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Diagnosis of Coupled Resonator Bandpass Filters Using VF
and Optimization Method

Rui Wang*, Le-Zhong Li, Long Peng, Xiao-Qiang Tu, and Xiao-Xi Zhong

Abstract—This paper presents a hybrid method combining a vector fitting (VF) and a global
optimization for diagnosing coupled resonator bandpass filters. The method can extract coupling matrix
from the measured or electromagnetically simulated admittance parameters (Y -parameters) of a narrow
band coupled resonator bandpass filter with losses. The optimization method is used to remove the
phase shift effects of the measured or the EM simulated Y -parameters caused by the loaded transmission
lines at the input/output ports of a filter. VF is applied to determine the complex poles and residues
of the Y -parameters without phase shift. The coupling matrix can be extracted (also called the filter
diagnosis) by these complex poles and residues. The method can be used to computer-aided tuning
(CAT) of a filter in the stage of this filter design and/or product process to accelerate its physical design.
Three application examples illustrate the validity of the proposed method.

1. INTRODUCTION

The filter tuning is essential especially in the design of complex microwave filters. In the stage of a
filter design and/or product process, the designer can obtain an acceptable filter frequency response
by tuning this filter. Filter diagnosis greatly simplifies the filter tuning, which allows the designer to
rapidly tune the filter.

Early filter diagnosis techniques can be traced back to the 1970s and 1980s [1, 2]. In the past years,
interest is growing on the filter diagnosis methods for extracting the coupling matrix of microwave filters
from the measurements (or simulations) with losses [3–15]. These filter diagnosis or coupling matrix
(CM) extraction techniques require two sorts: 1) CM extraction techniques are based on optimization (as
in [3–5]) for matching the measured scattering parameters, whose elements are the problem unknowns.
The optimization techniques are either greatly influenced by the initial values assigned to the variables,
number of the resonators and topology of the filters, or are time consuming; and 2) CM extraction
techniques are based on a polynomial model, which matches the measured (or the simulated) parameters
and then extract the CM of the filter with a specified topology (by using well-known established methods
as in [16]). Polynomial models may refer to the Y -parameters as in [6–9] or to the scattering parameters
(S-parameters) as in [10–15]. When using the S-parameters models to diagnose a filter including losses,
the loss effect associated to each resonator must be removed in advance using either the optimization
method (as in [12, 13]) or a modified frequency transformation including unloaded Q in [11]. The
main advantage of the CM extraction method based on the Y -parameters is that the loss effect is not
required to be removed before the filter diagnosis. However, all these extraction methods based on the
polynomial models must remove the phase shift of the measured S-parameters or the Y -parameters,
which are caused by the phase loading and the transmission lines at the input/output ports of a filter.
Only the phase shift is properly removed, and the filter can be diagnosed correctly. The phase shift effect
can be removed by the analysis method (as in [6]) or optimization method (as in [12,13]). Recently, a
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vector fitting (VF) based the analytical extraction method, which is capable of accurately extracting
the coupling matrix and uneven unloaded quality factor (unloaded Q) of each electric resonator of a
filter, was presented by Hu and Wu in [7]. However, how to de-embedding the phase loading effects
from the filter responses was not discussed.

In this paper, a hybrid method combining a VF and a global optimization, which can extract the
CM and the unloaded quality factor (unloaded Q) of each resonator from the measured (or simulated) Y -
parameters of lossy cross-coupled resonator bandpass filters, is proposed. The established VF is exploited
to extract the complex system poles and residues from the measured (or the simulated) Y -parameters
of the filter. The coupling matrix can be extracted by these complex poles and residues. A simple and
efficient error function is proposed to remove the phase loading effects at the input/output ports of a
filter. With respect to our previous proposed methods [12, 13], the number of optimized variables was
reduced, and the proposed method can be used in the filter diagnosis with non-uniform unloaded Q.
Three practical examples, including one measured filter and two electromagnetically simulated filters,
are provided to show the effectiveness of the approach for the practical filter diagnosis.

2. THEORY

2.1. Calculation of Characteristic Polynomials Using VF

The measured or the simulated Y -parameters can be expressed as [7, 16]:[
Y21

Y22

]
= j

[
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0

]
+
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where, MSL is the source-load coupling coefficient; r21k and r22k are the residues of Y -parameters; λk

is the poles of Y -parameters; N is the filter order; s is the normalized lowpass domain, which can be
obtained by converting from the bandpass domain f to the lowpass domain s as
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1
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where, FBW and f0 are the fractional bandwidth and center frequency of the filter, respectively.
The measured or simulated Y -parameters can also be expressed using the poles and zeroes as [7]

Y22(s) =
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where, Z22k and Z21k are the zeros of Y22(s) and Y21(s), respectively. d = jMSL.
These zeros and poles (or residues) can be solved using VF method. VF is a popular tool for system

identification of a linear system. The core procedure of VF method is briefly reviewed in [7, Section 2].

2.2. Extraction of Unloaded Q and Coupling Matrix

Once determining the residues (r21k and r22k) and poles (λk) of the Y -parameters in Eq. (1), an initial
N + 2 transversal CM [7], namely M̄ , can be directly restored based on those poles and residues found
in Eq. (1) by

M̄kk = −λk,

M̄Lk = MkL =
√

r22k,

M̄Sk = MkS = r21k/MLk, k = 1, 2, . . . , N
(4)

The source-load coupling coefficient MSL can be obtained from the highest degree (the Nth degree)
coefficient of the numerator of Y21(s) in Eq. (3) as

jMSL = d (5)
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MSL is equal to zero except for nz = N , where nz is the number of the finite-position transmission
zeros of a filter. Filter diagnosis does not focus on how to control the locations of the transmission
zeros. However, the number of finite-position transmission zeros of a filter needs to be known for a
filter diagnosis, which is a known parameter in the filter design. For a lossless or loss filter, M̄ can be
constructed using Eqs. (4) and (5). M̄ in Eq. (4) is a complex CM. The differences between a loss filter
and a lossless filter are that r21k, r22k and λk are all real numbers [16] for a lossless filter, that r21k and
r22k are real numbers, that λk is a complex number for a loss filter with uniform Q for all resonator,
and that r21k, r22k and λk are complex numbers for a loss filter with non-uniform Q for each resonator.

The finally extracted CM must correspond to the actual filter’s physical coupling topology.
Therefore, the obtained transversal CM M̄ must be further transformed to the targeted topology through
a series of matrix similarity transformations [16]. The CM after the similarity transformations is named
M ′, in which the dominant loss is distributed on the diagonal terms in a correct order to reflect the
unloaded Q of each resonator of a filter, and the loss on off-diagonal elements becomes considerably
small and is neglected [7]. So, M ′ can be expressed as

[M ′] = [M ] − j[G] (6)

where, M is the desired extracted CM corresponding to the actual filter’s physical coupling topology,
and [G] is the diagonal matrix [G] = diag[0, G11, G22, . . . , GNN , 0], which represents the loss of a filter.
The unloaded Q for the kth resonator Quk can be calculated via the following equation:

Quk =
1

FBW · Gkk
(k = 1, 2, . . . , N) (7)

The extracted S-parameters, calculated using M ′, can be obtained via the relation between the
S-parameters and the CM [12, Eq. (7)] as

S21 = −2j[A−1]N+2,1, S11 = 1 + 2j[A−1]1,1

S12 = −2j[A−1]1,N+2, S22 = 1 + 2j[A−1]N+2,N+2

. (8)

Here, A = [ΩU − jR + M ′], Ω, [R] and [U ] can refer to [17].

2.3. Removal of the Phase Shift of Y-Parameters

A phase shift ϕ connected to each port of a filter can be very well approximated by the following function
in a wide frequency range [12]:

ϕ = ϕ0 + βΔl (9)

Here, the frequency invariant constant term ϕ0 is called phase loading, which is revealed for the
first time in the field of filter diagnosis [6]. βΔl is the electrical length of the transmission line. βΔl can
be easily derived as βΔl = fθ0/f0 [12], where θ0 is the equivalent electrical length of the transmission
line at f0 in radians.

So, the phase shift ϕ connected to I/O port of a filter can be expressed as

ϕ1 = ϕ01 + fθ01/f0, ϕ2 = ϕ02 + fθ02/f0. (10)

where ϕ01 and ϕ02 are the phase loading at I/O ports, respectively; θ01 and θ02 are the equivalent
electrical length of the transmission line at f0 in radians at I/O ports, respectively; f0 is the center
frequency of the filter.

The phase shift of the measured (or the simulated) S-parameters can be removed via the following
equation:

S11(si) = Smea
11 (si) · exp(j2ϕ1); S21(si) = Smea

21 (si) · exp[j(ϕ1 + ϕ2)]

S22(si) = Smea
22 (si) · exp(j2ϕ2); S12(si) = Smea

12 (si) · exp[j(ϕ1 + ϕ2)]
(11)

where Smea
21 (si), Smea

11 (si), Smea
12 (si), Smea

22 (si) are the original measured (or the simulated) S-parameters
at the frequency point si (i = 1, 2, . . . , Ns). Ns is the number of frequency points. Frequency points si

map into the physical frequency points fi by Equation (2). Note that the measured (or the simulated)
samples in Equation (11) should be chosen around the passband.
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Using classic two-port S-matrix to Y -matrix transformation formulas with normalized characteristic
impedances [18], the Y -parameter functions can be derived as:

Y21 =
−2S21

(1 + S11) (1 + S22) − S12S21

Y22 =
(1 + S11) (1 − S22) + S12S21

(1 + S11) (1 + S22) − S12S21

(12)

It is observed that Y -parameters without the phase shift at I/O ports can be obtained, once knowing
parameters ϕ01, θ01, ϕ02, and θ02. Then, the unloaded Q and coupling matrix can be extracted using
Sections 2.1 and 2.2 in this paper.

Four unknown parameters ϕ01, θ01, ϕ02, and θ02 are obtained by minimizing the following objective
error function using the genetic algorithm (GA):

F =
Ns∑
i=1

[|Sext
21 (si)| − |Smea

21 (si)|]2 + [|Sext
11 (si)| − |Smea

11 (si)|]2

+[|Sext
12 (si)| − |Smea

12 (si)|]2 + [|Sext
22 (si)| − |Smea

22 (si)|]2. (13)

where Sext
21 (si), Sext

11 (si), Sext
12 (si), Sext

22 (si) are the extracted S-parameters at frequency points si

(i = 1, 2, . . . , Ns) via Equation (8).
GA can be used to solve the global minimum value of a multivariate function. In this paper, the

GA toolbox for Matlab provided by the University of Sheffield is chosen to minimize the error function
in Eq. (13).

3. EXAMPLES

3.1. Diagnosis of a Sixth-Order Filter with Four TZs (Filter 1)

The diagnosis technique presented here is first applied to the simulated S-parameters of the sixth-order
filter with f0 = 0.85 GHz, nz = 4 and BW = 40 MHz (filter 1), which is designed on a Rogers RO3010
substrate with a relative dielectric constant of 10.2, thickness of 1.27 mm and dielectric loss tangent of
0.0035, as shown in Fig. 1(a). The conductivity of the metal is set to 5.8. × 107 S/m in the simulation.

The filter is simulated using a full-wave simulator IE3D. The proposed algorithm is applied with
N = 6, nz = 4, Ns = 41 (frequency interval 0.81–0.89 GHz). The desired parameters are obtained
as follows: r21k = (0.0319 + 0.0019i,−0.0896 − 0.0016i,−0.0660 + 0.0002i, 0.1648 − 0.0006i, 0.2183 −
0.0004i,−0.2586 + 0.0003i); r22k = (0.0060 − 0.0006i, 0.2110 + 0.0012i, 0.0847 − 0.0011i, 0.1498 +
0.0002i, 0.2262 − 0.0004i, 0.2521 − 0.0003i); λk = (1.1555 + 0.1325i, 1.1298 + 0.1342i,−1.0513 +
0.1334i,−0.9148 + 0.1361i, 0.4386 + 0.1339i,−0.2771 + 0.1344i); k = 1, 2, 3, 4, 5, 6.

The normalized N+2 coupling matrix is extracted as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.9576 0 0 0 0 0 0
0.9576 −0.0421 0.7697 0 0 0 0.0235 0

0 0.7697 −0.1556 0.5947 0 −0.2451 −0.0180 0
0 0 0.5947 0.0171 0.6495 0.0847 0 0
0 0 0 0.6495 −0.1366 0.5901 0 0
0 0 −0.2451 0.0847 0.5901 −0.1112 0.7732 0
0 0.0235 −0.0180 0 0 0.7732 −0.0522 0.9642
0 0 0 0 0 0 0.9642 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

G = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 −0.1342 −0.0009 0.0006 0.0001 0.0012 0.0002 0
0 −0.0009 −0.1341 −0.0007 −0.0022 0.0001 0.0012 0
0 0.0006 −0.0007 −0.1336 0.0005 0.0018 0 0
0 0.0001 −0.0022 0.0005 −0.1337 −0.0004 0 0
0 0.0012 0.0001 0.0018 −0.0004 −0.1345 −0.0003 0
0 0.0002 0.0012 0 0 −0.0003 −0.1344 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)
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Figure 1. (a) The physical dimensions and (b) the simulated and the extracted S-parameters of filter 1.

As can been seen, the dominant loss is distributed on the diagonal terms of the matrix G in a correct
order to reflect unloaded Q of each resonator of a filter, and the loss on off-diagonal elements becomes
considerably small and is neglected. Using Eqs. (7) and (15), the effective unloaded Q is diagnosed as
Quk = (158.3518, 158.5180, 159.0886, 158.8866, 157.9610, 158.1049).

In Fig. 1(b), the simulated response of filter 1 is compared to the extraction one calculated by the
extracted CM in Eq. (14). Very good agreement between the simulated and extracted responses can be
observed.

Now, let us deliberately change d25 shown in Fig. 1(a) from 5.10 mm to 4.10 mm. The new state of
filter 1 is simulated by IE3D and then diagnosed by the proposed method. The CM is extracted as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.9595 0 0 0 0 0 0
0.9595 −0.0392 0.7668 0 0 0 0.0236 0

0 0.7668 −0.1494 0.5971 0 −0.3395 −0.0263 0
0 0 0.5971 0.0201 0.6463 0.0982 0 0
0 0 0 0.6463 −0.1439 0.5928 0 0
0 0 −0.3395 0.0982 0.5907 −0.1210 0.7679 0
0 0.0236 −0.0263 0 0 0.7696 −0.0528 0.9642
0 0 0 0 0 0 0.9642 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

By comparing Eq. (14) with Eq. (16), we observe that coupling element M25 between resonators
2 and 5 is changed from −0.0235 to −0.3395. It should be noted here that changing influences the
resonance frequency of the adjacent resonators 1, 6, 3 and 4. This can be observed from the extracted
frequency offset associated with those resonators in Eq. (16).

The simulated and extracted S-parameters of this new state of filter 1 are shown in Fig. 2.

3.2. Fabricated Fourth-Order Bandpass Filter (Filter 2)

The diagnosis technique will be applied in the measured S-parameters of a fourth-order filter (filter 2).
Filter 2 is fabricated on a Rogers RT/duroid 5880 substrate with a relative dielectric constant εr = 2.2,
thickness h = 0.508 mm, and loss tangent δ = 0.0009. The physical dimensions and a photograph of
filter 2 are shown in Fig. 3(a) and Fig. 3(b), respectively.

The novel algorithm is applied with N = 4, nz = 2, Ns = 21 (frequency interval 1.70–1.90 GHz),
f0 = 1.80 GHz and BW = 60 MHz.

The desired parameters are obtained as follows: r21k = (−0.2062+0.0563i, 0.1787−0.1042i, 0.3851−
0.0536i,−0.3447+0.0744i); r22k = (0.1399+0.0317i, 0.2682−0.0390i, 0.3422−0.0046i, 0.3219−0.0380i);
λk = (−1.9068 + 0.4119i, 1.4531 + 0.1364i,−1.0757 + 0.1385i, 0.3976 + 0.1408i); k = 1, 2, 3, 4.
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Figure 2. The simulated and the extracted S-parameters of the new state of filter 1.
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Figure 3. (a) The physical dimensions and (b) the photograph of the filter 2.

The normalized N + 2 coupling matrix is extracted as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.1070 0 0 0 0
1.1070 0.5921 1.1045 −0.0103 0.0953 −0.0117

0 1.1045 0.1837 0.8021 −0.0582 0
0 −0.0103 0.8021 0.2484 1.1874 0
0 0.0953 −0.0582 1.1874 0.1114 1.0354
0 −0.0117 0 0 1.0354 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

G = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0.2067 0.0774 0.1468 0.0510 0
0 0.0774 0.2285 0.1141 0.1348 0
0 0.1468 0.1141 0.2207 0.0585 0
0 0.0510 0.1348 0.0585 0.1755 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Using Eqs. (7) and (18), the effective unloaded Q for each resonator is diagnosed as Quk = (145.11,
131.26, 135.91, 170.97).
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Figure 4. The measured and extracted S-parameters of the filter 2.

In Fig. 4, the measured responses of filter 2 are compared to the extracted results. Good agreement
between the measured and extracted responses can be observed.

3.3. Simulated Eighth-Order Bandpass Filter (Filter 3)

In the third example, the diagnosis technique is applied to the simulated S-parameters of an eighth-
order filter (filter 3), which is designed on a Rogers RT/duroid 5880 substrate (εr = 2.2, h = 0.508 mm,
and δ = 0.0009). The physical structure and dimensions of filter 3 are shown in Fig. 5. The filter is
simulated using a full-wave simulator IE3D. The loss factors (conductor loss and dielectric loss) are
included in the simulated response. The conductivity of the metal is set to 5.8 × 107 Siemens/m in the
simulation.

The diagnosis technique is applied to filter 3 with N = 8, nz = 2, Ns = 36 (frequency interval
2.61–2.79 GHz), f0 = 2.70 GHz and FBW = 3.70%. The diagnosed results are shown in Table 1. Filter
3 is also diagnosed by the previous method in [13]. For comparison, the diagnosed results obtained by
[13] are also shown in Table 1. As can be seen from Table 1, the (4N + 1) optimized variables were
reduced with respect to our previous proposed method in [13]. In addition, the optimized variable was
reduced and the proposed method can be used in the filter diagnosis with non-uniform unloaded Q with
respect to our previous proposed method in [12].

In Fig. 6, the original simulated S-parameters are compared with the extracted S-parameters by
this paper and the diagnosed method in [13]. Very good agreement between the simulated and extracted
responses can be observed.

In the diagnosis of filters 1, 2 and 3, there are also some discrepancies between the simulated (or
measured) and extracted S-parameters at frequencies far away from the passband, which is due to second
order effects of a physical filter such as spurious passbands, frequency dispersive behavior, presence
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Table 1. The comparison of the diagnosed results for filter 3 between [13] and this paper.

name symbols [13] this paper
The number of optimized parameters - 5 + 4N 4

The extracted unloaded Q for each resonator

Qu1 268.07 249.14
Qu2 279.01 252.53
Qu3 276.47 232.94
Qu4 276.49 206.37
Qu5 271.22 214.77
Qu6 275.82 253.69
Qu7 268.07 268.44
Qu8 272.64 256.33

The extracted normalized coupling matrix coefficient

MS1 1.0790 1.0843
ML8 1.0106 1.0625
M12 0.9323 0.9146
M23 0.6298 0.6460
M34 0.5591 0.6412
M36 −0.1418 −0.1749
M45 0.8075 0.7460
M46 −0.0977 −0.103
M56 0.5393 0.5910
M67 0.6226 0.6501
M78 0.8824 0.9024
M11 0.3260 0.3474
M22 0.3067 0.3072
M33 0.3093 0.3618
M44 0.3063 0.3032
M55 0.5237 0.1821
M66 0.3360 0.3424
M77 0.3270 0.2791
M88 0.3340 0.4985

of spurious couplings and frequency-dependent couplings. In an ideal extraction circuit model, it is
assumed that the coupling coefficient is independent of the frequency. However, the coupling coefficient
inevitably depends on the frequency for the actual physical filter, which leads to the difference between
the simulated (or the measured) and extracted S-parameters, and the greater this difference is, the
farther away the frequency is from the passband, So the frequency samples should be chosen around
the passband to obtain the correct diagnosis results. The proposed method is only applicable to the
diagnosis of a narrow band coupled resonator bandpass filter (FBW < 5%).

4. CONCLUSION

A hybrid method combining a vector fitting (VF) and a global optimization is proposed to diagnose the
coupled resonator bandpass filters. The optimization method is used to remove the phase shift effects
at the input/output port in the filter. VF is applied to determine the complex poles and residues of
the Y -parameters without the phase shift, and then the coupling matrix corresponding to the filter can
be extracted by these complex poles and residues. With respect to our previous proposed methods, the
number of optimized variables is reduced. Three diagnosis examples, including two simulated filters and
one fabricated filter, are provided to illustrate the validation of the proposed technique.
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