(n)
t (z) =

{ [
1 − (z/b)2

]pt

J̄
(n)
t (z) |z| < b

0 |z| > b
(16)

for t ∈ {ϕ, z}, which are simply related to the n-th harmonic of the potential functions by means of the
following relations

J (n)
ϕ (z) = j

n

a
φ

(n)
C (z) +

d

dz
φ

(n)
D (z) , (17)

J (n)
z (z) =

d

dz
φ

(n)
C (z) − j

n

a
φ

(n)
D (z) . (18)

Let us consider the case for n �= 0. If φ
(n)
T (z) for T ∈ {C,D} is required to approach zero at infinite,

from Eqs. (16), (17) and (18) it is simple to conclude that

φ
(n)
T (z) ∝ e−

|n||z|
a (19)

for |z| > b. Now, from Eq. (A1), it is not difficult to understand that the following functions have the
behaviour in Eq. (19)

φ̂
(n)
C (z) = −γ(n)

ϕ

+∞∫
−∞

J0 (bu)
ne−juzdu

n2 + u2a2
+ γ(n)

z

+∞∫
−∞

J1 (bu)
e−juzdu

n2 + u2a2
, (20)

φ̂
(n)
D (ρ) = γ(n)

z

+∞∫
−∞

J1 (bu)
ua

ne−juzdu

n2 + u2a2
+ γ(n)

ϕ

+∞∫
−∞

J0 (bu)
uae−juzdu

n2 + u2a2
. (21)

We want to verify that such functions can be considered as particular potential functions. Indeed, by
substituting Eqs. (20) and (21) in Eqs. (17) and (18), and remembering Eq. (A2), it is simple to conclude
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that

j
n

a
φ̂

(n)
C (z)+

d

dz
φ̂

(n)
D (z) = −j

1
a
γ(n)

ϕ

+∞∫
−∞

J0 (bu) e−juzdu = −j
1
a
γ(n)

ϕ

⎧⎨
⎩

2
b

(
1 − z2

/
b2
)−1/2 |z| < b

0 |z| > b
, (22)

d

dz
φ̂

(n)
C (z)−j

n

a
φ̂

(n)
D (z) = −j

1
a
γ(n)

z

+∞∫
−∞

J1 (bu)
au

e−juzdu = −j
1
a
γ(n)

z

⎧⎨
⎩

2
a

(
1 − z2

/
b2
)1/2 |z| < b

0 |z| > b
, (23)

which agrees with the physical behaviour prescribed for the components of the n-th harmonic of the
surface current density.

Therefore, according to Eqs. (16), (17), (18) and (19), a general expression for φ
(n)
T (ρ) can be

φ
(n)
T (z) = (1 − δn,0) φ̂

(n)
T (z) +

{ (
1 − z2

/
b2
)pT φ̄

(n)
T (z) |z| < b

0 |z| > b
, (24)

where δn,m is the Kronecker delta, pC = 3/2, pD = 1/2, and φ̄
(n)
T (z) ∈ C2([−b, b]) from which the

following behaviour for the surface curl-free and divergence-free contributions can be immediately
deduced

J(n)
C (z) =

⎛
⎜⎝ j

n

a
d

dz

⎞
⎟⎠
⎧⎨
⎩−γ(n)

ϕ

+∞∫
−∞

J0 (bu)
ne−juzdu

n2 + u2a2
+ γ(n)

z

+∞∫
−∞

J1 (bu)
e−juzdu

n2 + u2a2

+

⎧⎨
⎩
[
1 − (z/b)2

] 3/2
φ̄

(n)
C (z) |z| < b

0 |z| > b

⎫⎬
⎭ , (25)

J(n)
D (z) =

⎛
⎜⎝

d

dz

−j
n

a

⎞
⎟⎠
⎧⎨
⎩γ(n)

z

+∞∫
−∞

J1 (bu)
ua

ne−juzdu

n2 + u2a2
+ γ(n)

ϕ

+∞∫
−∞

J0 (bu)
uae−juzdu

n2 + u2a2

+

⎧⎨
⎩
[
1 − (z/b)2

] 1/2
φ̄

(n)
D (z) |z| < b

0 |z| > b

⎫⎬
⎭ . (26)

It is simple to understand that expressions (25) and (26) can be immediately extended to the case
for n = 0 by means of analytical continuation.

3.2. Discretization of the Integral Equation

Weiestrass approximation theorem allows us to state that the function φ̄
(n)
T (z), defined for |z| ≤

b, can be represented by a uniformly convergent series of polynomials. Gegenbauer polynomials
{C(pT +1/2)

h (z/b)}+∞
h=0 are best suited for the case at hand since they form an orthogonal basis in the

weighted Hilbert space L2
pT

([−b, b]) with inner product

〈f, g〉 =

b∫
−b

[
1 − (z/b)2

]pT

f (z) g∗ (z)dz. (27)

Hence, suitable expansion basis reconstructing the physical behaviour of the n-th harmonic of the
surface curl-free and divergence-free contributions are the following

J(n)
T (z) =

+∞∑
h=−2

γ
(n,h)
T f (n,h)

T (z) (28)
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for T ∈ {C,D}, where γ
(n,−2)
C = γ

(n,−1)
D = γ

(n)
ϕ , γ

(n,−1)
C = γ

(n,−2)
D = γ

(n)
z ,

f (n,h)
C (z) =

⎛
⎜⎝ j

n

a
d

dz

⎞
⎟⎠ f

(n,h)
C (z) , (29)

f (n,h)
D (z) =

⎛
⎜⎝

d

dz

−j
n

a

⎞
⎟⎠ f

(n,h)
D (z) , (30)

and the expressions of f
(n,h)
T (z) are in Eqs. (A4)–(A9), so that the sequence {γ(n,h)

T }+∞
h=0 belongs

to the space l2pT
= {xh :

+∞∑
h=0

|xh|2h!
(h+2pT )! < ∞}. Since h!

Γ(h+2pT )!

h→+∞∼ 1
h2pT

, it is simple to note that

l2 = l20 ⊂ l2pD
⊂ l2pC

.
Remembering Eq. (A2), VTn of Eq. (28) can be expressed in closed form

˜̄J
(n)

C (u) = −j

√
n2 + u2a2

a

(
φ̃

(n)
C (u)

0

)
, (31)

˜̄J
(n)

D (u) = −j

√
n2 + u2a2

a

(
0

φ̃
(n)
D (u)

)
, (32)

where

φ̃
(n)
T (u) =

+∞∑
h=−2

γ
(n,h)
T f̃

(n,h)
T (u), (33)

and the expressions of f̃
(n,h)
T (u) are in Eqs. (A10)–(A14).

By projecting the EFIE in Eq. (2) onto the expansion functions in Eqs. (29) and (30), the following
linear system of algebraic equations can be readily obtained[

M(n)
CC M(n)

CD

M(n)
DC M(n)

DD

][
γ

(n)
C

γ
(n)
D

]
=

[
b(n)

C

b(n)
D

]
, (34)

where the elements of the symmetric scattering matrix (due to reciprocity) are in Eqs. (A15)–(A19),
while the unknown coefficients and the constant terms are, respectively,(

γ
(n)
T

)
−1

= γ
(n,−1)
T , (35)(

γ
(n)
T

)
h

= γ
(n,h)
T , (36)

(
b(n)

T

)
−1

= b
(n,−1)
T = − 1

2π

+∞∫
−∞

{[
f (n,−1)
T (z)

]H
+
[
f (n,−2)

T̄
(z)
]H}

Einc(n) (a, z) dz, (37)

(
b(n)

T

)
k

= b
(n,k)
T = − 1

2π

+∞∫
−∞

[
f (n,k)
T (z)

]H
Einc(n) (a, z) dz (38)

for k, h ≥ 0.

3.3. Second-kind Fredholm Nature of the Infinite Matrix-Operator Equation

The general element of the scattering matrix can be written as(
M(n)

TS

)
k,h

=

+∞∫
−∞

K̃
(n,k,h)
TS (u) Jk+pT +1/2 (bu) Jh+pS+1/2 (bu) du (39)
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for k, h ≥ −1, where the kernels K̃
(n,k,h)
TS (u) are in Eqs. (A20)–(A28). Observing that

Ã(n) (u) , B̃(n) (u)
|u|→+∞∼ j

1
π |u| a + O

(
1

|u|3
)

, (40)

Ã(n) (u) − B̃(n) (u)
|u|→+∞∼ −j

1
2π |u|3 a3

+ O

(
1

|u|5
)

, (41)

the asymptotic behaviour of the kernel of the integral in Eq. (39) reported in Eqs. (A29)–(A33) can be
readily established.

Formulas (A29), (A30), (A31) and the Weber-Schafheitlin discontinuous integral in Eq. (A3) allow
us to conclude that

+∞∫
−∞

K̃
(n,k,h)
CC,∞ (u) Jk+2 (bu) Jh+2 (bu) du =

{
j

1
ωε0a4

h = k

0 h �= k
(42)

for k, h ≥ −1,
+∞∫

−∞
K̃

(n,k,−1)
CD,∞ (u) Jk+2 (bu)J0 (bu) du = 0 (43)

for k ≥ 0,
+∞∫

−∞
K̃

(n,k,h)
DD,∞ (u) Jk+1 (bu)Jh+1 (bu) du =

{
−j

ωμ0

a2
h = k

0 h �= k
(44)

for k, h ≥ −1 and k + h ≥ −1, where K̃
(n,k,h)
TS,∞ (u) denotes the zero-order asymptotic behaviour of the

general kernel. Hence, the matrix Equation (34) can be rewritten as follows

x(n) + A(n)x(n) = b(n), (45)

where

A(n) =

⎡
⎢⎢⎢⎣

−jωε0a
4

�

M
(n)

CC −ja3

√
ε0

μ0

�

M
(n)

CD

ja3

√
ε0

μ0

�

M
(n)

DC j
a2

ωμ0

�

M
(n)

DD

⎤
⎥⎥⎥⎦ , (46)

x(n) =

⎡
⎢⎢⎣

1
a2√ωε0

γ
(n)
C

√
ωμ0

a
γ

(n)
D

⎤
⎥⎥⎦ , (47)

b(n) =

⎡
⎣ −ja2√ωε0b

(n)
C

j
a√
ωμ0

b(n)
D

⎤
⎦ , (48)

and the elements of the matrix operator A(n) are in Eqs. (A34)–(A39).
Now, the kernel of the general element of the matrix operator A(n), ˜̄K(n,h,k)

TS (u), decays

asymptotically at least as 1/|u|3 (with the exception of the kernel of (
�

M
(n)

DD)−1,−1). Therefore, observing
from Eq. (A3) that

+∞∫
0

J2
h+ν (αt)

tβ
dt

h→+∞∼ O

(
1
hβ

)
(49)
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for �{β} > 0 and α > 0, and using the Cauchy-Bunjakovskii inequality, it is possible to state that∣∣∣∣∣∣
+∞∫

−∞

˜̄K(n,k,h)
TS (u) Jk+pT +1/2 (bu) Jh+pS+1/2 (bu) du

∣∣∣∣∣∣
2

≤
+∞∫

−∞

∣∣∣ ˜̄K(n,k,h)
TS (u)

∣∣∣2 |u|5−ε du ·
+∞∫

−∞

J2
k+pT +1/2 (bu)

|u|(5−ε)/2
du ·

+∞∫
−∞

J2
h+pS+1/2 (bu)

|u|(5−ε)/2
du

= α
(n)
TS (k + pT + 1/2)

+∞∫
−∞

J2
k+pT +1/2 (bu)

|u|(5−ε)/2
du

︸ ︷︷ ︸
k→+∞∼ O

(
1

k(3−ε)/2

)
· (h + pS + 1/2)

+∞∫
−∞

J2
h+pS+1/2 (bu)

|u|(5−ε)/2
du

︸ ︷︷ ︸
h→+∞∼ O

(
1

h(3−ε)/2

)
(50)

for k + pT + 1/2, h + pS + 1/2 > (3 − ε)/4, where α
(n)
TS is a bounded parameter and 0 < ε < 1, from

which it is immediate to establish that
+∞∑

p,q=0

∣∣∣∣(A(n)
)

p,q

∣∣∣∣2 < ∞. (51)

The condition in Eq. (51) is a sufficient condition for the compactness of the matrix-operator A(n)

in l2. If b(n) ∈ l2 then x(n) ∈ l2 ⊂ l2pD
⊂ l2pC

since the scattering matrix is asymptotically diagonal, and
the matrix Equation (45) is a Fredholm equation of the second kind in the space l2 which can be solved
via truncation method.

4. NUMERICAL RESULTS

In order to show the accuracy and efficiency of the presented technique, let us assume as incident
field a plane wave impinging onto the scatterer surface, i.e., Einc(r) = E0e

−jk·r where k =
−k0(sin ϑ̄ cos ϕ̄x̂ + sin ϑ̄ sin ϕ̄ŷ + cos ϑ̄ẑ).

It is shown that the elements of the constant term in Eqs. (37) and (38) become

b
(n,−1)
C = −e−jϕ̄njn J1

(
k0b cos ϑ̄

)
k0a cos ϑ̄

Jn

(
k0a sin ϑ̄

)
Einc

0z , (52)

b
(n,−1)
D = −e−jϕ̄njnJ0

(
k0b cos ϑ̄

) [1
2
Jn−1

(
k0a sin ϑ̄

) (
Einc

0x − jEinc
0y

)
ejϕ̄

+
1
2
Jn+1

(
k0a sin ϑ̄

) (
Einc

0x + jEinc
0y

)
e−jϕ̄

]
, (53)

b
(n,k)
C = e−jϕ̄njnf̃

(n,k)
C

(−k0 cos ϑ̄
) · [n

2
Jn−1

(
k0a sin ϑ̄

) (
Einc

0x − jEinc
0y

)
ejϕ̄

+
n

2
Jn+1

(
k0a sin ϑ̄

) (
Einc

0x + jEinc
0y

)
e−jϕ̄ + k0a cos ϑ̄Jn

(
k0a sin ϑ̄

)
Einc

0z

]
, (54)

b
(n,k)
D = e−jϕ̄njnf̃

(n,k)
D

(−k0 cos ϑ̄
) · [k0a cos ϑ̄

2
Jn−1

(
k0a sin ϑ̄

) (
Einc

0x − jEinc
0y

)
ejϕ̄

+
k0a cos ϑ̄

2
Jn+1

(
k0a sin ϑ̄

) (
Einc

0x + jEinc
0y

)
e−jϕ̄ − nJn

(
k0a sin ϑ̄

)
Einc

0z

]
(55)

for k ≥ 0.
The asymptotic expansion for large order of the Bessel functions of the first kind [44] immediately

leads to the following asymptotic behaviour

f̃
(n,h)
T

(−k0 sin ϑ̄
) h→+∞∼ 1√

2π
(−k0a sin ϑ̄

)pT +1/2

(
−ebk0 sin ϑ̄

2h

)h

(56)
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from which it is simple to conclude that b(n) ∈ l2.
The elements of the scattering matrix are single improper integrals of oscillating functions. In order

to speed up the convergence of such kind of integrals, the analytical asymptotic acceleration technique
detailed in [38] is adopted. Thereby, more than 100 integrals per second are evaluated by using a Matlab
code implementing adaptive Gauss-Legendre quadrature routine on a PC equipped with an Intel Core
2 Quad CPU Q9550 2.83 GHz, 3.25 GB RAM, running Windows XP.

On the other hand, the symmetries of the scattering matrix allow a dramatic reduction of the
number of integrals to be numerically evaluated. As a matter of fact, the number of integrals to be
computed is N(2M2 + M − 1) (despite the overall number of matrix coefficients is 4(2N − 1)M2), where
2N − 1 is the number of cylindrical harmonics considered for the surface current density and M the
number of expansion functions used for each contribution (i.e., surface curl-free and divergence-free
contributions) of each harmonic.

The following normalized truncation error is introduced

err (M) =

√√√√ N−1∑
n=−N+1

∥∥∥x(n)
M+1 − x(n)

M

∥∥∥2
/

N−1∑
n=−N+1

∥∥∥x(n)
M

∥∥∥2
(57)

where ‖ · ‖ is the usual Euclidean norm and x(n)
M the vector of the expansion coefficients evaluated by

using M expansion functions for each contribution of the n-th harmonic, and the number of cylindrical
harmonics to be used is estimated following the same line of reasoning reported in [47].

In Figure 2, the normalized truncation error for cylinders of different radii (a = λ/2, λ, 2λ) when a

Figure 2. Normalized truncation error for cylinders of different radii and lengths, for TE and TM
incidence. ϑ̄ = 45 deg., ϕ̄ = 0 deg. and |H0| = 1A/m.
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TE (E0 = E0ŷ) or a TM (H0 = H0ŷ) incident plane wave (with respect to the z axis) impinges onto
the scatterer surface with ϑ̄ = 45 deg., ϕ̄ = 0 deg. and |H0| =

√
ε0/μ0|E0| = 1A/m, is shown as a

function of M assuming N = 9, 13, 19 respectively. The convergence is of exponential type in all the

Figure 3. Components of the surface current density on circular cylinders of different lengths, for TE
and TM incidence. a = λ, ϑ̄ = 45 deg., ϕ̄ = 0 deg., |H0| = 1A/m and ϕ = 0deg..

Figure 4. Components of the surface current density on a circular cylinder of finite length. Solid
lines: this method; circles: data from [6]; dotted lines: CST-MWS. k0a = 1, b = 10a, ϑ̄ = 0 deg.,
H0 = 1ŷ A/m.
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examined cases. Moreover, an error less than 10−3 can be achieved for M = 5, 9, 15 respectively, while
M = 9, 14, 21, respectively, allow us to obtain an error even less than 10−6. The computation time
for the examined cases ranges from 5 secs to 3 mins. In Figure 3, just for the sake of completeness,
the components of the surface current density for the case a = λ are plotted as a function of z/b for
ϕ = 0deg.

Comparisons with the literature and the commercial software CST-MWS are shown. In Figure 4,
the components of the surface current density on a cylinder, with k0a = 1 and b = 10a for an incident
plane wave with ϑ̄ = 0 deg and H0 = 1ŷ A/m, are plotted as functions of z/b and compared with the
results presented in [6], obtained by means of an EFIE formulation for the surface current density
discretized by means of an analytically regularizing procedure consisting in Galerkin method with
expansion functions reconstructing the physical behaviour of the unknown surface current density, and
the results obtained by means of CST-MWS. Assuming N = 2 (only the cylindrical harmonics for
n = ±1 contribute to reconstruct the surface current density), M = 16 has to be chosen in order to
achieve a normalized truncation error less than 10−3. However, an error less than 10−6 can be achieved
for M = 20 with a computation time of about 10 secs. As can be seen, the agreement with the literature
is quite good, while the obtained results agree very well with the ones obtained by using CST-MWS.
However, CST-MWS requires 4.5 million mesh-cells and a computation time of about 20 mins, while a
coarser mesh would lead to unsatisfactory results.

5. CONCLUSIONS

In this paper, a new analytically regularizing method, based on Helmholtz decomposition and Galerkin
method, for the analysis of the electromagnetic scattering by a hollow finite-length perfectly electrically
conducting (PEC) circular cylinder is presented. As shown in the numerical results section, the presented
method is very accurate and efficient in terms of computation time and storage requirement. We are
working on the generalization of the method when layered media and closed PEC or dielectric cylinders
are involved for which different edge behaviour for the fields have to be considered on the wedges.

APPENDIX A.

- Remarkable identities [48]:
+∞∫

−∞

Jh+ν (bu)
(ua)ν

a2e−juzdu

n2 + u2a2
=

(−jsgn (z))h πa

|n|ν+1 Ih+ν

( |n| b
a

)
e−

|n||z|
a (A1)

for |z| > b, where Jν(·) is the Bessel function of first kind and order ν, sgn(·) is the signum function
and Iν(·) is the modified Bessel function of first kind and order ν [44],

+∞∫
−∞

Jh+ν (bu)
(bu)ν

e−juzdu =

⎧⎪⎨
⎪⎩

h!2νΓ (ν)
jhbΓ (h + 2ν)

[
1 −

(z

b

)2
]ν−1/2

C
(ν)
h

(z

b

)
|z| < b

0 |z| > b

, (A2)

where Γ(·) is the Gamma function and C
(ν)
h (·) is the Gegenbauer polynomial of order h and parameter

ν [44],

+∞∫
0

Jν (αt) Jμ (αt)
dt

tβ
=

αβ−1Γ (β) Γ
(

ν + μ − β + 1
2

)
2βΓ

(−ν + μ + β + 1
2

)
Γ
(

ν + μ + β + 1
2

)
Γ
(

ν − μ + β + 1
2

) (A3)

for �{ν + μ + 1} > �{β} > 0 and α > 0.
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- Expansion functions in the spatial domain:

f
(n,−2)
C (z) = −

+∞∫
−∞

J0 (bu)
ne−juzdu

n2 + u2a2
, (A4)

f
(n,−1)
C (z) =

+∞∫
−∞

J1 (bu)
e−juzdu

n2 + u2a2
, (A5)

f
(n,−2)
D (z) =

+∞∫
−∞

J1 (bu)
ua

ne−juzdu

n2 + u2a2
, (A6)

f
(n,−1)
D (z) =

+∞∫
−∞

J0 (bu)
uae−juzdu

n2 + u2a2
, (A7)

f
(n,h)
T (z) =

{ [
1 − (z/b)2

]pT

ξ
(h)
T C

(pT +1/2)
h

(
z
b

) |z| ≤ b

0 |z| > b
, (A8)

ξ
(h)
T = (−j)h

2pT +1/2bpT −1/2h!
√

h + pT + 1/2
apT +1/2 (h + 2pT )!

(A9)

for h ≥ 0.
- Expansion functions in the spectral domain:

f̃
(n,−2)
C (u) = − nJ0 (bu)

n2 + u2a2
, (A10)

f̃
(n,−1)
C (u) =

J1 (bu)
n2 + u2a2

, (A11)

f̃
(n,−2)
D (u) =

nJ1 (bu)
ua (n2 + u2a2)

, (A12)

f̃
(n,−1)
D (u) =

uaJ0 (bu)
n2 + u2a2

, (A13)

f̃
(n,h)
T (u) =

√
h + pT + 1/2

Jh+pT +1/2 (bu)

(ua)pT +1/2
(A14)

for h ≥ 0.
- Elements of the scattering matrix in (34):(

M(n)
TT

)
−1,−1

=
(
M(−n)

TT

)
−1,−1

=
(
M̄(n)

TT

)
−1,−1

+ 2
(
M̄(n)

T T̄

)
−1,−2

+
(
M̄(n)

T̄ T̄

)
−2,−2

, (A15)(
M(n)

T T̄

)
−1,−1

= 0, (A16)(
M(n)

TS

)
−1,h

=
(
M(n)

ST

)
h,−1

= (−1)pT +pS+1
(
M(−n)

TS

)
−1,h

= (−1)pT +pS+1
(
M(−n)

ST

)
h,−1

=
(
M̄(n)

TS

)
−1,h

+
(
M̄(n)

T̄ S

)
−2,h

, (A17)(
M(n)

TS

)
k,h

=
(
M(n)

ST

)
h,k

= (−1)pT +pS+1
(
M(−n)

TS

)
k,h

= (−1)pT +pS+1
(
M(−n)

ST

)
h,k

=
(
M̄(n)

TS

)
k,h

, (A18)
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for k, h ≥ 0, T, T̄ , S, S̄ ∈ {C,D}, T̄ �= T , S̄ �= S, being

(
M̄(n)

TS

)
k,h

=
1
a2

+∞∫
−∞

f̃
(n,k)
T (u) ˜̄G(n)

TS (u) f̃
(n,h)
S (u) du. (A19)

- Kernels of the integrals in (39):

K̃
(n,−1,−1)
CC (u)=−π

(
k2
0 − u2

)
B̃(n) (u)

ωε0a3u2
, (A20)

K̃
(n,−1,h)
CC (u)=K̃

(n,h,−1)
CC (u) = −π

(
k2
0a

2 − n2 − a2u2
)
B̃(n) (u)

ωε0a5u2
, (A21)

K̃
(n,k,h)
CC (u)=K̃

(n,h,k)
CC (u)=−

π
[(

k2
0a

2−n2−a2u2
)(

n2+a2u2
)
B̃(n)(u)+n2k2

0a
2
(
Ã(n)(u)−B̃(n)(u)

)]
ωε0a7u4

, (A22)

K̃
(n,k,−1)
CD (u)=K̃

(n,−1,k)
DC (u) =

πn
[
k2
0a

2Ã(n) (u) − (n2 + a2u2
)
B̃(n) (u)

]
ωε0a5u2

, (A23)

K̃
(n,−1,h)
CD (u)=K̃

(n,h,−1)
DC (u) = −πnωμ0B̃

(n) (u)
a3u2

, (A24)

K̃
(n,k,h)
CD (u)=K̃

(n,h,k)
DC (u) =

πnωμ0

(
Ã(n) (u) − B̃(n) (u)

)
a3u2

, (A25)

K̃
(n,−1,−1)
DD (u)=−

π
(
k2
0a

2Ã(n) (u) − n2B̃(n) (u)
)

ωε0a3
, (A26)

K̃
(n,−1,h)
DD (u)=K̃

(n,h,−1)
DD (u) = −πωμ0Ã

(n) (u)
a

, (A27)

K̃
(n,k,h)
DD (u)=K̃

(n,h,k)
DD (u) = −

π
[
k2
0

(
n2 + a2u2

)
B̃(n) (u) + u2k2

0a
2
(
Ã(n) (u) − B̃(n) (u)

)]
ωε0a3u2

, (A28)

for k, h ≥ 0.
- Asymptotic behaviour of the kernels in (A20)–(A28)

K̃
(n,k,h)
CC (u) = K̃

(n,h,k)
CC (u)

|u|→+∞∼ j

√
(k + 2) (h + 2)
ωε0 |u| a4

, (A29)

K̃
(n,k,h)
DD (u) = K̃

(n,h,k)
DD (u)

|u|→+∞∼ j
n2δk+h,−2 − k2

0a
2
√

(k + δk,−1 + 1) (h + δh,−1 + 1)
ωε0 |u| a4

(A30)

for k, h ≥ −1,

K̃
(n,k,−1)
CD (u) = K̃

(n,−1,k)
DC (u)

|u|→+∞∼ −j
n
√

k + 2
ωε0 |u| a4

, (A31)

K̃
(n,−1,h)
CD (u) = K̃

(n,h,−1)
DC (u)

|u|→+∞∼ −j
nωμ0

√
h + 1

a4 |u|3 , (A32)

K̃
(n,k,h)
CD (u) = K̃

(n,h,k)
DC (u)

|u|→+∞∼ −j
nωμ0

√
(k + 2) (h + 1)
2a6 |u|5 (A33)

for k, h ≥ 0.
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- Elements of the matrix operator in (46):(
�
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(n)

CC

)
k,h
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�
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(n)

CC

)
h,k

=
(

�
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for k, h ≥ −1, (
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for k ≥ −1 and h ≥ 0,(
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for k, h ≥ −1 and k + h ≥ −1.
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