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Efficient Elimination of Multiple-Time-Around Detections
in Pulse-Doppler Radar Systems

Anatolii A. Kononov1, * and Jonggeon Kim2

Abstract—The paper introduces a new method for eliminating multiple-time-around detections in
coherent pulsed radar systems with single constant pulse repetition frequency. The method includes
the phase modulation of transmit pulses and corresponding phase demodulation at reception, which is
matched to signals from the unambiguous range interval, and subsequent coherent integration followed
by successive CFAR processing in range and Doppler domains. The performance of the proposed
method is studied by means of statistical simulations. It is shown that the elimination performance can
be essentially improved by optimizing the transmit phase modulation code. The optimization problem
is formulated in terms of least-square fitting the power spectra of multiple-time-around target signals to
a uniform power spectrum. Several optimum biphase codes are designed and used in the performance
analysis. The analysis shows that the method can provide very high probability of elimination without
noticeable degradation in the detection performance for targets from the unambiguous range interval.

1. INTRODUCTION

Coherent pulsed radars, or pulse-Doppler radar systems, are widely used in ground, airborne and
shipborne deployments to provide target detection and tracking in the presence of clutter [1–5]. Pulse-
Doppler radar measurements are inherently ambiguous in either range or velocity or both. This
ambiguity is caused by the periodical structure of pulse-Doppler waveforms both in time and frequency
domains since typical pulse-Doppler waveform is a coherent pulse train with constant pulsewidth and
pulse repetition frequency (PRF).

The nature of ambiguity is determined by the PRF mode and required intervals of unambiguous
range and velocity measurements. High PRF mode is usually unambiguous in velocity but generally
highly ambiguous in range; low PRF mode is unambiguous in range but generally highly ambiguous in
velocity; and medium PRF mode is moderately ambiguous in both range and velocity. The ambiguous
measurements result not only in uncertainty of the target’s true position or velocity but also in the
folding of the clutter energy in the ambiguous dimension and in the creation of range or velocity blind
zones. These complications are particularly of great concern in search and acquisition modes when there
is little or no prior information on target coordinates.

Marine radars encounter especially severe complications due to ambiguous range measurements in
the event of ducting propagation. One of the significant propagation phenomena for radar is atmospheric
refraction [1, 3, 5], which refers to the property of the atmosphere to bend electromagnetic waves as
they pass through the atmosphere. Ducting propagation, which is also known as an extreme form of
superrefraction, occurs when the bending of radar waves causes the curvature radius of the waves to
become less than or equal to the radius of curvature of the Earth. This bending results in trapping the
electromagnetic energy transmitted by radar in a “parallel plate waveguide” near the earth surface [1].
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The meteorological conditions that may lead to the formation of superrefracting ducts are well known
and described in the literature.

Spatially, ducts can occur either at ground level (surface ducts) or being elevated (elevated ducts).
Surface ducts over the water surfaces, which are also called evaporation ducts, and elevated ducts can
allow radar waveforms to propagate for very long distances beyond the geometric horizon. This fact can
be explained by that inside a duct the one-way power density attenuation in range R is approximated
as a function of R−1 instead of R−2 as in the case of free space propagation [1]. Ducts can dramatically
impair or enhance radar coverage and range depending on whether each link terminal in the radar/target
or radar/receiver pair is located in or out of the ducts.

Although the presence of the elevated and evaporation ducts can result in extended radar range,
the consequences of their presence are negative rather than positive. The extended radar range means
that radar system can detect targets located at ranges R that are far beyond the unambiguous range
Rua given by

Rua = cTr/2 = c/(2Fr) (1)

where Tr is the pulse repetition interval (PRI) and Fr = 1/Tr the PRF. In other words, in the presence
of ducting propagation the radar system can detect multiple-time-around targets, i.e., targets, which
are located in the i-th trip range intervals [(i − 1)Rua, iRua], where i = 2, 3, . . .. According to real
observations reported in [7], ducting may increase the radar range by an order of magnitude with
respect to that for normal propagation, e.g., for the area of Singapore Changi Airport, an increase from
33 km for normal propagation to 367 km for ducting propagation was observed. This is possible even in
low-PRF or medium-PRF radar systems because of very small propagation loss (R−1 attenuation law)
when both radar and targets at ambiguous ranges (R > Rua) are located in a duct.

Figure 1(a) illustrates a scenario with three targets that are within the radar antenna beamwidth
at different ranges: Target 1 is located in the first trip (unambiguous) range interval at true range R1,
Target 2 and Target 3 are located in the 2-nd and 3-rd trip range intervals at true ranges R2 and R3,
respectively. Figure 1(b) shows ranges, at which the targets in Figure 1(a) may be detected by the radar
if the radar and Targets 2 and 3 are located in a duct. Since Target 1 is located in the unambiguous
range interval (R1 < Rua) this target is detected by the radar at the true range R1. Targets 2 and 3 are
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Figure 1. Targets in unambiguous and ambiguous range intervals and their apparent ranges.
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located in ambiguous range intervals (the 2-nd and 3-rd trip range intervals in this example), therefore
these targets may be detected by the radar at the apparent ranges R2a = R2−Rua and R3a = R3−2Rua,
respectively.

The targets associated with multiple-time-around signals (shortly, the i-th trip targets), which can
be detected by the radar in the case of ducting propagation, appear on radar display as false targets since
they are misinterpreted as the 1-st trip targets at some false target positions, or in other words, they
appear on the radar PPI as objects, which are not actually present at corresponding apparent ranges
measured by the radar. Hence, the false targets confuse radar operators and waste the computational
resources of radar tracker. Thus, the false targets are highly undesirable since they impede normal
radar operations and create danger to the safety of navigation.

Another consequence of the extended radar ranges during ducting conditions is that precipitation
and ground clutter from longer ranges folds into the unambiguous range-Doppler region. This folded
clutter may result in the degradation of radar detection performance and increasing the false alarm rate
unless constant false alarm rate (CFAR) processing is used by a radar signal processor.

Thus, to cope with the problem of false targets resulting from the presence of ducting propagation,
a method is required, which would allow eliminating, with high probability, the i-th trip targets (i > 1)
and simultaneously maintaining acceptable detection probability for the 1-st trip targets at the specified
false alarm rate, i.e., the method has to possess the CFAR property.

It is clear that eliminating the false targets caused by the ducting propagation is directly related
to resolving range ambiguities of multiple-time-around targets. Once range ambiguity is resolved for
targets detected by the radar, all the targets, for which the true ranges exceed the unambiguous range
Rua, can be eliminated.

This paper addresses only the problem of resolution of the range ambiguity. All known methods
that have been proposed to resolve the range ambiguity in pulsed radar systems can be divided into the
following three basic classes.

First class of such methods is based on using multiple constant PRFs when the total coherent
processing interval (CPI) is split into different sub-CPIs for transmitting pulse trains with different
constant PRFs [1–6]. A conventional implementation of this method is based on using two pulse trains
respectively having different constant PRFs, which are transmitted sequentially. This method has the
following disadvantages:

- Increasing the number of PRFs implies that the dwell time (time-on-target) must be increased,
hence, the total search or surveillance time increases, or the time (number of pulses) of each pulse train
must be decreased, hence, the target signal-to-noise ratio (SNR) for each sub-CPI is reduced by the
factor 1/n (n stands for the number of PRFs) with respect to the value of the SNR that would be
obtained if a single constant PRF pulse train were used for the entire CPI frame.

- More PRFs are required than possible number of targets within a given CPI frame to avoid
additional type of ambiguity called ghosting.

- For a detection to be declared for a given CPI frame, there must be detections on m out of n
(m-of-n criterion) of the multiple PRFs with typical requirements being 3-of-3 or 2-of-4 or 5-of-7, etc.
Thus, multiple detections on partial PRFs with reduced SNR are required, and complex logic is needed
to sort out these partial detections in order to declare a target detected on a given CPI frame.

The second class of methods for resolving the range ambiguity is based on phase coding, which can
be implemented as a random phase coding, or in a deterministic manner when the phases of transmit
pulses change according to a systematic (deterministic) phase code. Since these methods use a single
constant PRF transmission they are free of the disadvantages of the multiple PRF methods.

US Patent No. 6,081,221 [8] describes a method for resolving range ambiguities in Doppler weather
radars. For a single constant PRF transmission, the method consists of a special deterministic code
for the phases of transmitted pulses as well as associated decoding and processing of return signals.
The decoding process restores the coherency for the signals from the selected i-th trip interval (i = 1
or 2 is considered in [8]) while for the signals from other range intervals the coherency is not restored.
Processing steps include a procedure of separating overlaid signals from the 1-st and 2-nd trip intervals
and a procedure of estimating the spectral moments of separated signals. The method proposed in [8]
does not possess the CFAR property.

US Patent No. 5,079,556 [9] describes coherent pulsed radar with single constant PRF transmission,
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which can eliminate targets associated with multiple-time-around signals or capable of removing range
ambiguity of these multiple-time-around targets. The radar described in [9] employs the phase coding
because it includes a device for changing the phases of transmitted pulses and it also includes devices for
phase detecting received radar pulses and for integrating phase detected signals in a coherent manner.
However, the radar according to US Patent 5,079,556 [9] does not maintain constant false alarm rate.

Inter-pulse coding based on binary sequences, which yield ideal (sidelobe free), low SNR loss,
periodic cross-correlation with slightly mismatched reference sequence of the same length is suggested
in [10] for mitigating range ambiguity in high PRF radars. It should be noted that ideal cross-correlation
takes place only when the reference signal is exactly matched to a Doppler shift of the input signal. In
the case of Doppler mismatch, the resulting cross-correlation is not sidelobe free which may seriously
impair the mitigating of range ambiguity. Moreover, the method proposed in [10] does not include any
processing means to ensure the CFAR property.

Techniques employing pulse-to-pulse diversity constitute the third basic class of methods for
resolving range ambiguities. These methods employ a set of N (N > 1) unique pulse modulation
codes that are selected based on orthogonality criteria or small level of cross-correlations. Each radar
transmitted pulse is coded with one of the N selected pulse codes. Once N coded pulses have been
transmitted, the process is repeated and another sequence ofN coded pulses is transmitted. The received
radar returns are simultaneously processed in N separate channels with each channel corresponding
to a distinct pulse code. Each channel is designed to suppress radar returns from all pulses except
those containing the code corresponding to that channel. A nonlinear suppression technique (NLS) that
employs this approach is considered in [11, 12]. This technique achieves the range ambiguity suppression
through a combination of matched filtering and nonlinear “hole-punching” transformation designed to
remove undesired compressed pulse returns associated with mismatched codes. However, the NLS
method in [11, 12] does not include any processing means to ensure the CFAR property.

The present paper introduces a new method for efficient elimination of undesirable detections
associated with multiple-time-around target returns in pulse-Doppler radars with single constant
PRF. This new method uses the transmit phase modulation and corresponding phase demodulation
at reception, which is matched to the first trip radar returns, combined with subsequent coherent
integration and successive CFAR processing in range and Doppler domains. In detail, the proposed
method includes phase modulation of pulses transmitted within each pulse repetition interval; restoring
coherence of radar signals received from targets that are within the unambiguous range interval by means
of phase demodulation; Doppler processing of all received radar signals to obtain their power spectra
representation in Range/Doppler domain; target detection by means of CFAR processing in range
(Range CFAR) using said representation in Range/Doppler domain; eliminating detections resulted
from multiple-time-around target returns by means of CFAR processing in frequency domain (Doppler
CFAR) for each detection reported by the Range CFAR.

The paper is organized as follows. Section 2 describes the proposed method using a block diagram
of an exemplary pulse-Doppler radar system implementing the method. Section 3 discusses the choice
of the transmit phase modulation codes and analyzes the transformation (after phase demodulation) of
the power spectrum for the target signal associated with multiple-time-around returns with respect to
that of the target signal from the unambiguous range interval. Section 4 studies the performances of
the proposed method and addresses the problem of optimum design of the transmit phase modulation
codes. Finally, Section 5 concludes our discussions.

2. DESCRIPTION OF THE METHOD

To describe the proposed method, we use block diagram (Figure 2) of an exemplary pulse-Doppler radar
system, which performs phase coding and decoding (matched to the unambiguous range interval) as
well as Doppler processing and CFAR detection that are realized by Radar Signal Processor (Figure 3).
An implementation of successive Range/Doppler CFAR processing is illustrated in Figure 4, where an
estimate of the average interference power around the cell under test (CUT) (m, n) in range and Doppler
domain is computed as a function of the reference samples in range dimension P̂r = fr(bsn), s ∈ Im, and
as a function of the reference samples in Doppler dimension P̂d = fd(bmt), t ∈ Jm, respectively. The
functions fr(·) and fd(·) are determined by specified CFAR methods. Figure 5 illustrates the selection
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Figure 2. Block diagram of pulse-Doppler radar system implementing the proposed method.

of reference cells for the Range/Doppler CFAR. Figures 6(a) and 6(b) show the selection of reference
cells for the Doppler CFAR when the Doppler index n for the CUT n = 1 and n = N , respectively.
Block diagram in Figure 2 is suitable for any phase coding method, including arbitrary random coding.
For instance, systematic Chu type codes or so called SZ (n/M) codes [8] can be used to implement the
proposed method.

3. DESIGN OF PHASE MODULATION CODE

Systematic biphase (or binary) codes can be used in phase coding as a reasonable alternative to
multiphase Chu codes, SZ (n/M) codes and random codes. Biphase coding implies that the phases
of transmit pulses can take on one of the two possible values 0 (0◦) or π (180◦). Using biphase codes
simplifies the radar implementation because no complex multiplications by exp(jϕk) and exp(−jϕk)
are required. It is clear that when a biphase code is used the phase coding and decoding is simply
implemented by changing the sign of all the I and Q samples associated with the k-th transmit pulse
having the phase ϕk = π as well as for all the I and Q samples corresponding to the radar signals
received within the pulse repetition interval immediately following the k-th transmit pulse. No change
of sign is required when the k-th transmit pulse has the phase ϕk = 0.

Figure 7 is a block diagram of the functioning of an exemplary version of a pulse-Doppler radar
system when the proposed method is implemented using biphase coding. In Figure 7, the transmit
waveform is represented by a set of real IF (intermediate frequency) samples, which are stored in
waveform generator memory.

Further in this paper we consider phase coding based on systematic biphase codes. A reasonable
approach to determining a suitable code is to use known family of codes. Thus, in the case of biphase
coding binary Barker codes [1, 13], optimal periodic (OP) binary codes [14], minimum peak sidelobe
(MPS) codes [1, 13] and maximum length sequences (MLS) [1, 13] can be used.

The longest known binary Barker code is of length 13, see, for example [1], where all the known



60 Kononov and Kim

Windowed FFT

Range/Doppler 

CFAR

Data representing detections: 

a set of Range/Doppler indices (mp, nq) 

and corresponding set of samples

P = the number of detected range bins

Qp = the number of detected Doppler bins

at the p-th range bin

Pulse Compression Output

To Radar Display

| . |2

A = [amn]

Nr-by-N Range/PRI complex data matrix 

representing PRI-to-PRI returns (N

samples) for each of Nr range bins (cells) 

B = [bmn] 

Nr-by-N Range/Doppler real data matrix 

representing Doppler profiles (N samples) 

for each of Nr  range bins

p

nmqp

QqPp

bnm
qp

,...,2,1;,...,2,1

)(),,(

][ mnaA

][ mnbB

)(
qpnmb

Squared-magnitude operation

=

=

= =

Figure 3. Block diagram of radar signal processor.

binary Barker codes are given. Examples of the OP codes are provided in [14] for 3 ≤ L ≤ 64. The
MPS codes through length 105 are provided in [1]. The MLS is a periodic binary sequence, whose
pattern of ones and zeros does not repeat within a period L = 2n − 1, n = 1, 2, . . . [1, 13]. Any MLS
is generated by means of a shift register employing feedback with binary coefficients and modulo 2
additions. The feedback coefficients that provide the maximum-length sequences are determined by an
irreducible, primitive polynomial of degree n.

Hereinafter we assume that the length L of a code is equal to the maximum number of pulses N
that can be processed by the radar signal processor during the coherent processing interval (CPI) frame
that consists of N successive pulse repetition intervals.

A sequence of phase states {0, π} corresponding to any given binary code is determined by the
conversions 0 → 0, 1 → π. Taking into account the sign change for the data corresponding to the
transmitted pulses with phase π (see Figure 7) it is convenient to represent biphase codes using the
complex exponential exp(jϕk). Thus, any biphase code consisting of phase states {0, π} yields a binary
sequence of elements {1,−1}, which can be represented as {+,−} for the sake of convenience.

Examples of the MPS and OP codes of length N = 16 are given in Table 1.

Table 1. Examples of binary codes of length 16.

MPS 0 1 1 0 1 0 0 0 0 1 1 1 0 1 1 1
[13, p. 108] + − − + − + + + + − − − + − − −

OP 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 0
[14, p. 134] − − − − − + − + − − + + + − + +

In Figure 2, the transmit pulses are periodically phase-shifted according to a periodic phase code
sequence given by ak = exp(jϕk), k = 1, 2, . . ., N and the received echo samples are phase-demodulated,
i.e., are multiplied by the corresponding complex conjugate value a∗k = exp(−jϕk) to restore the phases.
Hereafter, the sequence of ϕk and corresponding ak is referred to as the transmit phase modulation
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code (TxPM code) and corresponding multiplication code sequence, respectively. When the biphase
coding technique is used the elements of the multiplication code sequence assumes only two possible
values 1 or −1. Hence, in the case of biphase coding operations of complex multiplication are replaced
with computationally simpler operations of sign inversion (see Figure 7). Consequently, after the phase
demodulation the phase shift ϕk is fully compensated for the 1-st trip target signals but the 2-nd trip
target signals are phase modulated according to the sequence of phase differences ϕk−1 − ϕk or to the
sequence of products ck = ak−1a

∗
k = exp[j(ϕk−1 − ϕk)].

Generally, after the phase decoding the phases ψi,k of the i-th trip signal, i = 1, 2, . . . are given by

ψ1,k = ϕk − ϕk; for the 1st trip signal
ψ2,k = ϕk−1 − ϕk; for the 2-nd trip signal

. . .

ψi,k = ϕk−i+1 − ϕk; for the i-th trip signal

Thus, the first trip signals are made coherent while the signals from the second-, third- and other
higher-order trips, i.e., all the i-th trip signals, i > 1, are phase modulated according to the sequence
of phases ψi,k or to the corresponding sequence of products ci,k = ak−i+1a

∗
k = exp[j(ϕk−i+1 − ϕk)].

When a systematic biphase code is used, the phase modulation for the i-th trip signal after the
phase demodulation is easy to represent using the corresponding sequence ci,k = ak−i+1ak, which
elements assume only two possible values 1 or −1. To determine the i-th phase modulation sequence
ci,k, k = 1, 2, . . ., N , it is convenient to consider an N -by-N matrix A of all cyclic shifts of a row-vector
a = [a1, a2, . . . , aN ] representing the multiplication code ak, k = 1, 2, . . . , N , where the first row of the
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matrix A is the vector a. Table 2 shows an example of the 16-by-16 matrix A when the OP code
from Table 1 is used as a periodic TxPM code. From the matrix A, the i-th trip signal modulation
sequence ci,k , i = 1, 2, . . ., N is computed as an element-wise product of the first row elements by the
corresponding i-th row elements. Table 3 shows the matrix C, in which the i-th row represents the
phase modulation sequence ci,k computed using the corresponding rows of the matrix A. In Tables 2
and 3 the symbol “−” stands for −1 and the symbol “+” stands for 1.

The presence of phase modulation for the i-th trip signals, i > 1, after the phase demodulation
stage alters their spectra with respect to that of the 1-st trip signals, for which the phase modulation
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Table 2. Matrix A — Cyclic shifts of multiplication code.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 − − − − − + − + − − + + + − + +
2 + − − − − − + − + − − + + + − +
3 + + − − − − − + − + − − + + + −
4 − + + − − − − − + − + − − + + +
5 + − + + − − − − − + − + − − + +
6 + + − + + − − − − − + − + − − +
7 + + + − + + − − − − − + − + − −
8 + + + + − + + − − − − − + − + −
9 − + + + + − + + − − − − − + − +
10 + − + + + + − + + − − − − − + −
11 − + − + + + + − + + − − − − − +
12 + − + − + + + + − + + − − − − −
13 − + − + − + + + + − + + − − − −
14 − − + − + − + + + + − + + − − −
15 − − − + − + − + + + + − + + − −
16 − − − − + − + − + + + + − + + −

introduced at the transmission is fully compensated after the phase demodulation. Figure 8 compares
the DFT power spectrum of the 1-st trip signal and that of the 2-nd trip signal for the TxPM codes of
length N = 16 from Table 1.
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Table 3. Matrix C — Phase modulation sequences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 + + + + + + + + + + + + + + + +
2 − + + + + − − − − + − + + − − +
3 − − + + + − + + + − − − + − + −
4 + − − + + − + − − + + − − − + +
5 − + − − + − + − + − − + − + + +
6 − − + − − − + − + + + − + + − +
7 − − − + − + + − + + − + − − − −
8 + − − − + + − − + + − − + + + −
9 + + − − − − − + + + − − − − − +
10 − + + − − + + + − + − − − + + −
11 + − + + − + − − − − − − − + − +
12 − + − + + + − + + − + − − + − −
13 + − + − + − − + − + + + − + − −
14 + + − + − − + + − − − + + + − −
15 + + + − + + + − − − + − + − − −
16 + + + + − − − − + − + + − − + −

The vector S = [S1, S2, . . . , SN ] representing the DFT power spectrum of a signal u specified by a
vector of samples u = [u1, u2, . . . , uN ] is computed as

S = |U |2 , U = FFT [u] (2)

where U = [U1, U2, . . . , UN ] is the vector of complex DFT samples, and vector u is normalized so that
it has unity norm, i.e., ‖u‖ = 1. The plots in Figure 8 are computed in Matlab using the input data,
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which are summarized in Table 4. The Fast Fourier Transform (FFT) is implemented according to the
following Matlab notation fftshift (fft (u, N )).

The unit-norm vector u corresponding to the i-th trip signal is computed according to

u = ci ◦ gant ◦ w ◦ uo

u = u/‖u‖
ci = [ci,1, ci,2, . . . , ci,N ], ci,k ∈ {−1, 1}
uo = [1, exp(j2πy), exp(j2π2y), . . . , exp(j2π(N − 1)y)]

(3)

where ci is computed as the i-th row of the matrix C for the specified cyclic shift of a given TxPM
code; the vector gant represents the amplitude modulation of received signals by antenna pattern (see
Table 4); w is the vector of weighting coefficients (see Table 4); the symbol ◦ stands for the element
wise product of vectors; y = fd/Fr is the normalized (unitless) Doppler frequency with fd being the
Doppler frequency in Hertz and Fr being the pulse repetition frequency in Hertz.

Table 4. Inputs used in computing power spectra.

Number of pulses, N 16

Normalized Doppler frequency, y = fd /PRF 0

Vector representing the two-way amplitude

modulation of signals by antenna pattern, gant

Gaussian modulation, computed as (in Matlab notation)

gant = exp(−4 ∗ log(2) ∗ (linspace(−0.5, 0.5, N).ˆ2))′

Vector of weighting coefficients to suppress

the sidelobe level of the DFT spectrum, w

Taylor window (-40 dB) computed as (in Matlab notation)

w = taylorwin(N , 8,-40), w = w/norm(w)

Phase modulation code MPS and OP from Table 1

As can be seen in Figure 8, the power spectrum of the 1-st trip signal is concentrated around zero
Doppler frequency (around Doppler bin index d = N/2+1 = 9 since the relationship between d and the
normalized Doppler frequency is given by y = (d − 9)/16, d = 1, 2, . . . , 16), while the power spectrum
of the 2-nd trip signal for the OP code and that for the MPS code spreads over the entire Doppler axis.
The power spectrum of signals associated with other higher-order trips exhibits similar behavior.

The distinction between the spectrum shape of the 1-st trip and the 2-nd (as well as other higher-
order trips) suggests using CFAR processing in Doppler domain (Doppler CFAR) in addition to CFAR
in range domain (Range CFAR) for eliminating the higher order trip signals without serious detrimental
effect on the detection of the 1-st trip signal. The Range CFAR and Doppler CFAR differ from each
other in a manner of taking the reference samples. For the Range CFAR the reference samples are
selected from the samples surrounding a given cell under test (CUT) in range dimension while for the
Doppler CFAR the reference samples are selected from the samples surrounding the CUT along Doppler
dimension. Figure 5, Figures 6(a) and (b) show how the reference samples for the Range CFAR and
Doppler CFAR are selected from the CUT surrounding samples. The physical rationale for combining
Range/Doppler CFAR processing is discussed below.

First, spreading the spectrum of the i-th trip target signal (i > 1) over the entire Doppler axis
results in essential decreasing in the probability of detection for each sample of this spectrum after the
Range CFAR with respect to the maximum sample in the power spectrum of the 1-st trip target signal
(other conditions being equal). Second, when at least one sample of this spread spectrum is detected by
the Range CFAR, e.g., because of high SNR, then the probability of detection by the Doppler CFAR for
this sample should be essentially lower than that for the 1-st trip target. This is because the reference
samples, which are used by the Doppler CFAR to estimate the adaptive detection threshold, are taken
from the spectrum. In the case of the 1-st trip target signal, the spectrum is concentrated around the
spectrum maximum, while for the higher-order trip target signal, the spectrum spreads over the entire
Doppler axis. Therefore, the adaptive CFAR threshold estimated for the higher-order trip target signal
from the spectrum that is spread over Doppler is significantly higher than that for the 1-st trip target
signal, which spectrum is concentrated in Doppler and has small sidelobes. Small sidelobe level in the
1-st trip target signal spectrum ensures insignificant loss in the detection probability. It is clear that
significant increase in the threshold level results in essential decreasing the probability of detection other
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conditions being equal. Thus, using the transmit phase modulation and phase demodulation, which is
matched to the 1-st trip signal, in combination with Range/Doppler CFAR provides the possibility
to efficiently eliminate the higher-order trip target without noticeable degradation in the detection
probability for the 1-st trip target.

4. PERFORMANCE ANALYSIS

To characterize the overall detection performance for the i-th trip target, i = 1, 2, . . ., we use the concept
of overall detection probability, which is the probability that at least one sample Sk from the target’s
Doppler profile S = [S1, S2, . . . , SN ] is detected after combined Range/Doppler CFAR. It should also be
noted that for the higher-order trip targets (i.e., when i > 1) the term target elimination performance
is also relevant because the lower the detection probability for this kind of targets, the higher the target
elimination probability, i.e., the probability that the target is not detected, or in other words, it is
eliminated. If the i-th trip target (i > 1) overall detection probability is P i

OD then the corresponding
elimination probability P i

E is given by P i
E = 1 − P i

OD.
To estimate the efficiency of the proposed method, we compute the overall detection performance

for the 1-st and higher-order trip targets using statistical simulation with 106 independent Monte-Carlo
trials. The computations are carried out under assumption that the radar receiver noise obeys a zero-
mean Gaussian distribution and the RCS fluctuations for the 1-st and the i-th trip targets (i > 1) obey
the Swerling 1 model. Both I and Q samples of noise are simulated as independent Gaussian random
values with unit variance σ2 = 1.

The 1-st trip target signal is simulated according to

u(1) =
√

2P1t · (gant ◦ w ◦ uo) (4)
where the 1-st trip target power P1t is generated as an exponential random variable with mean
P̄1t = SNR1tPn, where SNR1t is the signal-to-noise ratio for the 1-st trip target and Pn = σ2 the
receiver noise power.

The i-th trip (i = 2, 3, . . .) target signal is simulated according to

u(i) =
√

2Pit · (ci ◦ gant ◦ w ◦ uo)
ci = [ci,1, ci,2, . . . , ci,N ], ci,k ∈ {−1, 1} (5)

where the i-th trip target power Pit is also generated as an exponential random variable with mean
P̄it = SNRitPn where the SNRit is the signal-to-noise ratio for the i-th trip target. The vectors gant

and w and other parameters, which we use in computing the detection performance, are specified in
Table 4.

In Equation (5), it is assumed that a sequence of pulses for the i-th trip target captured within any
CPI frame contains Ncpi = N pulses (the case Ncpi < N is considered later). It is also assumed that
radar antenna is continuously rotating in azimuth at a constant angular velocity and the sequence of N
transmitted phases associated with the i-th trip target signal is simulated as a random vector, which
possible outcomes are all the N cyclic shifts of a given periodic TxPM code. Each of these outcomes
is assigned the probability 1/N . Therefore, the vector ci in Equation (5) is also simulated as a random
vector, which all N possible outcomes are equally probable. It is clear that all the possible outcomes for
ci are determined by the corresponding cyclic shifts of a given TxPM code. This model for the sequence
of N transmitted phases takes into account the random location of targets in azimuth. In the present
paper the performance analysis is carried out using this model.

In our performance study, the Range and Doppler CFAR are implemented according to the
conventional cell averaging (CA) CFAR algorithm. For the range CFAR, the number of reference
samples M = 24, the design false alarm probability PfaRng = 10−6 and the corresponding threshold
multiplier α = 0.7782794. The parameters of the CA CFAR algorithm for the Doppler CFAR are
summarized in Table 5, where PfaDop stands for the design probability of false alarm and β is the
corresponding threshold multiplier. The parameters α and β are computed from the same equation [1,
p. 600], which is written below in terms of β

β = P
−1/M
fa − 1 (6)

where Pfa is equal to the specified false alarm probability PfaDop (or PfaRng in computing α).
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Table 5. Parameters of CA CFAR algorithm for Doppler CFAR.

M = 13
PfaDop 10−1.0 10−1.5 10−2.0 10−2.5 10−3.0 10−3.5 10−4.0

β 0.1937766 0.3043214 0.4251027 0.5570684 0.7012543 0.8587919 1.0309176

4.1. Known Biphase Codes for Phase Modulation

This subsection analyzes the performance of the proposed method for the random phase modulation and
that for the systematic biphase modulation when the radar uses known biphase codes. In the case of
random phase modulation, the phases are generated as independent random values uniformly distributed
on [0 2π]. The detection probability of interest is computed versus the design false alarm probability
PfaDop assuming equal SNR for the 1-st and 2-nd trip targets, i.e., SNR1t = SNR2t = 10 dB.

Figure 9 compares the estimated overall detection probability P 2
DO for the 2-nd trip target in the

case of random phase modulation (curve marked by RND) and deterministic biphase modulation with
the MPS and OP codes from Table 1. Figure 10 shows the estimated detection probability for the 1-st
trip target after the Range CFAR P 1

DRng and the overall probability of detection P 1
DO. The detection

performance for the 1-st trip target does not depend on the phase modulation code because the phase
modulation introduced into transmit pulses is completely removed from the 1-st trip target signal after
the phase demodulation stage. Figure 11 plots the loss in the probability of detection L1

PD (in percent)
for the 1-st trip target, where the loss L1

PD is computed as

L1
PD = 100 · (P 1

DRng − P 1
DO)/P 1

DRng (7)

The estimated value of loss L1
PD at PfaDop = 10−1 is equal to zero. In order to present this zero-loss

point in logarithmic scale of Figure 11 we use the value of loss at point PfaDop = 10−1.5.
From Figure 9, it is seen that the biphase modulation with the OP code outperforms that with the

MPS code, e.g., at PfaDop = 10−3, the estimated overall detection probability for the 2-nd trip target
in the case of the OP code is P 2

DO = 1.71 × 10−3 which is noticeably less than P 2
DO = 19.95 × 10−3 for

the MPS code. As shown in Figure 9, the 2-nd trip target elimination performance in the case of the
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Figure 9. Estimated overall detection probability versus log(PfaDop) for the 2-nd trip target.
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random phase modulation is essentially worse than that of the deterministic biphase modulation. Thus,
we do not suggest random phase modulation for the implementation of the proposed method.

Analyzing the plots in Figure 10 and Figure 11 yields that the price paid for achieving reliable
elimination performance for the 2-nd trip target is negligible. Indeed, even at PfaDop = 10−4 the loss in
the detection probability for the 1-st trip target L1

PD = 0.754% while the 2-nd trip target elimination
performance is excellent. Indeed, from Figure 9, the estimated value of P 2

DO for PfaDop = 10−4 is at a
very low level for both OP code (P 2

DO = 1.23 × 10−4) and the MPS code (P 2
DO = 1.41 × 10−3).
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4.2. Optimum Biphase Codes for Phase Modulation

One can draw two important inferences from the results presented in Figures 9 and 10. First, it is
clear that adjusting the threshold multiplier in the Doppler CFAR allows achieving efficient target
elimination for the 2-nd trip target without noticeable degradation in the detection performance for the
1-st trip target. Second, comparing the graphs plotted in Figure 9 for the OP and MPS codes yields
that in the case of deterministic biphase modulation the choice of modulation code can be governed
by the purpose of achieving the best performance. Generally, this means that the TxPM code can be
optimized using the minimum of the overall detection probability for the i-th trip (i > 1) target as an
optimality criterion. Unfortunately, this optimization problem is very complex and we did not find any
closed form solution for it.

However, the following approach to the aforesaid optimization problem can be suggested to find
approximate solution. This approach is based on the following physical considerations. From Figure 9
and Figure 10, it is seen that the overall detection probability for the 1-st trip target is significantly
higher than that for the 2-nd trip target. The physical reason for this is suggested by comparing the
Doppler profiles (i.e., power spectra) for the signals corresponding to the 1-st and 2-nd trip targets:
examples of the Doppler profiles for the 1-st and 2-nd trip targets are given in Figure 8. As one can see,
a significant portion of the power for the 1-st trip target signal is concentrated in one dominant sample
of its Doppler profile while the other samples of the profile are significantly lower than the dominant
one. The dominant sample is significantly higher than the adaptive threshold for both the Range CFAR
and Doppler CFAR, because the adaptive threshold is computed from the low level samples surrounding
the dominant sample. Due to this the overall probability of detection for the 1-st trip target can be
maintained at a certain high level depending on how large the SNR1t is. In contrast to the 1-st trip target,
the Doppler profile for the 2-nd trip target is spread over the entire Doppler axis with no significant
difference between the samples. This results in decreasing the probability of detection for the 2-nd trip
target after the Range CFAR processing and especially after the Doppler CFAR. Indeed, the adaptive
threshold in the Doppler CFAR is computed from the samples, which are comparable in magnitude.
Hence, when the Doppler CFAR thresholding is performed for each sample in the corresponding Doppler
profile the probability of exceeding the adaptive threshold becomes essentially lower than that for the
dominant sample in the Doppler profile associated with the 1-st trip target signal. Thus, the overall
detection probability for the 2-nd trip target becomes essentially lower than that for the 1-st trip target.

Based on the discussion above, one can assume that the overall detection probability for the 2-nd
trip target is expected to be close to a certain minimum when the TxPM code provides such a power
spectrum for the 2-nd trip target signal, which all spectral samples are as close to some constant level
as possible, or, in other words, which provides the best fit to a uniform spectrum. To quantify the
goodness of fit we use the standard squared Euclidean distance D, which is given by

D =
N∑

k=1

(Sk − So)2 (8)

where Sk is the k-th spectral sample of the corresponding power spectrum and So the specified constant
level, i.e., the magnitude of the uniform spectrum.

According to the Parseval’s theorem the relationship between the signal vector u and its DFT
power spectrum S, see Equation (2), is given by

N∑

k=1

|uk|2 =
1
N

N∑

k=1

|Uk|2 (9)

The right-hand side in Equation (9) represents the mean value of the power spectrum, and the left-hand
side is the norm ‖u‖ of the vector u. When the vector u is normalized, i.e., ‖u‖ = 1, the mean value
of the power spectrum is also equal to 1. Therefore, it is reasonable to set So = 1 in Equation (8),
because for any unity-norm vector u the mean value of the corresponding power spectrum is equal to
unity regardless of the TxPM code.

Thus, we reduce the complex problem of finding such a TxPM code, which minimizes the overall
probability of detection for the i-th trip targets (i > 1), to a simpler problem of finding such a TxPM
code that minimizes the distance D. There is no guaranty that the code minimizing D is simultaneously
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optimal under the criterion of minimum overall detection probability. However, based on the above
physical considerations one may expect that a TxPM code, which is optimal under the minimum D
criterion, should provide the overall detection probability that is close to a minimum provided by the
code which is optimal under the criterion of minimum overall detection probability for the i-th trip
targets (i > 1).

Since the norm of the signal vector for any i-th trip target does not depend on the i-th trip phase
modulation sequence ci, in optimizing the TxPM code we use the unity-norm signal vector given by
Equation (2), where the vector ci is determined by the corresponding TxPM code that changes during
optimization procedure.

Strictly speaking, the minimum D criterion cannot be directly used in optimizing the TxPM code
when the sequence of N transmitted phases associated with the i-th trip target signal is modeled as a
random vector, which possible outcomes are all the N cyclic shifts of a given periodic TxPM code. One
of the possible optimality criteria that can be used with this model is the so-called “minimax criterion”.
The procedure based on the minimax criterion that we use in optimizing the TxPM codes is explained
below.

Table 6 summarizes all the TxPM biphase codes of length N = 16 that are globally optimum under
the minimax distance criterion for the 2-nd trip target. The codes are found by using the exhaustive
search algorithm under the condition Ncpi = N . In the process of searching all 2N − 1 possible non-zero
binary codes of length N are analyzed in turn. For the p-th analyzed code all the N distances Dq,
q = 1, 2, . . . , N corresponding to the N possible cyclic shifts of the analyzed code are computed from
Equation (8) and the maximum distance Dmax(p) = max{Dq, q = 1, 2, . . . , N}, p = 1, 2, . . . , 2N − 1
and the corresponding cyclic shift are fixed. Then, the minimax distance Dmin max is determined as
Dmin max = min{Dmax(p), p = 1, 2, . . . , 2N − 1} and all the fixed cyclic shifts that meet the optimality
condition Dmax(p) = Dmin max are selected with no repetition.

Table 6. Optimum TxPM biphase codes of length 16 for the 2-nd trip target.

0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1
0 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1
0 1 0 1 0 0 1 0 1 1 0 0 0 0 1 0
0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1
1 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1
1 1 0 1 1 1 1 0 0 1 0 1 1 0 1 0
1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0

Following the circular shift theorem for the DFT, the power spectra corresponding to all the cyclic
shifts of a given sequence of samples x1, x2, . . . , xN are identical. However, in our optimization procedure
the distances Dq, q = 1, 2, . . . , N are computed for all cyclic shifts of a given TxPM code. This is because
the power spectra of the i-th trip target signals associated with these cyclic shifts are not identical: due
to amplitude modulation of the received signal by the antenna pattern and/or amplitude weighting
before the Doppler processing the i-th trip signals corresponding to different cyclic shifts of a given
TxPM code are not the cyclic shifts of each other.

It is interesting to compare the minimax distance for the OP code from Table 1 and that for the
optimum TxPM codes from Table 6. The computations give Dminmax = 18.085 for the OP code and
Dmin max = 7.116 for all the optimum TxPM codes in Table 6. Hence, one can expect that the optimum
codes from Table 6 improve the 2-nd target elimination performance with respect to the OP code from
Table 1.

To estimate the gain that can be achieved by optimizing the binary TxPM code, in Figure 12
we compare the 2-nd target elimination performance of the proposed method for the optimum code
from Table 6 (1-st row) and that for the OP code from Table 1. From Figure 12, it is seen that
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Figure 12. Comparison of the 2-nd trip target elimination performance for the optimum biphase code
from Table 6 (1-st row) and that for the OP code from Table 1.
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Figure 13. Comparison of the 3-rd trip target elimination performance for the optimum biphase code
from Table 6 (1-st row) and that for the OP code from Table 1.

at PfaDop = 10−2 the gain in the overall probability detection is about 3.62 (0.04097/0.01131) and
gradually decreases to about 2.87 at point PfaDop = 10−4. The Monte-Carlo simulations show that the
overall detection probability exhibits similar behavior for all the codes in Table 6.

Although the optimum binary TxPM codes from Table 6 outperform the OP code from Table 1 in
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terms of the 2-nd target elimination performance, their performance becomes worse than that for the
OP code in the case of the 3-rd trip target as illustrated in Figure 13. To overcome this disadvantage,
we construct an integrated goodness of fit measure DMC by averaging the goodness of fit measures for
the 2-nd and the 3-rd trip targets

DMC = 0.5 (D2 +D3) (10)

where D2 and D3 are computed from Equation (8) for the 2-nd and 3-rd trip targets, respectively.
Table 7 summarizes all the TxPM biphase codes of length N = 16 that are globally optimal under

the minimax DMC criterion for the 2-nd and 3-rd trip targets. The codes in Table 7 are found under
the condition Ncp = N by means of the same optimization procedure that is used for optimizing the
TxPM codes given in Table 6.

Table 7. Optimum biphase codes of length 16 for the 2-nd and 3-rd trip target.

0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0
0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1
1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1

Figure 14 compares the 2-nd, 3-rd and 4-th trip target elimination performances of the proposed
method for the optimum TxPM code from the 1-st row of Table 7 and that for the OP code from
Table 1. From Figure 14, it is seen that the optimum code from Table 7 maintains good false targets
elimination ability and outperforms the OP code in all cases in question. It should also be noted that
the gain in performance for the optimum code from Table 7 is larger for the higher-order trip targets.
The Monte-Carlo simulations show that this effect takes place for all the TxPM codes in Table 7.

Figure 15 shows the effect of the signal-to-noise ratio (SNR) on the 2-nd trip target elimination
performance in the case of the optimum TxPM code from Table 7 (1-st row). It is evident from this figure
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Figure 15. Elimination performance for the 2-nd trip target at different SNR.
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Figure 16. Sequences of Ncpi pulses for the 2-nd trip target captured over current CPI frame.

that increasing the SNR results in noticeable improving the 2-nd trip target elimination performance
for PfaDop ≤ 10−2.5.

So far the i-th trip target elimination performance of the proposed method is analyzed under the
condition Ncpi = N , i.e., when the number of pulses actually captured over a given CPI frame is equal to
the maximum number of pulses N that can be coherently processed. We now turn to the case Ncpi < N .
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In this case the i-th trip (i = 2, 3, . . .) target signal is simulated as

u(i) =
√

2Pit · (hi ◦ gant ◦ w ◦ uo)
hi = T{ci, Ncpi}
ci = [ci,1, ci,2, . . . , ci,N ], ci,k ∈ {−1, 1}

(11)

where Pit is simulated as an exponentially distributed random value, and the vectors gant and w are
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Figure 17. Elimination performance for the 2-nd trip target as a function of Ncpi.
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specified in Table 4. The 1-by-N vector hi = T{ci, Ncpi} is a modification of the vector ci, where ci is
the i-th row of the matrix C corresponding to a given TxPM code. The operator T defines, for the i-th
trip target, the modification of the vector ci depending on a sequence of Ncpi pulses that are captured
within a current CPI frame (CPI frame consists of N pulse repetition intervals). Figures 16(a), (b)
and (c) illustrate how the operator T works using three examples for the 2-nd trip target when N = 8.
If Ncpi = N then h2 = c2, as can be seen in Figure 16(a). If Ncpi = 7 pulses are captured at the
leading part of the current CPI frame then h2 = [c2,2 c2,3 c2,4 c2,5 c2,6 c2,7 c2,8 0], see Figure 16(b). For a
sequence of Ncpi = 6 pulses, which are captured at the trailing part of the CPI frame, see Figure 16(c),
h2 = [0 0 c2,1 c2,2 c2,3 c2,4 c2,5 c2,6].

Figure 17 shows the 2-nd trip target elimination performance as a function of Ncpi at a fixed value
of the probability of false alarm for the Doppler CFAR, PfaDop = 10−2, and at SNR2t = 10 dB, for the
optimum code from Table 7 (1-st row). As one can see, the worst point in terms of the performance
degradation is Ncpi = 8.

In Figure 18, we compare the performance (as a function of PfaDop) in the case of Ncpi = 16 and
that when Ncpi = 8 (worst case) for the same TxPM code in Table 7. From Figure 18, it is seen that in
spite of significant performance degradation with respect to the case Ncpi = N , the 2-nd target detection
probability in the worst case can be maintained at a sufficiently low level by appropriate setting the
threshold multiplier β for the Doppler CFAR, e.g., if β is defined under the condition PfaDop ≤ 10−3.

5. CONCLUSIONS

In this paper, a new method for elimination of multiple-time-around detections in pulse-Doppler radars
with single constant pulse repetition frequency is proposed. The method includes the phase modulation
of transmit pulses and corresponding phase demodulation at reception, which is matched to radar
returns from the unambiguous range interval, subsequent Doppler processing followed by successive
CFAR processing in range and Doppler domains.

A fundamental distinction of this method is that after the phase demodulation it completely
preserves the shape of the power spectra of signals from the unambiguous range interval while almost
evenly spreads on the Doppler axis the power of the multiple-time-around target returns from the
ambiguous range intervals and then combines the Range CFAR processing with successive Doppler
CFAR processing for all detections reported by the Range CFAR. Almost uniform power spreading on
the Doppler axis results in essential decreasing the probability of detection (this means high probability
of elimination) for the multiple-time-around target returns while preserving the shape of the Doppler
spectrum allows to maintain the probability of detection for targets from the unambiguous range interval
almost at a level ensured by the Range CFAR processing.

The performance of the proposed method is studied by means of statistical simulations. As shown,
the elimination performance for the multiple-time-around target returns can be essentially improved by
optimizing the transmit phase modulation code. The optimization problem is formulated for arbitrary
phase modulation in terms of least-square fitting the power spectrum of the multiple-time-around signals
to a uniform power spectrum. Optimum biphase codes of length 16 are designed by means of exhaustive
search and used in the performance analysis. The optimum design is performed in the case when the
2-nd trip target elimination is required and in the case of joint elimination of the 2-nd and 3-rd trip
targets.

The results of the performance analysis show that the proposed method can provide very high
probability of elimination for targets associated with multiple-time-around echoes without noticeable
degradation in the probability of detection for targets located within the unambiguous range interval.

It should also be noted that the proposed method has no limitations on the number of targets
and simultaneously performs target detection and range ambiguity resolution (unambiguous range
measurements) because eliminating multiple-time-around echoes is inherently embedded in the process
of target detection.



76 Kononov and Kim

REFERENCES

1. Richards, M. A., J. A. Scheer, and W. A. Holm (eds.), Principles of Modern Radar — Vol. I, Basic
Principles, SciTech Publishing, Raleigh, NC, 2010.

2. Melvin, W. L. and J. A. Scheer, (eds.), Principles of Modern Radars — Vol. III, Radar Applications,
IET/SciTech Publishing, Raleigh, NC, 2012.

3. Skolnik, M. I., Introduction to Radar Systems, 2nd Edition, McGraw Hill, New York, 1981.
4. Skolnik, M. I., Radar Handbook, 2nd edition, 1990.
5. Skolnik, M. I., Radar Handbook, 3rd edition, 2008.
6. Trunk, G. V. and M. W. Kim, “Ambiguity resolution of multiple targets using pulse-Doppler

waveforms,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 4, 1130–1137,
Oct. 1994.

7. Chuan, Y. K., M. K. Loke, R. C. Shui, and L. F. Chen, “Ducting phenomena and their impact on
a pulse Doppler radar,” 88–99, DSTA Horizons, 2010, https://www.dsta.gov.sg/docs/publications-
documents/ducting-phenomena-and-their-impact-on-a-pulse-doppler-radar.pdf?sfvrsn=0.

8. US Patent 6,081,221, Dusan S. Zrnic and Mangalore Sachidananda, 2000.
9. US Patent 5,079,556, Shin-Ichi Itoh, 1992.

10. Levanon, N., “Mitigating range ambiguity in high PRF radar using inter-pulse binary coding,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 2, 687–697, Apr. 2009.

11. Anderson, J., M. Temple, W. Brown, and B. Crossley, “A nonlinear suppression technique for range
ambiguity resolution in pulse Doppler radars,” Proceedings of the 2001 IEEE Radar Conference,
141–146, Atlanta, USA, 2001.

12. Anderson, J., “Nonlinear suppression of range ambiguity in pulse Doppler radar,” Dissertation,
AFIT/DS/ENG/01-05, Air Force Institute of Technology, Graduate School of Engineering and
Management, Dec. 13, 2001.

13. Levanon, N. and E. Mozeson, Radar Signals, Wiley, 2004.
14. Tyler, S. and R. Kesten, “Optimal Periodic Binary Codes of Lengths 28 to 64,” TDA Progress

Report 42–57, Mar. and Apr. 1980, Jet Propulsion Laboratory, Pasadena, CA.


