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Efficient Localization Algorithm of Mixed Far-Field and Near-Field
Sources Using Uniform Circular Array

Bing Xue1, 2, *, Guangyou Fang1, 2, and Yicai Ji1, 2

Abstract—An efficient algorithm based on high-order cumulant is addressed for the scenarios where
both far-field and near-field narrow-band signals may exist synchronously. The first matrix built by
four-order cumulant is utilized to estimate the two dimensional direction-of-arrivals (DOAs) using
the orthogonal projection matrix of the signal subspace and the virtual steering matrix. Then, the
second matrix built by four-order cumulant is decomposed to get the noise subspace using the eigen
decomposition. Meanwhile, a virtual steering matrix is used to distinguish far-field signals (FFSs) from
near-field signals (NFSs). And one-dimensional MUSIC algorithm is used to estimate the range of the
NFSs. Compared to the TSMUSIC, the proposed algorithm can provide high resolution for the DOAs.
In addition, there is higher accuracy for the DOA of NFS in the proposed algorithm than that in
TSMUSIC and in TSMD. Simulation results are carried out to certify the performance of the proposed
algorithm.

1. INTRODUCTION

There has been considerable interest in the passive sources localization with an array of spatially
separated sensors, which has many important application areas such as radar, guidance systems and
sonar [1]. Various high performance algorithms such as MUSIC [2] and ESPRIT [3] have been used to
deal with the DOA estimation of the FFSs. However, the both DOA and range of the source that is
localized at the Fresnel region of the array aperture need be considered in some practical applications
like lightening localization and speaker guidance systems [4], each source may be in the near field or the
far field of the sensor position. Hence, when the classical algorithms may fail in such scenarios, several
solutions are available to process the mixed sources localization. Using two high dimensional cumulant
matrices of the sensor outputs, Liang and Liu [4] provided a two-stage MUSIC algorithm to solve
the mix sources localization problem of the high resolution, which has high computational complexity
and cannot classify the FFSs and NFSs in similar DOA. Wang et al. [5] used the mixed-order MUSIC
algorithm to decline the computational complexity and improved the accuracy. Jiang et al. [6] gave an
algorithm that estimates DOAs of all FFSs and NFSs by ESPRIT, distinguishes the FFSs and NFSs
and estimates the range of NFSs by MUSIC. Liu and Sun [7] used the spatial differencing technique to
classify the NFSs from the mixed sources after the estimations of FFSs, which has the higher accuracy,
classify the mixed signals successfully and lower computational load. The algorithm in [8] built the
optimization problem to get the estimation function used to obtain the DOA and estimated the range
of the source by the minimum variance distortionless response (MVDR). Yet, the aforementioned high
resolution algorithms are all aimed at two dimensional localization (elevation DOA and range). For
some three dimensional problems (azimuth angle, elevation angle and range), they may fail in mixed
sources localization so that we need to have an increase for the performances.
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Recently, there is a significant amount of attention paid to the three dimensional localization (two
dimensional DOA). Two parallel uniform linear arrays (ULAs) were used in [9] to estimate the two-
dimensional direction (azimuth angle, elevation angle) for noncoherent and coherent signals by the
orthogonal projector. An L-shaped ULA was used in [10] to estimate the two dimensional DOAs for
noncoherent signals using a computational efficient subspace-based algorithm. Wu et al. [11] presented
multiple near-field sources localization using the two-stage MUSIC (TSMUSIC) by UCA. And Jung and
Lee [12] gave an easy way to calculate the three-dimensional information of a single source. UCA is
preferable over uniform linear array because of its 360◦ azimuthal coverage, additional angle information
and unchanged directional pattern [11] for estimating mixed sources. So, in this paper, we choose the
UCA to estimate the mixed source locations. The novel solution includes three stages: 1) UCA is used
to estimate the mixed sources three dimensional localization. We give the mathematical model for this
situation, which is similar to the model in [11–13]. 2) Two useful four-order cumulant matrices for UCA
are built to distinguish the NFSs and FFSs, which can realize a more reasonable classification of the
signals types than correlation function. 3) The virtual steering matrices are built to estimate the DOAs
and the ranges, respectively. And the orthogonal projector is used in MUSIC, which can provide the
great estimation accuracy and low computing complexity.

2. MIXED FAR-FIELD AND NEAR-FIELD SIGNAL MODEL

We consider the narrow-band signals (NF far-field signals and NN near-field signals) impinging on a
UCA [11] with radius R and M identical omnidirectional sensors, and the array center is the phase
reference point. Without loss of the propagation, all the sensors are employed on the xy-plane, while
the FFSs are located at (θi, ϕi) and the NFSs located at (θi, ϕi, ri), where θi ∈ [0, 2π) are the azimuth
angles measured counterclockwise from the x axis; ϕi ∈ [0, π/2) are the elevation angles measured
downward from the z axis; ri is the range measured from the UCA centre and i = 1, 2, . . . , N . The
received signal of the UCA by the k-th sensor can be expressed as

xk(t) =
NN∑
i=1

si(t)e
j2π
λ

{ri−rk(θi,ϕi,ri)} +
NN+NF∑
i=1+NN

si(t)e
j2πR

λ
ψk,i(θi,ϕi) + n(t) (1)

where k = 1, 2, . . . ,M , si(t) is the i-th source signal, n(t) the additive sensor noise, and ψk,i(θi, ϕi) =
cos(γk − θi) sin(ϕi) with γk = 2πk/M being the angle of the k-th sensor measured counterclockwise
from the x-axis. λ is the wavelength of the source and rk(θi, ϕi, ri) the distance between the i-th source
and the k-th sensor, which can be written as

rk(θi, ϕi, ri) =
√
r2i −R2 − 2riRψk,i(θi, ϕi) (2)

According to the Taylor series expansion, Eq. (2) can be approximated as

rk(θi, ϕi, ri) ≈ ri −Rψk,i(θi, ϕi) +
R2

2ri

(
1 − ψ2

k,i(θi, ϕi)
)

(3)

where R� r, substituting Eq. (3) into Eq. (1) yields

xk(t) =
NN∑
i=1

si(t)e
j2πR

λ

{
ψk,i(θi,ϕi)− R

2ri
(1−ψ2

k,i(θi,ϕi))
}

+
NN+NF∑
i=1+NN

si(t)e
j2πR

λ
ψk,i(θi,ϕi) + n(t) (4)

In matrix form, Eq. (1) can be written as
x(t) = ANSN (t) + AFSF (t) + n(t) (5)

where x(t) and n(t) are M × 1 dimensional complex vectors.
AN = [aN (θ1, ϕ1, r1),aN (θ2, ϕ2, r2), . . . ,aN (θNN

, ϕNN
, rNN

)] (6)
AF = [aF (θ1, ϕ1),aF (θ2, ϕ2), . . . ,aF (θNF

, ϕNF
)] (7)

aN (θ, ϕ, r) = [e
j2πR

λ {ψ1(θ,ϕ)− R
2r

(1−ψ2
1(θ,ϕ))}, . . . , e j2πR

λ {ψM (θ,ϕ)− R
2r

(1−ψ2
M (θ,ϕ))}]T (8)

aF (θ, ϕ) = [e
j2πR

λ
ψ1(θ,ϕ), . . . , e

j2πR
λ

ψM (θ,ϕ)]T (9)
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where ψk(θ, ϕ) = cos(γk − θ) sin(ϕ), k = 1, 2, . . . ,M . Eqs. (8) and (9) represent the steering vector of
NFSs and FFSs, respectively. And the superscript T denotes the transpose operator. In addition, the
assumptions are required to point out. The source signals are statistically independent processes, which
are also independent from the source signals. For the rest of this paper, the following assumptions are
need to hold:

1) The source signals are statistically mutually independent, uncorrelated narrowband stationary
processes.

2) The sensor noise is spatially uniform white and independent from the signals.

3. THE PROPOSED ALGORITHM

In this section, we will give the algorithm which estimates DOAs of all FFSs and NFSs firstly, then
classifies the FFSs and NFSs and estimates the ranges of NFSs lastly.

3.1. DOA Estimation of the Far-Field and Near-Field Sources

For the MUSIC algorithm using high-order cumulant to estimate DOAs of all signals, we should build
a new cumulant of the sensor outputs. Assume that M is even, and the four-order cumulant is used to
make the cumulant matrix, which can be shown in Eqs. (8)–(11):

C11 = cum
{
xp (n)x∗M/2+p (n)x∗q (n)xM/2+q (n)

}
=

NN+NF∑
i=1

C4,ie
j 4πR

λ
{ψp,i(θi,ϕi)−ψq,i(θi,ϕi)} (10)

C12 = cum
{
xp (n)x∗p−M/2 (n)x∗q (n)xM/2+q (n)

}
=

NN+NF∑
i=1

C4,ie
j 4πR

λ
{ψp,i(θi,ϕi)−ψq,i(θi,ϕi)} (11)

C13 = cum
{
xp (n)x∗M/2+p (n)x∗q (n)xq−M/2 (n)

}
=

NN+NF∑
i=1

C4,ie
j 4πR

λ
{ψp,i(θi,ϕi)−ψq,i(θi,ϕi)} (12)

C14 = cum
{
xp (n)x∗p−M/2 (n)x∗q (n)xq−M/2 (n)

}
=

NN+NF∑
i=1

C4,ie
j 4πR

λ
{ψp,i(θi,ϕi)−ψq,i(θi,ϕi)} (13)

where C4,i = cum{si(t)s∗i (t)s∗i (t)s(it)} is the four-order cumulant of the i-th signal; the superscript ∗
represents the complex conjugate; n = 1, 2, . . . , Np represents snapshot number.

Here, p ∈ [1,M/2] and q ∈ [1,M/2] for Eq. (10), p ∈ [1 +M/2,M ] and q ∈ [1,M/2] for Eq. (11),
p ∈ [1,M/2] and q ∈ [1 +M/2,M ] for Eq. (12), p ∈ [1 +M/2,M ] and q ∈ [1 +M/2,M ] for Eq. (13).

We can only estimate the DOAs of the signals without r in Eqs. (10)–(13). C11, C12, C13 and C14

that are all the (M/2) × (M/2) matrices are combined into a matrix. This M ×M matrix C1 can be
constructed as follows:

C1 =
[

C11 C13

C12 C14

]
=

[
G1

H1

]
(14)

where G1 is a K̄×M matrix, and H1 is a (M − K̄)×M matrix. We can use the virtual steering matrix
to estimate the DOAs, which can be written as

AV 1 = [a(θ1, ϕ1), . . . ,a(θNN+NF
, ϕNN +NF

)] (15)

a(θi, ϕi) =
[
e

j4πR
λ

ψ1,i(θi,ϕi), . . . , e
j4πR

λ
ψM,i(θi,ϕi)

]T
(16)

AV 1 is a M × (NF +NN ) matrix. Using Eq. (15), Eq. (14) can be expressed as

C1 = AV 1CsAH
V 1 =

[
Ā1

Ā2

]
Cs

[
Ā1

Ā2

]H
(17)
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Ā1 is a K̄×M matrix, and Ā2 is a (M − K̄)×M matrix. The superscript H is the conjugate transpose
operator. Equivalently, Ā2 = PαnĀ1. Then, Pαn can be obtained.

P̂αn =
(
G1GH

1

)−1
G1HH

1 (18)

We can easily get
EαnAV 1 = O (19)

where Eαn = [P̂T
αn −IT ]T , I ∈ CM−K̄×M−K̄ is an identity matrix, and O is a zero matrix. Evidently,

the columns of Eαn form a basis of the null space of AV 1, so the orthogonal projector is expressed as

Uαn = Eαn

(
EH
αnEαn

)−1
EH
αn (20)

which is used to obtain UH
αnAV 1 = O. When the finite snapshots of array data are available, the DOAs

of all signals can be estimated by the minimizing argument of the cost function:

f1 (θ, ϕ) = aH(θ, ϕ)UαnUH
αna(θ, ϕ) (21)

where a(θ, ϕ) = [e
j4πR

λ
ψ1(θ,ϕ), . . . , e

j4πR
λ

ψM (θ,ϕ)]T .

3.2. Distinction of the Far-Field and Near-Field Sources

For distinguishing the FFSs and NFSs, we need to build the second cumulant matrix C2, which is used
to estimate the ranges of the NFSs. To utilize signal information adequately, a M ×M matrix is built
using the four-order cumulant. Here, p ∈ [1,M ] and q ∈ [1,M ] for Eq. (22).

C2 = cum
{
xp (n)x∗M (n)x∗q (n)xM (n)

}

=
NN∑
i=1

C4,ie
j2πR

λ

{
ψp,i(θi,ϕi)−ψq,i(θi,ϕi)− R

2ri
(ψ2

p,i(θi,ϕi)−ψ2
q,i(θi,ϕi))

}

+
NN+NF∑
i=1+NN

C4,ie
j2πR

λ
(ψp,i(θi,ϕi)−ψq,i(θi,ϕi)) (22)

Using eigenvalue decomposition, C2 can be written as

C2 = Σs2UsΣH
s2 + Σn2UnΣH

n2 (23)

where the (NF +NN )×(NF +NN ) matrix Us contains the (NF +NN ) signal subspace eigenvalues of C2,
and the M × (NF +NN ) matrix Σs2 spans the signal subspace of C2. In turn, the M × (M −NF −NN )
matrix Σn2 spans the noise subspace of C2. Generally, the eigenvalues of the signal subspace are larger
than those of the noise subspace.

Before estimating the ranges of the NFSs, we should select the NFSs from all of the signals.
Assume that all of the signals are the FFSs. Using the MUSIC algorithm, we put all of DOA estimated
by Eq. (21) into Eq. (24). When f2(θ̂i, ϕ̂i) � 0, the i-th signal is the FFS. On the contrary, this signal
is the NFS.

Here, bsH(θ, ϕ) is the virtual steering matrix that is the same as Eq. (9).

f2

(
θ̂, ϕ̂

)
=

(
bsH(θ̂, ϕ̂)UnUH

n bs(θ̂, ϕ̂)
)−1

(24)

3.3. Range Estimation of the Near-Field Signals

It is clear that 1D-MUSIC algorithm like Eq. (25) can be used to estimate the ri(i = 1, 2, . . . , NN ) since
θ̂i and ϕ̂i have been obtained.

f3

(
θ̂i, ϕ̂i, ri

)
=

(
asH

(
θ̂i, ϕ̂i, ri

)
UnUH

n as
(
θ̂i, ϕ̂i, ri

))−1
(25)

where asH(θ, ϕ, r) is the virtual steering matrix that is the same as Eq. (8).
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4. COMPUTER SIMULATION RESULTS

In this section, some simulation results are given to evaluate the performance of the proposed algorithm.
For the first and second examples, an eight-sensor symmetric UCA with R = λ is given. Two equal
power narrowband signals (one NFS and one FFS) are impinging on this array. The additive noise
is supposed to be spatial white complex Gaussian random process. And the signal-to-noise ratio
(SNR) is defined relative to each signal. For the comparison, we execute the TSMUSIC [11] using
Rk,l = E{xkx∗l }(k, l = 1, 2, . . . ,M) by eigen value decomposition (EVD), which estimates firstly DOAs
of all FFSs and NFSs and then estimates the ranges of NFSs, execute the TSMD [7] that distinguishes
firstly the FFSs and NFSs and then estimates the locations of FFSs and NFSs respectively, and execute
the related Cramer-Rao Bound (CRB). The results shown next are evaluated by the estimated root
man square error (RMSE) from the average results of 200 independent Monte-Carlo simulations.

In the first experiment, we consider the simulation that there are a NFS and a FFS incoming on
the sensor array, and their DOAs are similar ((152.1◦, 33.2◦) and (160.3◦, 33.2◦, 6.1λ)). The SNR and
the snapshot number are set at 20 dB and 1200, respectively. The spatial spectrum of the proposed
algorithm and TSMUSIC [11] is shown in Fig. 1. From this figure, the proposed algorithm gives the two
peaks for these two signals, which successfully yields DOA estimations for both NFS and FFS. However,
the TSMUSIC [11] only gives a peak for these two signals, that is, which cannot give the right DOA for
the NFS so that it is invalid for the similar DOAs of two signals. So, our algorithm can achieve a more
reasonable classification for the signals than TSMUSIC [11].
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Figure 1. Spatial spectrum of azimuth
estimation. (152.1◦, 33.2◦) and (160.3◦, 33.2◦,
6.1λ), SNR = 10 dB, the snapshot number is
2000.
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Figure 2. RMSEs of azimuth angles estimations
for mixed NFSs and FFSs versus SNRs. (82.5◦,
33.2◦) and (160.3◦, 62.1◦, 6.1λ), the snapshot
number is 2000. 200 independent trails.

In the second experiment, the performance of the proposed algorithm in the scenario where an
FFS and a NFS exist simultaneously is assessed, which are located at (82.5◦, 33.2◦) and (160.3◦, 62.1◦,
6.1λ), respectively. We determine the SNR from 0 to 20 dB, and 200 independent trails and the other
simulation conditions are similar to the first experiment. The RMSEs of the azimuth angles, elevation
angles and the range estimations by the proposed algorithm are presented in Fig. 2, Fig. 3 and Fig. 4,
respectively. Meanwhile, the TSMUSIC [11] algorithm, the TSMD [7] algorithm and the related CRB
are also represented for comparison. What we can see from these figures are that the proposed algorithm
has lower accuracy than TSMUSIC [11] and TSMD [7] at high SNR for the DOA of FFS, but it has
higher accuracy than TSMD [7] at low SNR. At the same time, there is higher accuracy for the DOA of
NFS in the proposed algorithm than that in TSMUSIC [11] and in TSMD [7] from Fig. 2 and Fig. 3. For
the range of NFS estimation, the proposed algorithm has almost the same accuracy as TSMUSIC [11]
and TSMD [7].
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Figure 5. RMSEs of azimuth angles estimations
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33.20◦), (61.74◦, 41.06◦, 2.5λ), (101.38◦ , 48.92◦,
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and (220.03◦, 72.50◦). The snapshot number is
2000. 200 independent trails.
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Figure 6. RMSEs of elevation angles estimations
for mixed NFSs and FFSs versus SNRs. (22.10◦,
33.20◦), (61.74◦, 41.06◦, 2.5λ), (101.38◦, 48.92◦,
3.2λ), (141.02◦ , 56.78◦, 4.1λ), (180.66◦, 64.64◦)
and (220.03◦, 72.50◦). The snapshot number is
2000. 200 independent trails.

In the third experiment, a sixteen-sensor symmetric UCA with R = λ is given. Six equal power
narrowband signals (three NFSs and three FFSs) are impinging on this array. These signals are located
at (22.10◦, 33.20◦), (61.74◦, 41.06◦, 2.5λ), (101.38◦, 48.92◦, 3.2λ), (141.02◦, 56.78◦, 4.1λ), (180.66◦ ,
64.64◦) and (220.03◦, 72.50◦), respectively. The other simulation conditions are similar to the first
experiment. The RMSEs of the azimuth angles, elevation angles and the range estimations by the
proposed algorithm are presented in Fig. 5, Fig. 6 and Fig. 7, respectively. From these figures, the
proposed algorithm represents a better estimation in NFSs. Compared with the case where one NFS
and one FFS are impinging on the array, it has lower accuracy in this case. Yet, its performance is still
great in mixed multi-source localization.
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Figure 7. RMSEs of range estimations for mixed NFSs and FFSs versus SNRs. (22.10◦, 33.20◦),
(61.74◦, 41.06◦, 2.5λ), (101.38◦, 48.92◦, 3.2λ), (141.02◦, 56.78◦, 4.1λ), (180.66◦, 64.64◦) and (220.03◦ ,
72.50◦). The snapshot number is 2000. 200 independent trails.

5. COMPUTATIONAL COMPLEXITY

For the computational complexity, we consider the major multiplications existing in matrix construction,
EVD computation, and MUSIC spectrum search. The TSMUSIC method [11] contains one M ×M
matrix, performs its EVD, and needs one two-dimensional DOA search and NN times range search.
Hence, the multiplications are estimated by

O

(
M2Np +

4
3
M3 +

360
δθ

180
δϕ

M2 +NN
Len

δr
M2

)
(26)

where Np represents the snapshot number; δθ and δϕ denote the search step of DOA; δr is the search step
of range; Len is the length of range search. The TSMD method [7] contains one M×M matrices, builds
one difference matrix, executes the EVD of two matrices, as well as performs twice two-dimensional
DOA search and NN times range search. Hence, the multiplications are estimated by

O

(
M2Np + 2M2 +

8
3
M3 + 2

360
δθ

180
δϕ

M2 +NN
Len

δr
M2

)
(27)

Similarly, the proposed method contains two M ×M matrices, executes the EVD of one matrix,
as well as performs twice two-dimensional DOA search and NN times range search. Hence, the
multiplications are estimated by

O

(
3M2Np +

4
3
M3 + 2

360
δθ

180
δϕ

M2 +NN
Len

δr
M2

)
(28)

We can find that the TSMUSIC method [11] has the lowest computational complexity, and the
proposed method has higher computational complexity than the TSMUSIC method [11] and TSMD
method [7].

6. CONCLUSIONS

This paper gives a three-dimensional scenario for mixed NFSs and FFSs localization using UCA and
presents an efficient three-stage MUSIC algorithm for this scenario. Our investigation shows that
the novel algorithm has higher resolution than TSMUSIC [11]. Compared to the TSMUSIC [11] and
TSMD [7], the proposed solution is more efficient and has higher accuracy for the DOA estimations of
the NFS. In addition, the proposed method has disadvantage in computational complexity.
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