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Two FFT Subspace-Based Optimization Methods for Electrical
Impedance Tomography

Zhun Wei1, Rui Chen1, Hongkai Zhao2, and Xudong Chen1, *

Abstract—Two numerical methods are proposed to solve the electric impedance tomography (EIT)
problem in a domain with arbitrary boundary shape. The first is the new fast Fourier transform
subspace-based optimization method (NFFT-SOM). Instead of implementing optimization within the
subspace spanned by smaller singular vectors in subspace-based optimization method (SOM), a space
spanned by complete Fourier bases is used in the proposed NFFT-SOM. We discuss the advantages and
disadvantages of the proposed method through numerical simulations and comparisons with traditional
SOM. The second is the low frequency subspace optimized method (LF-SOM), in which we replace the
deterministic current and noise subspace in SOM with low frequency current and space spanned by
discrete Fourier bases, respectively. We give a detailed analysis of strengths and weaknesses of LF-SOM
through comparisons with mentioned SOM and NFFT-SOM in solving EIT problem in a domain with
arbitrary boundary shape.

1. INTRODUCTION

Electrical impedance tomography has attracted intense interests recently in both mathematical and
engineering fields [1, 2]. It is well-know that EIT is a very challenging problem due to its nonlinear
and highly ill-posed properties [3, 4]. Various methods have been proposed to solve EIT problems such
as factorization method [5], variationally constrained numerical method [6], and nonlinear modified
gradient-like method [7]. Recently, subspace-based optimization method (SOM) is proposed to solve
electrical impedance tomography problems [8]. In SOM, through a full singular value decomposition
(SVD) of mapping from induced current to voltage on the boundary, the induced current is decomposed
into deterministic part and ambiguous part [9]. The deterministic part can be directly computed
with analytical solution, whereas the ambiguous part is obtained by optimizing the subspace spanned
by singular vectors corresponding to small singular values [9]. Compared with the contrast source
inversion (CSI) method [10], SOM has the properties of faster convergence rate and good robustness
against noise [9]. However, a drawback of SOM is the overhead computation associated with the full SVD
of mapping from induced current to voltage on the boundary [9]. In order to reduce the computational
cost, an improved method is proposed in [11] to avoid the full SVD in SOM by using a thin SVD method.
The thin SVD operation only generates the singular vectors corresponding to dominant singular values
instead of all singular vectors. In addition, the computational speed is further increased with FFT
applied in twofold subspace-based optimization method (TSOM) [12].

In this paper, we propose a new fast Fourier transform subspace-based optimization method (NFFT-
SOM) to solve the EIT problem in a domain with arbitrary boundary shape. Compared with the method
in [8], the original contributions and advantages of the proposed method are as follows: (1) Instead of
solving problems with circular boundary, where analytical Green’s function is available, the proposed
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method extends to be applicable to a domain with arbitrary boundary shape. (2) Instead of using
a noise subspace corresponding to smaller singular values in SOM, complete Fourier bases are used in
NFFT-SOM. It is found that, compared with SOM, NFFT-SOM can obtain better reconstructed results
in dealing with high noise EIT problem. Also, the computational complexity of the proposed method is
largely reduced compared with [8] for two reasons. Firstly, it avoids the full singular-value decomposition
of the mapping from the induced current to received voltage. Secondly, FFT can be directly used in
algorithm to accelerate the computational speed. (3) It is also found that NFFT-SOM is robust to the
change of number of significant singular values (the integer L) for both high and low noise cases, which
is an important and encouraging conclusion. (4) Instead of using coupled dipole method to solve the
EIT problem, we adopt a more general method, i.e., method of moment (MOM) [13, 14] in NFFT-SOM.

Additionally, compared with the thin SVD method in [11], where the computational costs is
reduced by constructing the ambiguous current subspace from identity matrix and deterministic
current subspace, the NFFT-SOM constructs the ambiguous current subspace that is directly spanned
by complete Fourier bases instead of singular vectors. Compared with the twofold subspace-based
optimization method in [12], where 2D Fourier bases are used to construct the current subspace for two
dimensional TM cases, 1D Fourier bases are used in NFFT-SOM for EIT problems in this paper. Since
the subspace spanned by low frequency Fourier bases roughly corresponds to the subspace spanned
by singular vectors with large singular values [12, 15], 1D Fourier bases adopted in this paper directly
exhibit such a correspondence, whereas the 2D Fourier bases adopted in [12] have to be sorted in
order to exhibit such a correspondence. In addition, when the domain of interest is not a rectangle, the
application of 2D Fourier bases requires an extra work of extending the domain of interest to a rectangle
that is able to fully cover it. For NFFT-SOM, there is no need to extend the domain of interest to a
rectangle. These are two advantages of the proposed method over [12] as far as implementing the SOM
is concerned.

As mentioned above, it is well known that the behavior of Fourier functions is similar to the one
of singular function in singular value decomposition (SVD) in the sense that low-frequency Fourier
functions correspond to those singular functions with large singular values [12, 15]. Thus, it is very
natural to think that we can replace the deterministic current and noise subspace in SOM with low
frequency current and space spanned by discrete Fourier bases, respectively. For convenience, we denote
this method as low frequency subspace optimized method (LF-SOM). In this paper, we have discussed
and assessed the performance of LF-SOM through various numerical simulations and comparisons with
traditional SOM and NFFT-SOM. Additionally, it is noted that both of the proposed methods in this
paper are applicable to three-dimensional cases as well.

2. THE FORWARD MODEL

In this paper, we consider a two-dimensional domain I consisting of a square and four half circles. As it
is depicted in Fig. 1, the square has a width of W1 which is surrounded by four half circles with a radius
of W1/2. Actually, domain I can be of arbitrary shape, and we choose the one in Fig. 1 as an example
to present our method. The background is homogenous material with the conductivity of σ0 and some
inclusions with conductivity of σ(r) are embedded in a region interior to domain I. Electrical current
is injected from the boundary ∂I into domain I, and voltages are measured at a number of Nr nodes
on the boundary ∂I which are labeled as dots in Fig. 1. There are a total number of Ni excitations
of current from boundary, and voltages at all nodes are measured for each excitation. Due to the
presence of inclusions, the voltages measured at the boundary differ from those in homogenous case,
and the differential voltage between these two cases at each node is recorded as V q

p , p = 1, 2, . . . , Ni,
q = 1, 2, . . . , Nr.

The Neumann boundary value problem in EIT can be described as the partial differential equation
∇ · (σ∇μ) = 0 in I, with σ ∂μ

∂ν = J on ∂I given a boundary excitation current J ∈ H−1/2(∂I) with∮
∂I Jds = 0, where ν is the outer normal direction on the boundary ∂I. This Neumann boundary value

problem has a unique weak solution given that μ ∈ H1(I) with
∮
∂I μds = 0. The partial differential

equation can further be written as

∇ · (σ0∇μ) = −ρin in I, σ0
∂μ

∂ν
= J on ∂I (1)
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Figure 1. A typical schematic of EIT problem with a two dimensional domain consisting of a square
with width W1 and four half circles with a radius of W1/2, in which W1 = 1, and σ0 = 1. Voltages are
measured at a number of Nr nodes on the boundary ∂I which are labeled as dots.

with the induced source ρin = ∇ · [(σ − σ0)∇μ]. Since the inclusions are within a region interior to I,
the σ at the boundary ∂I is just the known σ0. To solve Eq. (1) in method of moment [14], the Green’s
function G(r, r′) in homogeneous background medium is defined and it satisfies the following differential
equation with the normalization

∮
∂I G(r, r′)ds = 0,

∇ · (σ0∇G(r, r′)) = −δ(r − r′) with σ0
∂G

∂ν
= − 1

|∂I| on ∂I (2)

where δ(r − r′) is the Dirac delta function, and r and r′ are the field point and source point in domain
I, respectively.

The solution of every linear differential equation like Eq. (1) consists of two part: the particular
solution that depends on the induced source ρin together with the boundary condition σ0

∂μ
∂ν = 0 on ∂I,

and the general solution that depends on the exciting current J on the boundary that is injected into
a homogeneous medium in absence of induced source ρin. This conclusion is made rigorous by Eq. (2)
and the fact that the total amount of ρin inside I is equal to zero. Applying the Green’s Theorem and
considering the predefined normalization

∮
∂I μds = 0, it is easy to find that μs =

∫
I G(r, r′)ρin(r′)dr′ is

the particular solution for differential equation in Eq. (1), and the superscript s here means “scattered”
since the physical meaning of μs is actually scattered potential by the induced source. For the general
solution, it satisfies that ∇· (σ0∇μ0) = 0 with σ0

∂μ0

∂ν = J on ∂I. Thus, the compete solution for Eq. (1)
is

μ = μ0 + μs = μ0 +
∫

I
G(r, r′)∇′ · [(σ(r′) − σ0)∇′μ(r′)

]
dr′ (3)

Utilizing the identity ∇′ · (G(r, r′)A) = A · ∇′G(r, r′) + G(r, r′)∇′ ·A with A = (σ(r′) − σ0)∇′μ(r′) and
considering that

∫
I ∇′ · (G(r, r′)A)dr′ = 0 due to divergence theorem, Eq. (3) becomes

μ = μ0 +
∫

I
−∇′G(r, r′) · (σ(r′) − σ0

)∇′μ(r′)dr′ (4)

Taking gradient on both side of Eq. (4), we have the following self-consistent equation.

E
t = E

0 +
∫

I
−∇

[
∇′G(r, r′) · (σ(r′) − σ0)E

t(r′)
]
dr′ (5)

for electric field E
t = −∇μ and E

0 = −∇μ0. In method of moment (MOM) [13, 14], domain I is
discretized into a total number of M small squares that are centered at r1, r1, . . . , rM , and the mth
subunit has an effective radius of am. Pulse basis function and delta test function are used in MOM
and the total electric field exerting on subunits E

t
p(rm) can be expressed as,

E
t
p(rm) = E

0
p(rm) +

M∑
n=1

GD(rm, rn) · ξn · Et
p(rn) (6)
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where p represents the pth injection of current, and E
0
p(rm) is the electric field in homogeneous

background. ξn relates the current induced in the nth subunit J(rn) to the total electric field E
t
p(rn),

i.e., J(rn) = ξn · E
t
p(rn). According to Eq. (4), ξn can be calculated as ξn = πa2

m(σ(rn) − σ0)I2,

and I2 is a two-dimensional identity matrix. The Green’s function GD(rm, rn) is characterized as
GD(r, r′) · d = −∇[∇′G(r, r′) · d] for a arbitrary dipole d.

Since the boundary of domain I is irregular, GD(rm, rn) has no analytical solution in our case.
Instead, it can be computed using numerical software as electric field at rm due to a unit dipole placed
at rn with σ ∂μ

∂ν = 0 on ∂I. In order to deal with singularities in the integral, GD(rm, rn) is decomposed
into two parts: unbounded-domain Green’s function G0(rm, rn) that contains singularity and is equal
to −1

2πσ0
log(|r − r′|), and the general Green’s function GI(rm, rn) that contains no singularity and is

directly calculated as GD(rm, rn) − G0(rm, rn). Then, the singularities in the integral can be easily
calculated with the analytical solution of G0(rm, rn) and the other part of integral is calculated by
Gaussian quadrature method [16].

The relationship between J(rn) and E
t
p(rn), together with Eq. (6) leads to

Jp = ξ ·
(
E

0
p + GD · Jp

)
(7)

where Jp is a 2M -dimensional vector [Jx
p (r1), Jx

p (r2), . . . , Jx
p (rM ), Jy

p (r1), J
y
p (r2), . . . , J

y
p (rM )]T , in which

Jx
p (rM ) and Jy

p (rM ) are x and y component of induced current at rM for the pth injection of current

on boundary ∂I, respectively. The superscript T denotes the transpose operator of a matrix. GD is a
2M × 2M matrix [Gxx, Gxy; Gyx, Gyy], in which Gxx is a M ×M matrix. Gxx(m,n) and Gxy(m,n) are
computed as x component of electric field at rm due to a unit x-oriented and y-oriented dipole placed
at rn, respectively. Gyx and Gyy can also be evaluated in a similar way. Thus, the induced current Jp

can be obtained from Eq. (7). According to Eq. (4), the differential voltage on the boundary V (r∂I)
can be calculated as

V (r∂I) = μ − μ0 =
∫

I
−∇′G(r∂I , r

′) · (σ(r′) − σ0)∇′μ(r′)dr′ (8)

where r∂I is the position at the boundary ∂I. Following the same discretized method in Eq. (6), the
differential voltage V p at the boundary for pth injection is then calculated as

V p = G∂ · Jp (9)

where G∂(r∂I , r
′) is characterized as G∂(r∂I , r

′) = ∇′G(r∂I , r
′) and G∂ is a Nr × 2M matrix [G

x

∂ , G
y

∂ ].
G

x

∂(q, n) and G
y

∂(q, n) are calculated as potential on the boundary node rq due to a unit x-oriented and y-
oriented dipole at rn, respectively. This forward model has been verified by comparing with commercial
software (COMSOL), and numerical results calculated by the proposed forward model agree well with
the simulation results produced by COMSOL for various examples. In addition, the mesh discretization
is important in forward model for EIT problem, and an appropriate mesh is desired in order to obtain
accurate internal field [17].

3. INVERSE ALGORITHM

It is well-known that EIT is a highly ill-posed problem, which means that the induced current can’t be
uniquely determined from Eq. (9). In the traditional SOM, a full singular value decomposition is firstly
conducted on G∂ , in which G∂ =

∑
m umσmν∗

m with G∂ · νm = σmum, σ1 ≥ σ2 . . . ≥ σ2M ≥ 0. The
induced current J is mathematically classified into deterministic current J

s and ambiguous current J
n

with J = J
s+J

n. The deterministic current J
s is uniquely determined by the first L singular vectors [9],

and ambiguous current J
n is optimized in the subspace V

n
spanned by the remaining 2M −L singular
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value vectors as J
n = V

n · αn [9]. However, as mentioned in [11, 12], the drawback of the traditional
SOM is its overhead computational cost associated with a full SVD of the mapping from the induced
current to received signal, especially when the domain of interest is large. Thus, alternative method to
construct ambiguous part of induced current is proposed to avoid a full SVD of mapping from induced
current to scattered fields [11].

3.1. New Fast Fourier Transform Subspace-Based Optimization Method (NFFT-SOM)

In this paper, we propose a new fast Fourier transform subspace-based optimization method (NFFT-
SOM) which avoids a full SVD of G∂ , and fast Fourier transform can be used to accelerate the
computational speed at the same time. In NFFT-SOM, the deterministic current is still computed by
the first L singular vectors, whereas the ambiguous current is spanned by a complete Fourier bases F , in
which the 2M × 2M dimensional matrix F consists of units F (m,n) = exp(−j2π(m− 1)(n− 1)/(2M)).
Since only the first L singular vectors is needed, a thin SVD of G∂ is sufficient to supply these bases. For
a full SVD of G∂ , the computational complexity is O(4NrM

2), whereas the complexity of a thin SVD
is only O(2MNr

2) which is much smaller than that of full SVD since M is much larger than Nr [11, 18].
Thus, the induced current can be written in the form

Jp = J
s
p + F · αn

p (10)

where αp
n is a 2M -dimensional vector to be optimized. F ·αp

n is calculated in fast Fourier transform way
with the computational complexity of O(2M log22M), whereas the complexity of direct multiplication in
traditional SOM is O(2M(2M−L)). Since 2M−L is usually much larger than log22M , the computation
cost in NFFT-SOM is much smaller. Using Eq. (10), the residue of Eq. (9) is

Δf
p =

∣∣∣|G∂ · Js
p + G∂ · F · αn

p − V p

∣∣∣ |2 (11)

and residue of Eq. (7) becomes
Δs

p =
∣∣∣|A · αn

p − Bp

∣∣∣ |2 (12)

in which A = F − ξ · (GD · F ), and Bp = ξ · (E0 + GD · Js
p) − J

s
p. The objective function is defined as

f0

(
αn

1 , αn
2 , . . . , αn

Ni
, ξ

)
=

Ni∑
p=1

(
Δf

p/|V p|2 + Δs
p/|Js

p|2
)

(13)

The optimization method used in the contrast source inversion method is adopted, i.e., alternatively
updating the coefficients αp

n and the polarization tensor ξ [9, 10]. The implementation procedures are
as follows:

• Step 1) Calculate G∂ , GD. Compute the thin SVD of G∂ , and obtain J
s
p in Eq. (10).

• Step 2) Initial step, n = 0; Give an initial guess of ξ according to back propagation [10], and
initialize αn

p,0 = 0, ρp,0 = 0.
• Step 3) n=n+1.

- Step 3.1) Update αn
p,n: calculate gradient gp,n = ∇αn

p
f evaluate at αn

p,n−1 and ξn−1. Then
determine the Polak-Ribière-Polyak (PRP) directions [19]: ρp,n = −gp,n +(Re[(gp,n−gp,n−1)∗ ·
gp,n]/||gn−1||2)ρp,n−1. Update αn

p,n as: αn
p,n = αn

p,n−1 + dp,nρp,n. dp,n is the search length, and
the objective function is quadratic in terms of parameter dp,n. dp,n can be easily obtained as
done in [10].

- Step 3.2) Update ξn: For the mth subunit, m = 1, 2, . . . ,M , calculate the induced current
(Jp,n)m and the total electric filed (Et

p,n)m. Then objective function becomes quadratic in
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terms of (ξn)m, and the solution is given by [9]:

(ξ)m =

⎡
⎣ Ni∑

p=1

(Et
p,n)∗m

||Js
p||

· (Jp,n)m

||Js
p||

⎤
⎦ /⎡

⎣ Ni∑
p=1

(Et
p,n)∗m

||Js
p||

· (Et
p,n)

m

||Js
p||

⎤
⎦ (14)

• Step 4) If the termination condition is satisfied, stop iteration. Otherwise, go to step 3).

3.2. Low Frequency Subspace Optimized Method (LF-SOM)

Considering the fact that low-frequency Fourier functions in FFT correspond to those singular functions
with large singular values in SVD [12, 15], we further replace the deterministic current J

s in NFFT-
SOM with low frequency components of current in this section, and denote the method as low frequency
subspace optimized method (LF-SOM). In LF-SOM, the deterministic current J̃L

p is spanned by the first

L low frequency Fourier bases, i.e., J̃L
p =

L∑
i=1

α
′
iFi = FLα

′L
p , and the coefficient α

′L
p can be calculated in

a least square sense from Eq. (9) by

α
′L
p =

((
G∂FL

)∗ ·
(
G∂FL

))−1
·
((

G∂FL

)∗ · V p

)
(15)

The computational complexity of Eq. (15) is O(2MNrL), which is smaller than the computational
complexity (O(2MNr

2)) of thin SVD in NFFT-SOM since L is usually smaller than Nr according to
our experience. Thus, the speed of LF-SOM is faster compared with NFFT-SOM.

Therefore, induced current Jp can be spanned by Fourier bases as

Jp =
L∑

i=1

α
′
iFi +

L∑
i=1

(
αi − α

′
i

)
Fi +

2M∑
i=L+1

αiFi = J̃L
p + F · βn

p (16)

where βp
n is a 2M -dimensional vector to be reconstructed. For LF-SOM, the objective function and the

optimization procedures are the same as that of NFFT-SOM except that we express induced current in
a different way as it is in Eq. (16).

4. NUMERICAL SIMULATION AND DISCUSSIONS

In this section, numerical examples for both high and low noise cases are considered to verify the
proposed methods, and compare the performance of tradition SOM, NFFT-SOM and LF-SOM. As
shown in Fig. 2(a), the “two half circles” profile is considered in numerical simulations. Although all
numerical results reported in this section are for the “two half circles” profile, the proposed algorithms

(a) (b)

Figure 2. (a) The exact profile of two half circles: radii of both half circles are 0.3, and centers are
located at (−0.35, −0.2) and (0.35, 0.1), respectively. (b) The singular values of the operator G∂ , where
the base 10 logarithm of the singular value is plotted.
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have been tested on various other profiles, and all drawn conclusions are the same as the one reported
in this section.

In these examples, a total number of Ni = 10 current excitations is placed at the boundary ∂I,
where J2t−1(φ) = cos(tφ), and J2t(φ) = sin(tφ), t = 1, 2, . . . , 5, and 0 ≤ φ ≤ 2π. A total number
of Nr = 40 measurements is conducted on the boundary of ∂I. A priori information is known that
inclusions are within a circle of radius

√
2/2W1 centered at the origin with W1 = 1, which is referred to

as the domain of interest. In discretization, the domain of interest is divided into 1421 subunits with
dimensions 0.033×0.033. The measured voltage is computed by commercial software COMSOL to avoid
inverse crime, and recorded as a matrix R with the size of Nr · Ni. In this examples, additive white
Gaussian noise (AWGN) is added to the measured voltages, and is quantified by (||r||/||R||) × 100%,
where || · || denotes Frobenius norm.

The value of L is important in implementing SOM and the proposed algorithms. In previous
literatures [9, 12], L is usually determined from singular values of the operator G∂ , and a good candidate
of L takes the value where singular values noticeably change the slope in the spectrum [9]. In EIT, as
is depicted in Fig. 2(b), it is difficult to find a good candidate of L directly from the spectrum of G∂ .
Thus, it is preferred that there is a consecutive range of integer L, instead of a single value, that can be
chosen for various cases. It is also noted that there is no need to conduct a full SVD in order to plot the
singular values in Fig. 2(b) since only singular values are needed. The computational cost of obtaining
only singular values of G∂ (O(2MNr

2)) is much cheaper than that of a full SVD (O(4NrM
2)) [18].

With the presence of 20% white Gaussian noise, the reconstructed conductivity profiles at 60th
iteration for SOM, NFFT-SOM, and LF-SOM are presented in Figs. 3(a), 3(b), and 3(c), respectively.
It is found that the reconstruction results are quite satisfying for all the three methods when L = 4.

(a) (b) (c) (d)

Figure 3. Reconstructed conductivity profiles at the 60th iterations with L = 4 for (a) traditional SOM
(b) NFFT-SOM and (c) LF-SOM, where 20% Gaussian noise is added. (d) Comparison of exact error
f in the first 300 iterations for the three inversion methods with L = 4, where the base 10 logarithm of
the exact error value is plotted.

(a) (b) (c) (d)

Figure 4. Reconstructed conductivity profiles at the 60th iterations with L = 12 for (a) traditional
SOM (b) NFFT-SOM and (c) LF-SOM, where 20% Gaussian noise is added. (d) Comparison of exact
error f in the first 300 iterations for the three inversion methods with L = 12, where the base 10
logarithm of the exact error value is plotted.
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If the same computer is used, for 60 iterations, it takes about 63 seconds to finish the optimization
for SOM whereas it takes only about 15 and 14 seconds for NFFT-SOM and LFSOM, respectively. It
suggests that compared with traditional SOM, the proposed methods has great advantage in the speed.
To further compare the three methods quantitatively, exact error f is defined as |Aσ −Bσ|/|Bσ |, where
Aσ and Bσ are reconstructed conductivity and exact conductivity of the profile, respectively. Fig. 3(d)
presents the comparison of exact error with the base of 10 logarithm in the first 300 iterations for the
three inversion methods. It is found that, compared with SOM, both LF-SOM and NFFT-SOM can
get a smaller exact error for high noise cases, but with more iterations.

It is worthwhile to discuss the reasons of the results in Fig. 3(d). In SOM, the deterministic current
is calculated from the spectrum analysis of Eq. (9) without using any optimizations, and ambiguous
current is determined by optimizing a noise subspace which is perpendicular to the deterministic current
space. Since the voltages measured at the boundary V p contain white Gaussian noise, the calculated
deterministic current differs from the exact one. When the noise level is high, the deterministic current
becomes inaccurate and needs to be optimized as well. In the proposed NFFT-SOM and LF-SOM,
the space to be optimized is no longer perpendicular to the deterministic current space, and instead
the space spanned by complete Fourier bases is used. In the optimization, the deterministic current
of NFFT-SOM and LF-SOM is further optimized based on an initial value calculated from Eq. (9).
Therefore, compared with SOM, both LF-SOM and NFFT-SOM can get a smaller exact error for high
noise cases, but with more iterations.

To study the effects of L on the three inversion methods, with L = 12, the reconstructed
conductivity profiles at 60th iteration for SOM, NFFT-SOM, and LF-SOM are presented in Figs. 4(a),
4(b), and 4(c), respectively. It is noted that the reconstructed profile for NFFT-SOM outperforms those

(a) (b) (c)

Figure 5. Comparison of exact error f in the first 300 iterations for (a) traditional SOM (b) NFFT-
SOM and (c) LF-SOM with 20% Gaussian noise, where the base 10 logarithm of the exact error value
is plotted.

(a) (b) (c)

Figure 6. Reconstructed conductivity profiles at the 60th iterations with L = 12 for (a) traditional
SOM (b) NFFT-SOM and (c) LF-SOM, where 1% Gaussian noise is added.
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for the traditional SOM and LF-SOM. Fig. 4(d) shows the exact error with the base of 10 logarithm for
the three inversion methods, and it suggests that SOM and LF-SOM can hardly converges to a satisfying
exact error with L = 12. The exact error of SOM, NFFT-SOM, and LF-SOM varying with number
of iterations for different values of L are further plotted in Figs. 5(a), 5(b), and 5(c), respectively. It
suggests that NFFT-SOM is robust to L variations, and a good reconstructed results can be obtained
by NFFT-SOM for 4 ≤ L ≤ 12. In comparison, the effects of L on LF-SOM and SOM are dramatic,
which makes it difficult to choose an appropriate L in practice.

The effects of L on the three methods are also considered under low noise cases. With the presence
of 1% white Gaussian noise, the reconstructed conductivity profiles at 60th iteration for SOM, NFFT-
SOM, and LF-SOM with L = 12 are presented in Figs. 6(a), 6(b), and 6(c), respectively. It suggests
that, unlike the high noise cases, the reconstruction results are quite satisfying for all the methods with
L = 12. The exact error curves of SOM, NFFT-SOM, and LF-SOM for different values of L are also
plotted in Figs. 7(a), 7(b), and 7(c), respectively. It is found that, compared with the high noise cases,
the effects of L on all the three methods are much smaller, and a good reconstructed results can be
obtained with 4 ≤ L ≤ 12 for all the inversion methods.

(a) (b) (c)

Figure 7. Comparison of exact error f in the first 300 iterations for (a) traditional SOM (b) NFFT-
SOM and (c) LF-SOM with 1% Gaussian noise, where the base 10 logarithm of the exact error value is
plotted.

5. CONCLUSIONS

This paper proposes two fast Fourier transform subspace-based optimization methods (NFF-SOM
and LF-SOM) to solve the EIT problem with arbitrary boundary. Through numerical simulations
and analysis, it suggests that both NFF-SOM and LF-SOM have two advantages over traditional
SOM. Firstly, the speed of the proposed methods is much faster than that of traditional SOM
since the computational complexity is largely reduced by implementing FFT in the optimization
procedures. In NFFT-SOM, the computational speed is also accelerated by avoiding the full singular-
value decomposition of the mapping from the induced current to received voltage. In LF-SOM, the
computational cost is further reduced by replacing the singular value decomposition with a lower
computational cost least square method. Secondly, compared with SOM, both LF-SOM and NFFT-
SOM can get a smaller exact error for high noise cases, which means that a better reconstructed
results can be obtained for the proposed methods. Most importantly, besides the above mentioned two
advantages, it is found that NFFT-SOM has another advantage that it is robust to the L variations.
For NFFT-SOM, there is a consecutive range of integer L, instead of a single value, that can be
chosen in practice for both high and low noise cases. This is an important and encouraging advantage,
especially for EIT where it is difficult to directly find a good candidate of L from the spectrum of G∂ .
Additionally, further numerical simulations and analysis also suggest that the drawback of the proposed
methods is that, compared with traditional SOM, both of the proposed methods need more iterations
in optimization since the noise spaces of them are spanned by complete Fourier bases.
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